
Smart Sudoku Solver
Agarwal Vinayak, Kamat Tarcar Anand, Kurian Shalini

Deparmtent of Electrical Engineering,
Stanford Univeristy

Abstract—In this paper we propose a method of detecting and
recognizing a Sudoku Puzzle and providing a digital copy of the
solution for it. After applying appropriate pre-processing to the
acquired image we use efficient corner extraction techniques to
recognize the grid. Template matching is used as a method for
digit recognition. The algorithm can handle cases of translation,
perspective, illumination gradient, scaling, background clutter
and severe rotation.

Keywords- connected component; homography; affine
transformation; template matching.

I. INTRODUCTION
In real life we come across Sudoku puzzles of varying

difficulty levels in newspapers and other text and digital media.
It is a common leisure activity for a lot of people. However, it
is observed that the solution is not always immediately
available for the users’ verification. In most cases, people have
to wait till the next day to check the solutions of the Sudoku
they just solved. Hence our motivation for this project was to
develop an application on an android device for this purpose.
In our application, the user needs to capture a clean image of an
unsolved Sudoku Puzzle, which then returns the complete
solution of the same.

II. OUR ALGORITHM
Our algorithm is designed specifically to solve a Sudoku

puzzle containing a 9x9 grid of numbers. The main task of the
algorithm is divided into two sections: Firstly, it should
accurately locate the grid position in the image while taking
care of problems of background clutter, scaling, translation,
rotation and perspective skew. The second part of the
algorithm must then locate those positions in the grid where
there are numbers and recognize them with precision. A
recursive backtracking algorithm will then solve the puzzle.

Section III discusses in detail the measures taken to extract
the grid from the image and section IV discusses the digit
recognition sub-system of our algorithm which also takes care
of severe rotation we might be faced with. Section V then
briefly discusses the algorithm used to solve the Sudoku
puzzle and provides a brief overview of how the system was
integrated with the Android device.

III. EXTRACTING THE PUZZLE GRID
Once we have acquired an image, as shown in figure-1,

containing the Sudoku grid we first convert it to a grayscale
image, as shown in figure-2, which is then the input to other

preprocessing techniques so that the grid can be accurately
located. The steps that we took are discussed below:

Figure 1:Original image of Sudoku

Figure 2:Gray Scale Image of Sudoku

A. Smoothing the image and Adaptive thresholding:
The input image is first filtered with a low-pass Gaussian

filter of 5x5 window size. The reason for this is that it
smoothens out sharp projections and other high frequency
components in the image. Also it helps in getting better results
subsequently. It takes care of any jagged edge clutter that

appears after adaptive thresholding, thereby resulting in robust
grid corner extraction. It was also observed that performing
adaptive thresholding on the image without the smoothing filter
gave broken digits. After blurring, the digits obtained were
clean and complete, which could be used for digit recognition.

Once smoothed, the image is passed through an Adaptive
thresholding algorithm. The reasoning behind this is that there
may be an illumination gradient (for example, due to shadows
of the human capturing the images with the mobile phone),
across the image and global thresholding will completely
obliterate the details of the grid and digits making it impossible
to extract it. Applying window-wise thresholding helps in
localizing the effect thus effectively bringing out the details
which are perfect for our algorithm. The window size used by
us for Adaptive thresholding was heuristically chosen to be 30
percent of the approximate size of each 1x1 block in the
approximate 9x9 grid of the puzzle. This is because applying
thresholding in this manner over the entire grid helps in getting
finer details in the numbers thereby making our algorithm for
recognizing the digits more robust. Figure-3 shows the result
obtained after smoothing and adaptive binarization.

