
CS 101
Project

SRS Document

Introduction :

Sudoku is a puzzle game in which a 9x9 grid with a few

numbers already filled in is given to the user and the user is

expected to solve it by filling in all numbers from 1 to 9 in

every row, column and certain 3x3 squares. Because of the

dimensions of the grid, no number is repeated along a row,

column or 3x3 square.

A Sample Sudoku highlighting the rows and

 columns and the 3x3 box.

Work has been divided as-

1) Code - Hersh Manek

 Ayush Lakhotia

 Harshit Agrawal

 Ajeet Singh

 2)Graphics – Alekhya Audi

 Ruhee D’Cunha

 Archita Dungdung

Problem statement :

a) Giving the user a solvable sudoku puzzle having a unique

solution, checking his gameplay against the rules of

conventional sudoku and finally checking the correctness of

the solution. Calculation of the player's score will be done.

High scores of each level of difficulty will be displayed.

b) Solving a sudoku puzzle given by the user.

Approach :

In the second part of the program, the user is given a blank

9x9 grid. He can input any number of values at any positions.

The validity of the input values will be checked according to

the rules of Sudoku and the grid will be solved by the

program. In the first part, we will store the sudoku puzzles in

files according to the level of difficulty. And according to the

level of difficulty chosen by the user, a random puzzle from

the files will be given to him. The player will be allowed to

input values (to play the game) and the program checks

whether the user is playing according to the rules. Hints will

be available to the user when required. The final answer is

verified with the already solved Sudoku. Score will be

calculated by taking into account the time taken to solve the

puzzle. The score will be checked against the high scores after

every game and the high scores will be altered accordingly.

Functional Specifications :

We are working on a Sudoku game with two aspects: Part

one, the game itself, and Part two, a customizable solver.

Initially the user will have to choose between the two modes

of the game.

Function used- choicewindow

The window will have two buttons, one to play the game and

one to solve a custom grid.

Part 1: Sudoku Game

A window opens when the user starts the game.

Function used - menuwindow

It has various buttons for New Game, Leaderboard, How to

Play, Exit.

In New Game, one more frame appears which asks the user to

choose a level and give his username.

Function used - checkerwindow

Depending on the level the user chooses, the program will

display one of the Sudoku grids already generated for that

difficulty. There will be a 9X9 Sudoku grid in the frame of the

game. There will also be tabs for hints, ‘Clear Screen’, which

will restart the game and for starting a new game. The user

will be able to click on each cell individually, choose a digit

between 1 and 9 using buttons at the bottom of the screen and

automatically check its validity i.e., whether that digit repeats

in its column, row or 3X3 box. If he puts in a number that isn't

valid, that number together with the number it is clashing with

will be highlighted. Thus the game continues.

 Clashing Digits in the same row and 3x3 box

A set of hints will also be provided.

Function used - hint

If the user clicks on a cell and then clicks on the hints tab he

will be given the digit that appears in that cell.

We will include the concept of high scores.

Function used - clock

We will start a digital clock and keep time. Depending upon

the time and number of hints the user has requested, the score

will be calculated and the name of the user together with the

score will be displayed in the High Scores window.

Part 2: Sudoku Solver

In Part 2, a blank 9X9 grid is given to the user.

Function used - solverwindow

The user can input as many values as he wants. There will be

a ‘Finished’ tab which he will click when he is done inputing.

The completed grid will then be displayed.

Description Of Data (Input/Output):

Part 1:

Input: User input will mainly be in the form of mouse clicks,

with very few keyboard responses recorded.

Output: The grid will be shown onscreen throughout the

game, with numbers shown as they are filled in.

Part 2:

Input: User input will be the sudoku he wants solved.

Output: The solved Sudoku.

User Interface Requirements:

The basic aim is to display windows, buttons, the grid and to

record mouse clicks for input and output.

Interfaces to other systems:

We will be using the EzWindows graphics library.

Hours Worked by each member :

Alekhya Audi - 111030021 - 16 hrs

Ruhee D'cunha - 111030005 - 12 hrs

Archita Dungdung - 111030019 - 13

Hersh Manek - 111030003 – 16 hrs

Harshit Agrawal - 111030013 - 12 hrs

Ayush Lakhotia - 111030012 - 13.5 hrs

Ajeet Singh - 111030027 - 8 hrs

Appendix:

Part 1: The Game Sudoku

This is quite straightforward with the user solving a Sudoku.

Logic-

We just need to check whether the value the user input is in the same

column, row or corresponding 3x3 box.

Part 2: Sudoku Solver

Logic-

The user can input as many values as he wants. We will store this in a

file. We are using brute force mechanism to solve this Sudoku.

In the very start, we first check if the values given by the user follow

the rules of Sudoku. Cells are numbered from 0-80, like in a 2D array

in C++. In this mechanism, if we take a cell and it is empty, we put a

value in it starting from 1 and going upto 9. Using a function, we

check its legality whether it follows the rules of conventional Sudoku.

If there is already some input given by the user, we move to the next

cell. If 1 is not suitable, then we increment it and try with 2 and check

the legality again. We then move on to the next cell. If there is no

legal possibility (none of the values from 1-9 are possible), then we

go the previous cell and if it contains a user input then go to its

previous cell and increment the value stored in it by 1 and again check

the legality. This continues till we get a solution for all the empty

cells. We have to be certain that we don't change the user input while

solving.

