
Computer Programming

Dr. Deepak B Phatak
Dr. Supratik Chakraborty

Department of Computer Science and Engineering
IIT Bombay

Session: Elementary Graphics Events
Guest Lecturer: Dr. Abhiram Ranade



Quick recap

Last session: Coordinate based graphics facility of Simplecpp.

This session: Handling graphical input

Section 5.5, 5.7, 6.4 of ”An introduction to programming through
C++”, McGraw Hill Education, 2014.



Quick recap

Last session: Coordinate based graphics facility of Simplecpp.

This session: Handling graphical input

Section 5.5, 5.7, 6.4 of ”An introduction to programming through
C++”, McGraw Hill Education, 2014.



Quick recap

Last session: Coordinate based graphics facility of Simplecpp.

This session: Handling graphical input

Section 5.5, 5.7, 6.4 of ”An introduction to programming through
C++”, McGraw Hill Education, 2014.



Quick recap

Last session: Coordinate based graphics facility of Simplecpp.

This session: Handling graphical input

Section 5.5, 5.7, 6.4 of ”An introduction to programming through
C++”, McGraw Hill Education, 2014.



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.
The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.
The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.

The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.
The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.
The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.
The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.
The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.
The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Graphical input

Input given through the mouse, touch screens.

By graphical input we mean information provided to a program by
clicking on a screen using a mouse or using a touch screen.
The information usually includes the coordinates of the point at
which a click was made, in addition to what was clicked/how.

Advantages:

I Some data is inherently geometric, e.g. coordinates of the
vertices of a polygon. Better given by clicking.

I User interfaces, in which buttons can be clicked are very
convenient.

This lecture: Graphical input involving mouse clicks.

Later: other details such as dragging, mouse buttons..



Handling mouse clicks: Function getClick()

Signature:
int getClick();

Causes the program to wait for the user to click the mouse.
When the user clicks, at some position (x,y), the function
returns. The value returned is 65536*x+y.
Here is how you will wait for a click and print the click coordinates.

int v = getClick();

cout <<"x: " << v/65536 <<", y: "<< v % 65536 <<

endl;

This works because the x,y coordinates are much smaller than
65536, and because v is an int. Thus integer division gets us back
the integer quotient and the remainder on dividing by 65536.



Handling mouse clicks: Function getClick()

Signature:
int getClick();

Causes the program to wait for the user to click the mouse.
When the user clicks, at some position (x,y), the function
returns. The value returned is 65536*x+y.
Here is how you will wait for a click and print the click coordinates.

int v = getClick();

cout <<"x: " << v/65536 <<", y: "<< v % 65536 <<

endl;

This works because the x,y coordinates are much smaller than
65536, and because v is an int. Thus integer division gets us back
the integer quotient and the remainder on dividing by 65536.



Handling mouse clicks: Function getClick()

Signature:
int getClick();

Causes the program to wait for the user to click the mouse.

When the user clicks, at some position (x,y), the function
returns. The value returned is 65536*x+y.
Here is how you will wait for a click and print the click coordinates.

int v = getClick();

cout <<"x: " << v/65536 <<", y: "<< v % 65536 <<

endl;

This works because the x,y coordinates are much smaller than
65536, and because v is an int. Thus integer division gets us back
the integer quotient and the remainder on dividing by 65536.



Handling mouse clicks: Function getClick()

Signature:
int getClick();

Causes the program to wait for the user to click the mouse.
When the user clicks, at some position (x,y), the function
returns. The value returned is 65536*x+y.

Here is how you will wait for a click and print the click coordinates.

int v = getClick();

cout <<"x: " << v/65536 <<", y: "<< v % 65536 <<

endl;

This works because the x,y coordinates are much smaller than
65536, and because v is an int. Thus integer division gets us back
the integer quotient and the remainder on dividing by 65536.



Handling mouse clicks: Function getClick()

Signature:
int getClick();

Causes the program to wait for the user to click the mouse.
When the user clicks, at some position (x,y), the function
returns. The value returned is 65536*x+y.
Here is how you will wait for a click and print the click coordinates.

int v = getClick();

cout <<"x: " << v/65536 <<", y: "<< v % 65536 <<

endl;

This works because the x,y coordinates are much smaller than
65536, and because v is an int. Thus integer division gets us back
the integer quotient and the remainder on dividing by 65536.