Figure 3: After applying Gaussian Blur and Adaptive

Thresholding

B. Isolating the grid from background clutter of the
image:

An important part of the algorithm is to correctly identify
the location of the Sudoku Grid in the given image. To achieve
this, we rely on the concept of Connected Components. The
grid by itself is a connected component and our hypothesis is
that it is the largest connected component in the image
subjected to certain constraints. These constraints were
introduced after identifying some shortcomings in our previous
approach. The hypothesis that the Sudoku grid is the largest
connected component is correct in most cases but failed in
some. These cases were where the image was characterized
with the presence of blobs outside the Sudoku grid that had
very high pixel density. In such cases, although the grid is one
of the largest connected components, it might not be the largest
one. To overcome this problem, while performing flood-filling
algorithm, a technique to identify all connected components
using 4 connectivity in the image, we keep track of the largest

connected component, i.e. the one with the maximum pixel
density. This Connected component has to fulfill certain other
constraints. These constraints are in direct correlation to our
requirement that the Sudoku Grid has a height and width of at
least 30% of that of the entire image height and width
respectively. This constraint gave very good results practically
and helped rule out unwanted clutter which had the potential of
being misidentified as the grid component. To make our
constraints closer to identifying the actual grid, we impose
another restriction. The corners of the connected component
discovered should have its corner points present in the image,
in addition to that fact that they should not overlap with the
edges of the image.

Figure 4:Extracted Grid

This approach, gave very good results in terms of grid
detection. It removes any clutter outside the grid and isolates
the Sudoku grid accurately and eases the rest of our algorithm.
The extracted grid is shown in Figure-4.

C. Extracting the grid corners:

The next step in our algorithm is identifying the four
corners of the grid to determine a perspective transformation
from the given grid to a specified square grid. Prior to
identifying the corner locations, we erode the image with a
square structuring element of window size 5X5. A lot of
Sudoku puzzles have an outer grid boundary which is very
thick. The algorithm implemented to locate the corners of the
grid relies on accurate pixel locations. To aid this algorithm,
we perform an erosion to make the grid boundaries thinner
resulting in the detection of the corners to be in more
concentrated location. Erosion will also eradicate the thin grid
lines inside the extracted grid component and make the
algorithm execute faster in most cases.

The strategy to locate the corner points involved first
identifying the minimum distance and the maximum distance
points with respect to the origin of the image and using these to
judge the location for the top right and bottom left corner
points. The origin for the image co-ordinate system is located
at the top left corner of the image. The minimum distance and

maximum distance points in most cases would be the top left
and bottom right corner points of the grid.

Figure 5:Extended Corner Detection algorithm

Thus, traversing the image with only the grid details in it,
we accurately identify the minimum distance and the maximum
distance points on the Sudoku grid.

To identify the top right and bottom left corner points, we
employ a different strategy. We exploit the rectangular regular
symmetry of the grid to do so. Identifying that the top right
corner point would lie above the diagonal formed with the
maximum and minimum distance points, and the bottom left
corner point would lie below the same diagonal, helps us
isolate these other two corner points. The sum of the distances
of the top right corner from the top left and bottom right corner
would be the largest distance achievable for a point on the grid
lying above the aforementioned diagonal. On similar lines, the
bottom left corner would be the point with the largest sum of
distances from the maximum and minimum distance points
located below the diagonal. Doing so, we successfully identify
the location of other two corners of the grid.

But under certain angle of rotations of the grid, for example
a 45 degree anticlockwise rotation as shown in figure-5, the
minimum distance point might not be correctly identified. In
this case, the minimum distance point is detected to be at the
edge and not at the corner as depicted by the red circle on the
edge. But the other two corner points at the top right and
bottom left corner still have maximum sum of distance from
these two detected points, even if the minimum distance point
is not a corner as in figure-5. For identifying the correct
location of the minimum distance corner point, we repeat the
same algorithm using the top right and the bottom left corner
points. We locate the diagonal passing through the identified
other two corner points. We apply the same distance heuristic
as illustrated in the previous paragraph, and re-locate the
minimum distance and maximum distance points as
highlighted by red(at the corner) and green circles respectively.
At the end of this, we thus have successfully managed to
identify the four corner points of the grid.

