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Quick recap

Last session: Turtle Graphics facility of Simplecpp.

This session: Coordinate based graphics.

Chapter 5 of ”An introduction to programming through C++”,
McGraw Hill Education, 2014.
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Coordinate based Graphics: Basics

I Use function initCanvas to create graphics window.

I Drawing window, ”canvas”, has a coordinate frame, with
origin at top left corner.
x axis goes to right. y axis goes down.

I Graphics objects can be created on the canvas.

I Graphics objects can be moved, rotated, scaled.

I Colour can be changed.

I Graphics objects have pens; lines are drawn when moved.

Graphics objects are also ordinary C++ objects in memory;
member functions modify the memory content as well as the
canvas.
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Creating graphics objects

General form:
type name(list of arguments to constructor)

I Turtle t1;

Creates a turtle named t1, at canvas center pointing right.
I Circle c1(cx,cy,r);

Creates a circle c1 centered at (cx,cy) of radius r.
I Rectangle r(cx, cy, w, h);

Creates a rectangle r centered at (cx,cy), of given width,
height.

I Line l1(x1,y1,x2,y2);

Creates line named l1 from (x1,y1) to (x2,y2).
I Text t1(x,y,content);

Writes content centered at (x,y). The text gets name t1.
I Polygon p(cx,cy,coords,n);

Draws an n sided polygon named p. Coordinates of vertices
are specified in double array coords, with 2 rows and n

columns. Coordinates must be given relative to (cx,cy).
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Operations on a graphics object g

Call member functions to manipulate.

I g.moveTo(x,y) : Moves g to (x,y).

I g.move(dx,dy) : Moves g by dx and dy along x and y axes
respectively.

I g.scale(factor) : Scales g by given factor. Does not
apply to Text.

I g.setColor(c) : Sets the color of g to c.
Color c can be specified as COLOR("red") etc.
Also as COLOR(R,G,B), where R,G,B give intensities of the
red, green, blue components between 0 and 255.

I g.setFill(v) : If v is true, then the interior of the object is
filled, otherwise the object is drawn as an outline. Applicable
only for Circle, Rectangle, Polygon
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More operations (on object g)

I g.hide() : Hides g.

I g.show() : Makes g visible, if hidden earlier.

I left, right, forward are available as member functions.

I g.rotate(A) : Rotate g clockwise. A is in radians.

I g.getX(), g.getY(), g.getOrientation(),

g.getScale() : Returns the specified information about g.

I g.imprint() : An image of g is drawn at the current position.
The image will persist even if g moves.

I g.reset(arg-list) : Will cause g to be re-initialized using
the given arg-list, which must have the same form as at
creation.

Note: Rotation and scaling cannot be performed on text.
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creation.

Note: Rotation and scaling cannot be performed on text.



More operations (on object g)
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Note: Rotation and scaling cannot be performed on text.



A fun program

We will show what happens when a rectangle is tossed up and
given a spin.

We will also change its colour as it moves.



Summary

We discussed coordinate based graphics as supported in Simplecpp.

I Graphics objects also have an in memory part, which is just a
regular object.

I By calling member functions of the in memory part, you can
manipulate the appearance on the screen.

I Animation is possible. Rotation, translation, scaling, colour
change can be used for interesting effects. The possibilities for
doing projects are endless..
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