Handling mouse clicks: Function getClick()

Signature:
int getClick();

Causes the program to wait for the user to click the mouse.
When the user clicks, at some position (x,y), the function
returns. The value returned is 65536*x+y.
Here is how you will wait for a click and print the click coordinates.

int v = getClick();

cout <<"x: " << v/65536 <<", y: "<< v % 65536 <<

endl;

This works because the x,y coordinates are much smaller than
65536, and because v is an int. Thus integer division gets us back
the integer quotient and the remainder on dividing by 65536.



Handling mouse clicks: Function getClick()

Signature:
int getClick();

Causes the program to wait for the user to click the mouse.
When the user clicks, at some position (x,y), the function
returns. The value returned is 65536*x+y.
Here is how you will wait for a click and print the click coordinates.

int v = getClick();

cout <<"x: " << v/65536 <<", y: "<< v % 65536 <<

endl;

This works because the x,y coordinates are much smaller than
65536, and because v is an int. Thus integer division gets us back
the integer quotient and the remainder on dividing by 65536.



Demo 1: Best fit line

Input: Points (x1, y1), . . . , (xn, yn) in the plane.
Output: Line which fits them best.

Standard algorithm: Find line y = mx + c such that the vertical
distance of the points to the line is minimized (in a least square
manner).

Section 5.7 discusses how to calculate m, c .

Observation: It is more natural to give the points by clicking on
the screen, and show the line by plotting it on the screen.

Program gets points by clicking. Places a circle at the clicked
position to mark it. Then plots the best-fit line.



Demo 1: Best fit line

Input: Points (x1, y1), . . . , (xn, yn) in the plane.

Output: Line which fits them best.

Standard algorithm: Find line y = mx + c such that the vertical
distance of the points to the line is minimized (in a least square
manner).

Section 5.7 discusses how to calculate m, c .

Observation: It is more natural to give the points by clicking on
the screen, and show the line by plotting it on the screen.

Program gets points by clicking. Places a circle at the clicked
position to mark it. Then plots the best-fit line.



Demo 1: Best fit line

Input: Points (x1, y1), . . . , (xn, yn) in the plane.
Output: Line which fits them best.

Standard algorithm: Find line y = mx + c such that the vertical
distance of the points to the line is minimized (in a least square
manner).

Section 5.7 discusses how to calculate m, c .

Observation: It is more natural to give the points by clicking on
the screen, and show the line by plotting it on the screen.

Program gets points by clicking. Places a circle at the clicked
position to mark it. Then plots the best-fit line.



Demo 1: Best fit line

Input: Points (x1, y1), . . . , (xn, yn) in the plane.
Output: Line which fits them best.

Standard algorithm: Find line y = mx + c such that the vertical
distance of the points to the line is minimized (in a least square
manner).

Section 5.7 discusses how to calculate m, c .

Observation: It is more natural to give the points by clicking on
the screen, and show the line by plotting it on the screen.

Program gets points by clicking. Places a circle at the clicked
position to mark it. Then plots the best-fit line.



Demo 1: Best fit line

Input: Points (x1, y1), . . . , (xn, yn) in the plane.
Output: Line which fits them best.

Standard algorithm: Find line y = mx + c such that the vertical
distance of the points to the line is minimized (in a least square
manner).

Section 5.7 discusses how to calculate m, c .

Observation: It is more natural to give the points by clicking on
the screen, and show the line by plotting it on the screen.

Program gets points by clicking. Places a circle at the clicked
position to mark it. Then plots the best-fit line.



Demo 1: Best fit line

Input: Points (x1, y1), . . . , (xn, yn) in the plane.
Output: Line which fits them best.

Standard algorithm: Find line y = mx + c such that the vertical
distance of the points to the line is minimized (in a least square
manner).

Section 5.7 discusses how to calculate m, c .

Observation: It is more natural to give the points by clicking on
the screen, and show the line by plotting it on the screen.

Program gets points by clicking. Places a circle at the clicked
position to mark it. Then plots the best-fit line.



Demo 1: Best fit line

Input: Points (x1, y1), . . . , (xn, yn) in the plane.
Output: Line which fits them best.

Standard algorithm: Find line y = mx + c such that the vertical
distance of the points to the line is minimized (in a least square
manner).

