
Computer Programming

Dr. Deepak B Phatak
Dr. Supratik Chakraborty

Department of Computer Science and Engineering
IIT Bombay

Session: Elementary Graphics
Guest Lecturer: Dr. Abhiram Ranade



Elementary Graphics

”A picture is worth a thousand words.”

I Pictures, graphs, charts, maps, diagrams are often easier to
understand than text.

I Especially true in science and technology, where the
information is often geometrical.

I Animations can also be very useful.

I Graphical input, e.g. clicking on the screen is also very
convenient.

This is what we study in the next few sessions...



Elementary Graphics

”A picture is worth a thousand words.”

I Pictures, graphs, charts, maps, diagrams are often easier to
understand than text.

I Especially true in science and technology, where the
information is often geometrical.

I Animations can also be very useful.

I Graphical input, e.g. clicking on the screen is also very
convenient.

This is what we study in the next few sessions...



Elementary Graphics

”A picture is worth a thousand words.”

I Pictures, graphs, charts, maps, diagrams are often easier to
understand than text.

I Especially true in science and technology, where the
information is often geometrical.

I Animations can also be very useful.

I Graphical input, e.g. clicking on the screen is also very
convenient.

This is what we study in the next few sessions...



Elementary Graphics

”A picture is worth a thousand words.”

I Pictures, graphs, charts, maps, diagrams are often easier to
understand than text.

I Especially true in science and technology, where the
information is often geometrical.

I Animations can also be very useful.

I Graphical input, e.g. clicking on the screen is also very
convenient.

This is what we study in the next few sessions...



Elementary Graphics

”A picture is worth a thousand words.”

I Pictures, graphs, charts, maps, diagrams are often easier to
understand than text.

I Especially true in science and technology, where the
information is often geometrical.

I Animations can also be very useful.

I Graphical input, e.g. clicking on the screen is also very
convenient.

This is what we study in the next few sessions...



Elementary Graphics

”A picture is worth a thousand words.”

I Pictures, graphs, charts, maps, diagrams are often easier to
understand than text.

I Especially true in science and technology, where the
information is often geometrical.

I Animations can also be very useful.

I Graphical input, e.g. clicking on the screen is also very
convenient.

This is what we study in the next few sessions...



Elementary Graphics

”A picture is worth a thousand words.”

I Pictures, graphs, charts, maps, diagrams are often easier to
understand than text.

I Especially true in science and technology, where the
information is often geometrical.

I Animations can also be very useful.

I Graphical input, e.g. clicking on the screen is also very
convenient.

This is what we study in the next few sessions...



Outline of this session

I Introduction to our graphics package, Simplecpp

I Turtle graphics



Introduction

Simplecpp: A graphics package developed for use with ”An
Introduction to Programming through C++”, McGraw Hill
Education 2014.

Simplecpp is available for Unix and Windows at
www.cse.iitb.ac.in/∼ranade/simplecpp

Two kinds of graphics supported

I Turtle graphics

I Co-ordinate based graphics



Introduction

Simplecpp: A graphics package developed for use with ”An
Introduction to Programming through C++”, McGraw Hill
Education 2014.

Simplecpp is available for Unix and Windows at
www.cse.iitb.ac.in/∼ranade/simplecpp

Two kinds of graphics supported

I Turtle graphics

I Co-ordinate based graphics



Introduction

Simplecpp: A graphics package developed for use with ”An
Introduction to Programming through C++”, McGraw Hill
Education 2014.

Simplecpp is available for Unix and Windows at
www.cse.iitb.ac.in/∼ranade/simplecpp

Two kinds of graphics supported

I Turtle graphics

I Co-ordinate based graphics



Introduction

Simplecpp: A graphics package developed for use with ”An
Introduction to Programming through C++”, McGraw Hill
Education 2014.

Simplecpp is available for Unix and Windows at
www.cse.iitb.ac.in/∼ranade/simplecpp

Two kinds of graphics supported

I Turtle graphics

I Co-ordinate based graphics



Introduction

Simplecpp: A graphics package developed for use with ”An
Introduction to Programming through C++”, McGraw Hill
Education 2014.