D. Taking care of perspective in the image:

Once we have extracted the corner points in the image we
calculate the side lengths for the grid from these points and
choose the maximum side length to be the one used for the next
homographic transformation to a perfectly square Sudoku
grid. The above identified four corner points are correlated to
the corners of the perfectly square Sudoku grid. These
correspondences among the four corner points are then used to
obtain a 3x3 projection matrix. Applying this matrix to perform
the homographic transformation gives us a perfectly square
Sudoku grid.

Figure 6:Translation of grid to a square grid

IV. RECOGNIZING THE DIGITS AND HANDLING ROTATION
Now that we obtained the transformed square without the

perspective, our next task is to locate the digit positions in the
puzzle grid and recognize them. For this we use template
matching[3] method. We used a template image containing six
different font types of digits 1-9 as shown in figure-7 below.
This part of the algorithm takes care of all kinds of rotation
including a completely inverted image as well. The steps taken
for this are described below:

A. Preprocessing the Square Grid:
On extracting only the square grid of the Sudoku, we need

to perform some preprocessing steps to extract only the digits
from it. For this we perform similar preprocessing steps as in
Section III. We perform adaptive thresholding, as shown in
figure-8, followed by connected component retrieval through
which we identify the grid and eliminate it, as shown in
figure-9. This gives us an image containing only the numbers.
Now, one point to note here is that since we allow severe

rotation, this square grid of numbers may have a rotation of
+90, 180 and -90 degrees. That needs to be attended to in next
few steps of recognition. A closing operation is then
performed to remove any small components or blobs which
may hinder the digit recognition.

Figure-7- Template Digits Image

Figure 8:Adaptive Thresholding

Figure 9:Image with all digits in the grid

B. Scaling the template image:
It is a fact that the length of the Sudoku grid will be

different in different images while our template image used for
recognition is of fixed size. So, the scale of the digits in
Sudoku and that in the template is different and needs to be
matched before template matching[3] is performed to get the
best results. For this we go through the obtained digit grid and
stop when we find at least one digit using the flood-filling
algorithm. Here again we apply heuristics based on the height
and width of the bounding box of the connected component to
ensure that we don’t identify noise clutter as a digit. Basically,
we assume that the height of the digit will be at least 1/3rd the
size of a 1x1 block in the 9x9 square grid and also that it
cannot exceed the 1x1 block size. Similar heuristics are also
applied to the width with only the change that more tolerance
is allowed here since in case of digit ‘1’ the width is
comparatively smaller. These heuristics are again applied later
while actually recognizing the digits.

Once we have obtained one digit each from the template
image and the Sudoku image, we can easily obtain the height
of the digit, from the bounding box dimensions. What we need
to now find is the scale factor that should be applied to the
template image of digits so that the size of a template digit and
that of a Sudoku digit is the same. For this we use the fact that
the height of all the digits is always the same although the
width might be different. Also we know that the aspect ratio of
the digit in the template image is same as that in the given
Sudoku image. So all we need to do is take the ratio of the
heights of the digits obtained from the two images and apply
this scale to the digits template image. The height of the digits
will now be same in template and the Sudoku image and also

the width will automatically be scaled by the same ratio and
give the right dimensions.

C. Taking care of rotation:
As noted earlier we could be having a rotation of +/- 90 or

180 degrees in our Sudoku square. A rotation of +/-90 degrees
can be easily taken care of. The problem is when the image is
completely inverted.

To take of a rotation of +/-90 degrees all we need to check
is whether for any digit the height of the bounding box of the
extracted digit is smaller than that of the width. This is
because we know for certain that the height of any digit in any
font is always greater than its width. So, in step B itself if we
find that this condition is satisfied then we simply rotate the
image clockwise by 90 degrees not considering whether the
actual rotation needed was +/- 90 degrees. So now after this
rotation we know for certain that our final Sudoku image with
numbers is either upright or completely inverted. Since there
is no way to actually be sure of that, what we do is we used
this image now and match it across two templates and take the
best result. One of the templates is the scaled and upright
original template of the digits, as shown in figure-7 while the
other template will be an inverted version of the scaled
template. Now using these templates and the Sudoku image
with 0 or 180 degrees rotation we perform recognition results.

