
IIT Bombay

Computer Programming
Dr. Deepak B Phatak

Dr. Supratik Chakraborty
Department of Computer Science and Engineering

IIT Bombay

Session: Object-oriented Programming using Member Functions

1Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

IIT Bombay

• Brief introduction to object-oriented programming
• Program as a collection of interacting objects

• Structures representing objects
• Groups of related variables, arrays, other structures

• Accessing members of structures

• Pointers to structures

• Dynamic allocation and de-allocation of structures

2 Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Quick Recap of Relevant Topics

IIT Bombay

• Member functions of structures
• Interfaces of objects in object-oriented programming

• Accessing member functions

3 Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

Overview of This Lecture

IIT Bombay

Acknowledgment

• Some examples in this lecture are from

An Introduction to Programming Through C++

by Abhiram G. Ranade

McGraw Hill Education 2014

• All such examples indicated in slides with the citation
AGRBook

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 4

IIT Bombay

Recap: Object-Oriented Programming Overview

• Identify entities (physical or conceptual) involved in the
working of the system

• Entities also called objects

• Think of system functionality in terms of operations on and
interactions between objects

• Abstract away (hide) details not necessary for an operation

• Implement system modularly by focusing on entities, their
interfaces and their interactions

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 5

IIT Bombay

Recap: Entity or Object

• Contains information specific to the object
• “Fixed” information – usually doesn’t change as objects interact

• “State” information – can change as objects interact

• Unambiguous, well-defined boundaries
• Clear specification of what information is part of an object

• Ideally, every interaction between two objects should happen
through well-defined interfaces

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 6

Focus of this lecture: interfaces of objects

IIT Bombay

Example: Vectors in 3 Dimensions [Ref. AGRBook]

• We want to write a program to reason about motion in
3-dimensional space

• Must deal with 3-dimensional vectors representing
• Position

• Velocity

• Acceleration

• 3-dimensional vectors are basic entities (objects) in this
program

• Need to define a C++ structure to represent a vector

• For simplicity, we will use Cartesian coordinates

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 7

IIT Bombay

The V3 Structure

struct V3 {

double x, y, z;

};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 8

What functions might we need to operate on objects of
type V3?

• Adding two vectors
• Scaling a vector by a scalar constant
• Euclidean length of a vector … and several more

IIT Bombay

Functions on V3 Objects

V3 sum (V3 const &a, V3 const &b) {

V3 v;

v.x = a.x + b.x;

v.y = a.y + b.y;

v.z = a.z + b.z;

return v;

}

Note the manner in which parameters are passed.

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 9

struct V3 {

double x, y, z;

};

IIT Bombay

Functions on V3 Objects

V3 scale (V3 const &a, double const factor) {

V3 v;

v.x = a.x * factor;

v.y = a.y * factor;

v.z = a.z * factor;

return v;

}

Note the manner in which parameters are passed.

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 10

struct V3 {

double x, y, z;

};

IIT Bombay

Functions on V3 Objects

double length (V3 const &a) {

double temp;

temp = a.x*a.x + a.y*a.y + a.z*a.z;

return sqrt(temp);}

Note the manner in which parameters are passed.

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 11

struct V3 {

double x, y, z;

};

Assume “sqrt” function available from a library (e.g. cmath)

IIT Bombay

Motivating Member Functions

• Let’s take a closer look at the functions sum, scale and
length

• sum (V3 const &a, V3 const &b)
• scale (V3 const &a, double const factor)
• length (V3 const &a)

Each of these functions can be thought of as doing
some computation on an object “a” of type “V3”

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 12

IIT Bombay

Motivating Member Functions

Why not associate these functions with the object “a” itself?
• When adding “b” to “a”, call function “sum” associated with “a”

and pass “b” as parameter
• When scaling “a” by “factor”, call function “scale” associated with

“a” and pass “factor” as parameter
• When finding the Euclidean length of “a”, call function “length”

associated with “a”

Helps define interfaces for interaction with the object “a”

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 13

sum (V3 const &a, V3 const &b)
scale (V3 const &a, double const factor)
length (V3 const &a)

IIT Bombay

Member Functions in C++

• In C++, structures can have member functions
struct V3 {

double x, y, z;

double length() { return sqrt(x*x + y*y + z*z); }

V3 sum (V3 const &b) {

V3 v;

v.x = x + b.x; v.y = y + b.y; v.z = z = b.z; return v;

}

V3 scale (double const factor) {

V3 v;

v.x = x*factor; v.y = y*factor; v.z = z*factor; return v;

}

};
Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 14

IIT Bombay

Member Functions in C++

struct V3 {
double x, y, z;
double length() { return sqrt(x*x + y*y + z*z); }
V3 sum (V3 const &b) {