Simplecpp is available for Unix and Windows at
www.cse.iitb.ac.in/∼ranade/simplecpp

Two kinds of graphics supported

I Turtle graphics

I Co-ordinate based graphics



Introduction

Simplecpp: A graphics package developed for use with ”An
Introduction to Programming through C++”, McGraw Hill
Education 2014.

Simplecpp is available for Unix and Windows at
www.cse.iitb.ac.in/∼ranade/simplecpp

Two kinds of graphics supported

I Turtle graphics

I Co-ordinate based graphics



Turtle Graphics

Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

Turtle: a symbolic animal that lives on the screen.

Moves as per commands issued by the program.

Has a pen, which draws on the screen as the turtle moves.

Goal of turtle graphics: Draw interesting pictures on the screen.



Turtle Graphics

Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

Turtle: a symbolic animal that lives on the screen.

Moves as per commands issued by the program.

Has a pen, which draws on the screen as the turtle moves.

Goal of turtle graphics: Draw interesting pictures on the screen.



Turtle Graphics

Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

Turtle: a symbolic animal that lives on the screen.

Moves as per commands issued by the program.

Has a pen, which draws on the screen as the turtle moves.

Goal of turtle graphics: Draw interesting pictures on the screen.



Turtle Graphics

Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

Turtle: a symbolic animal that lives on the screen.

Moves as per commands issued by the program.

Has a pen, which draws on the screen as the turtle moves.

Goal of turtle graphics: Draw interesting pictures on the screen.



Turtle Graphics

Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

Turtle: a symbolic animal that lives on the screen.

Moves as per commands issued by the program.

Has a pen, which draws on the screen as the turtle moves.

Goal of turtle graphics: Draw interesting pictures on the screen.



Turtle Graphics

Invented in 1960s by Seymour Pappert, as part of the Logo
programming language for teaching programming to children.

Turtle: a symbolic animal that lives on the screen.

Moves as per commands issued by the program.

Has a pen, which draws on the screen as the turtle moves.

Goal of turtle graphics: Draw interesting pictures on the screen.



A simple program fragment

turtleSim(); // Start turtle graphics

// Turtle appears at the center.

forward(100); // Move forward 100 pixels.

right(90); // Turn right 90 degrees.

forward(100);

right(90);

forward(100);

right(90);

forward(100);

What does this draw? Pretend you are the turtle!



A simple program fragment

turtleSim(); // Start turtle graphics

// Turtle appears at the center.

forward(100); // Move forward 100 pixels.

right(90); // Turn right 90 degrees.

forward(100);

right(90);

forward(100);

right(90);

forward(100);

What does this draw? Pretend you are the turtle!



The full program

#include <simplecpp>

int main(){

turtleSim();

forward(100); wait(0.5); right(90); wait(0.5);

forward(100); wait(0.5); right(90); wait(0.5);

forward(100); wait(0.5); right(90); wait(0.5);

forward(100);

wait(5);

}

I #include <simplecpp>: This causes graphics functionality
to be included.

I wait: This causes the program to wait for the specified
number of seconds.
If we dont put in wait statements, the execution will happen
too fast and we will not see anything.



The full program

#include <simplecpp>

int main(){

turtleSim();

forward(100); wait(0.5); right(90); wait(0.5);

forward(100); wait(0.5); right(90); wait(0.5);

forward(100); wait(0.5); right(90); wait(0.5);

forward(100);

wait(5);

}

I #include <simplecpp>: This causes graphics functionality
to be included.

I wait: This causes the program to wait for the specified
number of seconds.
If we dont put in wait statements, the execution will happen
too fast and we will not see anything.



The full program

#include <simplecpp>

int main(){

turtleSim();

forward(100); wait(0.5); right(90); wait(0.5);

forward(100); wait(0.5); right(90); wait(0.5);

forward(100); wait(0.5); right(90); wait(0.5);

forward(100);

wait(5);

}

I #include <simplecpp>: This causes graphics functionality
to be included.