D. Template Matching:
Once again we now perform connected component

analysis while also applying the heuristics mentioned earlier to
ensure that we don’t capture any clutter to extract the digits.
Since the image is a perfect square containing only the Sudoku
grid we can easily identify the location of the block of the
number in the 9x9 grid. Then we perform template
matching[3] as shown in figure-10(for digit ‘7’), using the two
templates created earlier. We find which digit gives the
maximum response in each of the templates and keep track of
these in two separate Sudoku matrices. The blank locations in
the Sudoku grid are put to zero as required by the backtracking
algorithm. We also keep track of number of digits for which
each of the templates, the upright one and the inverted one,
gives the maximum response. Based on whichever gives the
maximum number of best responses of template matching[3]
once all the digits in Sudoku puzzle have been recognized, we
use the Sudoku matrix corresponding to that template image as
our final recognized Sudoku.

Performing this is actually exhaustive but, the reason we
perform template matching[3] on entire Sudoku image using 2
templates is that we do not know in advance what numbers the
Sudoku grid might contain and also whether it is upright or
not. The fact that the digits like 1, 6, 8 and 9 have 180 degrees
symmetry makes it tough to make a decision and since it is
quite possible that we might not encounter other digits very
often in the Sudoku grid.

So now once we have the final recognized 9x9 matrix of the
Sudoku we just give it as an input to the part of the algorithm
that actually solves the puzzle and gives the image of the
solution as the output.

Figure 10:Template matching. Maximum response obtained
for digit 7

V. SOLVING THE SUDOKU AND IMPLEMENTATION ON
ANDROID DEVICE

A. Recursive Backtracking
The algorithm to solve the Sudoku is based on a recursive

backtracking strategy. We store the numbers obtained from the
grid in the image, in a two dimensional array with the number
0 assigned to blank grid locations. To get a solution for the
grid, we identify a blank location in the grid. Based on Sudoku
rules, we identify a valid assignment by iterating through the
numbers 1-9. We then try to recursively solve the grid with this
new number placement. If there are no more grid locations
which need to be filled, it is an indication that the grid is
solved, and we return the solved grid back to the main
algorithm. On the other hand, if we fail to recursively find a
solution for a grid, we backtrack and try a different number
assignment for a location and try solving the grid again. If all
combinations of number assignments are depleted without
finding a solution, we conclude the grid is unsolvable. For our
purposes however, we assume that the image taken by the user
is a valid Sudoku puzzle and our algorithm will always solve
it irrespective of the difficulty level of the puzzle.

B. Android Implementation:
The android project has four major classes:

1.The 'pr' class which creates a new activity and calls other
processes.
2.The 'HttpFileUploader' class which uploads an image of the
sudoku to the server and downloads an image with the
solution back on the android[6].
3.The 'Preview' class creates a preview for our application.
4.The 'DrawOnTop' class draws the result image on the
android view.

We first create a surface get retrieve a SurfaceHolder to be
notified about creation and destruction of the surface. An
instance of the Camera class is created and associated with the
preview in the 'Preview' Class. The 'DrawOnTop' class
implements methods to draw a bitmap image on the view. The
'pr' class creates a new activity and attaches both Preview and
DrawOnTop instances to the View.

The application starts with the view of the Camera.After
an image is captured, the android device makes a HttpRequest
to the server. The server process the image. The android
device makes a GET request to the server to download the
image with the solution. This image is drawn on the view with
the help of the 'DrawOnTop' class. On clicking the camera
button again, the view switches to the camera again.

C. Server Side Implementation:
At the server end, the android [6] makes a POST request to

it, which runs a php script. The php script receives the
uploaded image and renames it and creates a text file called
'sudokuPuzzle_start.txt'. A second cpp script which is always
running polls a specified folder for this text file. On finding it,
it initiates the image processing algorithm, which upon
completion saves the solution image. It also deletes the
'sudokuPuzzle_start.txt'. The cpp script mentioned for polling
also creates a 'sudokuPuzzle_end.txt' file to indicate to the php
script that the processing is over. The php script meanwhile,
polls for the 'sudokuPuzzle_end.txt' and on finding it, deletes
it and returns the final output image as shown in figure-11.
The final output image is formed by stitching together
templates of digits at the appropriate locations with
appropriate margins. The digits in the output with black
background are the ones that were originally present in the
Sudoku image and the rest were the ones that were obtained
by solving the Sudoku as explained in V-A.

