
Computer Programming

Dr. Deepak B Phatak
Dr. Supratik Chakraborty

Department of Computer Science and Engineering
IIT Bombay

Session: Coordinate based Graphics
Guest Lecturer: Dr. Abhiram Ranade



Quick recap

Last session: Turtle Graphics facility of Simplecpp.

This session: Coordinate based graphics.

Chapter 5 of ”An introduction to programming through C++”,
McGraw Hill Education, 2014.



Quick recap

Last session: Turtle Graphics facility of Simplecpp.

This session: Coordinate based graphics.

Chapter 5 of ”An introduction to programming through C++”,
McGraw Hill Education, 2014.



Quick recap

Last session: Turtle Graphics facility of Simplecpp.

This session: Coordinate based graphics.

Chapter 5 of ”An introduction to programming through C++”,
McGraw Hill Education, 2014.



Quick recap

Last session: Turtle Graphics facility of Simplecpp.

This session: Coordinate based graphics.

Chapter 5 of ”An introduction to programming through C++”,
McGraw Hill Education, 2014.



Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.



Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.



Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.



Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.



Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.



Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.



Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.



Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.



Creating graphics objects

General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.

I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.

I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).

I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.

I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Creating graphics objects
General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.

Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.

Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.



A fun program

We will show what happens when a rectangle is tossed up and
given a spin.

We will also change its colour as it moves.



Summary

We discussed coordinate based graphics as supported in Simplecpp.

I Graphics objects also have an in memory part, which is just a
regular object.

I By calling member functions of the in memory part, you can
manipulate the appearance on the screen.

I Animation is possible. Rotation, translation, scaling, colour
change can be used for interesting effects. The possibilities for
doing projects are endless..



Summary

We discussed coordinate based graphics as supported in Simplecpp.

I Graphics objects also have an in memory part, which is just a
regular object.

I By calling member functions of the in memory part, you can
manipulate the appearance on the screen.

I Animation is possible. Rotation, translation, scaling, colour
change can be used for interesting effects. The possibilities for
doing projects are endless..



Summary

We discussed coordinate based graphics as supported in Simplecpp.

I Graphics objects also have an in memory part, which is just a
regular object.

I By calling member functions of the in memory part, you can
manipulate the appearance on the screen.

I Animation is possible. Rotation, translation, scaling, colour
change can be used for interesting effects. The possibilities for
doing projects are endless..



Summary

We discussed coordinate based graphics as supported in Simplecpp.

I Graphics objects also have an in memory part, which is just a
regular object.

I By calling member functions of the in memory part, you can
manipulate the appearance on the screen.

I Animation is possible. Rotation, translation, scaling, colour
change can be used for interesting effects. The possibilities for
doing projects are endless..