I wait: This causes the program to wait for the specified
number of seconds.
If we dont put in wait statements, the execution will happen
too fast and we will not see anything.



Demonstration



Functions to command the turtle

I forward(double D) Moves turtle forward by D pixels.
D may be negative, in which case the turtle moves back.

I right(double A) Turns the turtle right by A degrees.

I left(double A) Turns the turtle left by A degrees.

I penUp() The pen is raised. Drawing stops until it is lowered
again.

I penDown() The pain is lowered. Drawing resumes.

I wait(double S) Wait for S seconds.



Functions to command the turtle

I forward(double D) Moves turtle forward by D pixels.
D may be negative, in which case the turtle moves back.

I right(double A) Turns the turtle right by A degrees.

I left(double A) Turns the turtle left by A degrees.

I penUp() The pen is raised. Drawing stops until it is lowered
again.

I penDown() The pain is lowered. Drawing resumes.

I wait(double S) Wait for S seconds.



Functions to command the turtle

I forward(double D) Moves turtle forward by D pixels.
D may be negative, in which case the turtle moves back.

I right(double A) Turns the turtle right by A degrees.

I left(double A) Turns the turtle left by A degrees.

I penUp() The pen is raised. Drawing stops until it is lowered
again.

I penDown() The pain is lowered. Drawing resumes.

I wait(double S) Wait for S seconds.



Functions to command the turtle

I forward(double D) Moves turtle forward by D pixels.
D may be negative, in which case the turtle moves back.

I right(double A) Turns the turtle right by A degrees.

I left(double A) Turns the turtle left by A degrees.

I penUp() The pen is raised. Drawing stops until it is lowered
again.

I penDown() The pain is lowered. Drawing resumes.

I wait(double S) Wait for S seconds.



Functions to command the turtle

I forward(double D) Moves turtle forward by D pixels.
D may be negative, in which case the turtle moves back.

I right(double A) Turns the turtle right by A degrees.

I left(double A) Turns the turtle left by A degrees.

I penUp() The pen is raised. Drawing stops until it is lowered
again.

I penDown() The pain is lowered. Drawing resumes.

I wait(double S) Wait for S seconds.



Functions to command the turtle

I forward(double D) Moves turtle forward by D pixels.
D may be negative, in which case the turtle moves back.

I right(double A) Turns the turtle right by A degrees.

I left(double A) Turns the turtle left by A degrees.

I penUp() The pen is raised. Drawing stops until it is lowered
again.

I penDown() The pain is lowered. Drawing resumes.

I wait(double S) Wait for S seconds.



Functions to command the turtle

I forward(double D) Moves turtle forward by D pixels.
D may be negative, in which case the turtle moves back.

I right(double A) Turns the turtle right by A degrees.

I left(double A) Turns the turtle left by A degrees.

I penUp() The pen is raised. Drawing stops until it is lowered
again.

I penDown() The pain is lowered. Drawing resumes.

I wait(double S) Wait for S seconds.



Demo: drawing a decorative plate border

You should try to figure out how this is done.

Make sure you can repeat the pattern an arbitrary number of
times, and yet close it smoothly.

Make the drawing graceful, e.g. there should be no sharp corners.



Demo: drawing a decorative plate border

You should try to figure out how this is done.

Make sure you can repeat the pattern an arbitrary number of
times, and yet close it smoothly.

Make the drawing graceful, e.g. there should be no sharp corners.



Demo: drawing a decorative plate border

You should try to figure out how this is done.

Make sure you can repeat the pattern an arbitrary number of
times, and yet close it smoothly.

Make the drawing graceful, e.g. there should be no sharp corners.



Demo: drawing a decorative plate border

You should try to figure out how this is done.

Make sure you can repeat the pattern an arbitrary number of
times, and yet close it smoothly.

Make the drawing graceful, e.g. there should be no sharp corners.



Demo: Drawing a tree

Key observation: A tree can be viewed as a trunk, on top of which
are two trees, at an angle.

Natural to do this using recursion!

We develop this next. Something similar is discussed in Chapter 10
of the book.



Demo: Drawing a tree

Key observation: A tree can be viewed as a trunk, on top of which
are two trees, at an angle.