V3 v;
v.x = x + b.x; v.y = y + b.y; v.z = z = b.z; return v;

}
V3 scale (double const factor) {

V3 v;
v.x = x*factor; v.y = y*factor; v.z = z*factor; return v;

}
};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 15

Member
data

IIT Bombay

Member Functions in C++

struct V3 {
double x, y, z;
double length() { return sqrt(x*x + y*y + z*z); }
V3 sum (V3 const &b) {

V3 v;
v.x = x + b.x; v.y = y + b.y; v.z = z = b.z; return v;

}
V3 scale (double const factor) {

V3 v;
v.x = x*factor; v.y = y*factor; v.z = z*factor; return v;

}
};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 16

Member
function

IIT Bombay

Member Functions in C++

struct V3 {
double x, y, z;
double length() { return sqrt(x*x + y*y + z*z); }
V3 sum (V3 const &b) {

V3 v;
v.x = x + b.x; v.y = y + b.y; v.z = z = b.z; return v;

}
V3 scale (double const factor) {

V3 v;
v.x = x*factor; v.y = y*factor; v.z = z*factor; return v;

}
};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 17

Member
function

IIT Bombay

Member Functions in C++

struct V3 {
double x, y, z;
double length() { return sqrt(x*x + y*y + z*z); }
V3 sum (V3 const &b) {

V3 v;
v.x = x + b.x; v.y = y + b.y; v.z = z = b.z; return v;

}
V3 scale (double const factor) {

V3 v;
v.x = x*factor; v.y = y*factor; v.z = z*factor; return v;

}
};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 18

Member
function

IIT Bombay

Closer Look at a Member Function

struct V3 {
double x, y, z;
double length() { return sqrt(x*x + y*y + z*z); }
V3 sum (V3 const &b) {

V3 v;
v.x = x + b.x; v.y = y + b.y; v.z = z = b.z; return v;

}
V3 scale (double const factor) {

V3 v;
v.x = x*factor; v.y = y*factor; v.z = z*factor; return v;

}
};

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 19

Member x of parent object

Member x of object passed
as parameter

IIT Bombay

Accessing Member Functions of Structures

• Recall how we accessed member data values of structures
V3 p, *ptrP;
cin >> p.x;
ptrP = &p;
cout << ptrP->x;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 20

Access using “.” operator

IIT Bombay

Accessing Member Functions of Structures

• Recall how we accessed member data values of structures
V3 p, *ptrP;
cin >> p.x;
ptrP = &p;
cout << ptrP->x;

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 21

Access using “->” operator

IIT Bombay

Accessing Member Functions of Structures

• Member functions can be accessed in the same way
V3 p, q, *ptrQ;
cin >> p.x >> p.y >> p.z;
q = p.scale(0.5);
ptrQ = &q;
cout << ptrQ->length();

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 22

Access using “.” operator

IIT Bombay

Accessing Member Functions of Structures

• Member functions can be accessed in the same way
V3 p, q, *ptrQ;
cin >> p.x >> p.y >> p.z;
q = p.scale(0.5);
ptrQ = &q;
cout << ptrQ->length();

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 23

p: Receiver object

IIT Bombay

Accessing Member Functions of Structures

• Member functions can be accessed in the same way
V3 p, q, *ptrQ;
cin >> p.x >> p.y >> p.z;
q = p.scale(0.5);
ptrQ = &q;
cout << ptrQ->length();

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 24

scale: Member function of receiver object

IIT Bombay

Accessing Member Functions of Structures

• Member functions can be accessed in the same way
V3 p, q, *ptrQ;
cin >> p.x >> p.y >> p.z;
q = p.scale(0.5);
ptrQ = &q;
cout << ptrQ->length();

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 25

Parameter of member function

IIT Bombay

Accessing Member Functions of Structures

• Member functions can be accessed in the same way
V3 p, q, *ptrQ;
cin >> p.x >> p.y >> p.z;
q = p.scale(0.5);
ptrQ = &q;
cout << ptrQ->length()

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 26

struct V3 {
double x, y, z; … … …
V3 scale (double const factor) {

V3 v;
v.x = x*factor; v.y = y*factor; v.z = z*factor; return v;

}
};

IIT Bombay

Accessing Member Functions of Structures

• Member functions can be accessed in the same way
V3 p, q, *ptrQ;
cin >> p.x >> p.y >> p.z;
q = p.scale(0.5);
ptrQ = &q;
cout << ptrQ->length();

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 27

Access using “->” operator

ptrQ: Pointer to receiver object

IIT Bombay

Summary

• Member functions as interfaces of structures

• Accessing member functions of structures

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 28