Figure 11:Output Image

VI. EXPERIMENTATION

A. Hough Transform
 Most of the existing online implementations use Hough
transform[2] to estimate the orientation of the lines. Hough
Transform[2] could potentially be an effective technique to
determine the orientation of the lines to extract the four
corners of the grid. However, when the image is under heavy
perspective skew, the lines are not necessarily straight, as a
matter of fact, they are jagged thereby resulting in incorrect
hough transform binning, thereby leading it to be ineffective.

B. Harris Corner Detector:
The Harris corners[1] were not repeatable and there was a

need to define new heuristics to estimate their location w.r.t
the standard grid. Also it was difficult to estimate with
absolute surety the grid corners as it triggered corners at
intermediate locations also.

VII. LIMITATIONS
Our algorithm is not robust to blurring, drastic occlusions

and also if any of the four corners of the Sudoku grid are not
present in the captured image. In addition we have not handled
the case of recognizing hand written digits. Finally, we require
that each side of the Sudoku grid should be atleast 30% of the
image dimensions.

VIII. RESULTS AND CONCLUSIONS
We present a Smart Sudoku Solver that can solve

unsolved Sudoku images with small amount of perspective.
Also illumination changes across the images are taken care
of. The algorithm can also give solution in cases of severe
rotation such as when the Sudoku Puzzle is completely
inverted. Since the scale of the image also varies from
image to image, our algorithm efficiently manages these
problems.

Since there doesn’t exist any standard Sudoku image
dataset to test on, we created our own dataset of 100 test
images and produced results on them. Since there are no
standard images to compare to, it is difficult to quantify and
compare results. However in general, for the 50 testing
images we extracted from the web, we found our algorithm
to be 100% robust to full rotation, 100% robust to
translation a perspective skew of +- 45 degrees and robust
to scale as long as the edge length of the Sudoku is at least
30% of the original image dimensions and robust to 6 most
commonly found in modern Sudoku images that give robust
results for template matching [3].

IX. IMPLEMENTATION

We have used OpenCV library’s [5] image processing
functions and Android mobile phone [6] to complete the
project.

ACKNOWLEDGMENT
We wish to thank everyone who helped us and guided us

towards the completion of this project successfully. We thank
Professor Bernd Girod for his lectures on various image
processing techniques which we extensively made use of in
this project. We would also like to thank Derek Pang for his
help. We would like to extend special thanks to David Chen for
putting a lot of time and effort in guiding us throughout the
Image Processing and Android implementation [6] and other
aspects of our project. His role and guidance was very valuable
for our individual learning and the holistic completion of this
project.

 APPENDIX

Our work in the project proceeded in group meetings with contribution and
inputs from each person in each of the sections of the project. Working as a
group encouraged great ideas through open discussions.

REFERENCES

[1] C. Harris and M. Stephens (1988). "A combined corner and edge

detector". Proceedings of the 4th Alvey Vision Conference. pp. 147–151.
[2] Duda, R. O. and P. E. Hart, "Use of the Hough Transformation to Detect

Lines and Curves in Pictures," Comm. ACM, Vol. 15, pp. 11–15
(January, 1972)

[3] R. Brunelli, Template Matching Techniques in Computer Vision: Theory
and Practice, Wiley, ISBN 978-0-470-51706-2, 2009 ([1] TM book)

[4] R. C. Gonzalez and R.E. Woods, Digital Image Processing 2nd Edition,
Prentice Hall, New Jersey, 2002.

[5] Learning Opencv: Computer Vision With The Opencv Library By
Gary Bradski, Adrian Kaehler

[6] Android: http://developer.android.com/reference/android/os/package-
summary.htm