Natural to do this using recursion!

We develop this next. Something similar is discussed in Chapter 10
of the book.



Demo: Drawing a tree

Key observation: A tree can be viewed as a trunk, on top of which
are two trees, at an angle.

Natural to do this using recursion!

We develop this next. Something similar is discussed in Chapter 10
of the book.



Demo: Drawing a tree

Key observation: A tree can be viewed as a trunk, on top of which
are two trees, at an angle.

Natural to do this using recursion!

We develop this next. Something similar is discussed in Chapter 10
of the book.



Remarks

I Turtle graphics is discussed in chapter 1 of the book.

I The most interesting use of turtle graphics is for drawing
pictures which have interesting symmetry.
You have to figure out the symmetry and represent it suitably
in your code.

I Iterative symmetry: Same pattern is repeated, e.g. decorative
plate.

I Recursive symmetry: Part of the picture is similar to the
whole, e.g. tree.

I Drawing highly patterned pictures, where you can supply
parameters to change the amount of iteration or recursion can
be a challenging project.



Remarks

I Turtle graphics is discussed in chapter 1 of the book.

I The most interesting use of turtle graphics is for drawing
pictures which have interesting symmetry.
You have to figure out the symmetry and represent it suitably
in your code.

I Iterative symmetry: Same pattern is repeated, e.g. decorative
plate.

I Recursive symmetry: Part of the picture is similar to the
whole, e.g. tree.

I Drawing highly patterned pictures, where you can supply
parameters to change the amount of iteration or recursion can
be a challenging project.



Remarks

I Turtle graphics is discussed in chapter 1 of the book.

I The most interesting use of turtle graphics is for drawing
pictures which have interesting symmetry.

You have to figure out the symmetry and represent it suitably
in your code.

I Iterative symmetry: Same pattern is repeated, e.g. decorative
plate.

I Recursive symmetry: Part of the picture is similar to the
whole, e.g. tree.

I Drawing highly patterned pictures, where you can supply
parameters to change the amount of iteration or recursion can
be a challenging project.



Remarks

I Turtle graphics is discussed in chapter 1 of the book.

I The most interesting use of turtle graphics is for drawing
pictures which have interesting symmetry.
You have to figure out the symmetry and represent it suitably
in your code.

I Iterative symmetry: Same pattern is repeated, e.g. decorative
plate.

I Recursive symmetry: Part of the picture is similar to the
whole, e.g. tree.

I Drawing highly patterned pictures, where you can supply
parameters to change the amount of iteration or recursion can
be a challenging project.



Remarks

I Turtle graphics is discussed in chapter 1 of the book.

I The most interesting use of turtle graphics is for drawing
pictures which have interesting symmetry.
You have to figure out the symmetry and represent it suitably
in your code.

I Iterative symmetry: Same pattern is repeated, e.g. decorative
plate.

I Recursive symmetry: Part of the picture is similar to the
whole, e.g. tree.

I Drawing highly patterned pictures, where you can supply
parameters to change the amount of iteration or recursion can
be a challenging project.



Remarks

I Turtle graphics is discussed in chapter 1 of the book.

I The most interesting use of turtle graphics is for drawing
pictures which have interesting symmetry.
You have to figure out the symmetry and represent it suitably
in your code.

I Iterative symmetry: Same pattern is repeated, e.g. decorative
plate.

I Recursive symmetry: Part of the picture is similar to the
whole, e.g. tree.

I Drawing highly patterned pictures, where you can supply
parameters to change the amount of iteration or recursion can
be a challenging project.



Remarks

I Turtle graphics is discussed in chapter 1 of the book.

I The most interesting use of turtle graphics is for drawing
pictures which have interesting symmetry.
You have to figure out the symmetry and represent it suitably
in your code.

I Iterative symmetry: Same pattern is repeated, e.g. decorative
plate.

I Recursive symmetry: Part of the picture is similar to the
whole, e.g. tree.

I Drawing highly patterned pictures, where you can supply
parameters to change the amount of iteration or recursion can
be a challenging project.