Section 5.7 discusses how to calculate m, c .

Observation: It is more natural to give the points by clicking on
the screen, and show the line by plotting it on the screen.

Program gets points by clicking. Places a circle at the clicked
position to mark it. Then plots the best-fit line.



Demo 2: Button based turtle controller

In the first session on graphics, we studied Turtle graphics.

The turtle was controlled through the program, using commands
forward, left, right.

We show a new way of controlling the turtle: the user can click a
”button” on the canvas to move the turtle forward, another to
turn the turtle.

A button on the canvas is merely a rectangle with text inside it.

To check if a button has been clicked, we merely check if the click
coordinates lie inside the rectangle.



Demo 2: Button based turtle controller

In the first session on graphics, we studied Turtle graphics.

The turtle was controlled through the program, using commands
forward, left, right.

We show a new way of controlling the turtle: the user can click a
”button” on the canvas to move the turtle forward, another to
turn the turtle.

A button on the canvas is merely a rectangle with text inside it.

To check if a button has been clicked, we merely check if the click
coordinates lie inside the rectangle.



Demo 2: Button based turtle controller

In the first session on graphics, we studied Turtle graphics.

The turtle was controlled through the program, using commands
forward, left, right.

We show a new way of controlling the turtle: the user can click a
”button” on the canvas to move the turtle forward, another to
turn the turtle.

A button on the canvas is merely a rectangle with text inside it.

To check if a button has been clicked, we merely check if the click
coordinates lie inside the rectangle.



Demo 2: Button based turtle controller

In the first session on graphics, we studied Turtle graphics.

The turtle was controlled through the program, using commands
forward, left, right.

We show a new way of controlling the turtle: the user can click a
”button” on the canvas to move the turtle forward, another to
turn the turtle.

A button on the canvas is merely a rectangle with text inside it.

To check if a button has been clicked, we merely check if the click
coordinates lie inside the rectangle.



Demo 2: Button based turtle controller

In the first session on graphics, we studied Turtle graphics.

The turtle was controlled through the program, using commands
forward, left, right.

We show a new way of controlling the turtle: the user can click a
”button” on the canvas to move the turtle forward, another to
turn the turtle.

A button on the canvas is merely a rectangle with text inside it.

To check if a button has been clicked, we merely check if the click
coordinates lie inside the rectangle.



Demo 2: Button based turtle controller

In the first session on graphics, we studied Turtle graphics.

The turtle was controlled through the program, using commands
forward, left, right.

We show a new way of controlling the turtle: the user can click a
”button” on the canvas to move the turtle forward, another to
turn the turtle.

A button on the canvas is merely a rectangle with text inside it.

To check if a button has been clicked, we merely check if the click
coordinates lie inside the rectangle.



Summary

We discussed elementary graphical input as supported in
Simplecpp.

I In many applications, data is graphical. So graphical input is
useful, e.g. fitting line to points.

I User interfaces involving buttons/icons are very common.
They can be easily implemented using getClick.

I Above situations may arise in many programming projects;
graphical input will thus be very useful.



Summary

We discussed elementary graphical input as supported in
Simplecpp.

I In many applications, data is graphical. So graphical input is
useful, e.g. fitting line to points.

I User interfaces involving buttons/icons are very common.
They can be easily implemented using getClick.

I Above situations may arise in many programming projects;
graphical input will thus be very useful.



Summary

We discussed elementary graphical input as supported in
Simplecpp.

I In many applications, data is graphical. So graphical input is
useful, e.g. fitting line to points.

I User interfaces involving buttons/icons are very common.
They can be easily implemented using getClick.

I Above situations may arise in many programming projects;
graphical input will thus be very useful.



Summary

We discussed elementary graphical input as supported in
Simplecpp.

I In many applications, data is graphical. So graphical input is
useful, e.g. fitting line to points.

I User interfaces involving buttons/icons are very common.
They can be easily implemented using getClick.

I Above situations may arise in many programming projects;
graphical input will thus be very useful.



Summary

We discussed elementary graphical input as supported in
Simplecpp.

I In many applications, data is graphical. So graphical input is
useful, e.g. fitting line to points.

I User interfaces involving buttons/icons are very common.
They can be easily implemented using getClick.

I Above situations may arise in many programming projects;
graphical input will thus be very useful.


