
Computer Programming

Dr. Deepak B Phatak
Dr. Supratik Chakraborty

Department of Computer Science and Engineering
IIT Bombay

Session: Advanced Graphics Events
Guest Lecturer: Dr. Abhiram Ranade



Quick recap

Last session: The getClick function for waiting for clicks.

This session: How to wait for other kinds of events.

Reference: Chapter 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Quick recap

Last session: The getClick function for waiting for clicks.

This session: How to wait for other kinds of events.

Reference: Chapter 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Quick recap

Last session: The getClick function for waiting for clicks.

This session: How to wait for other kinds of events.

Reference: Chapter 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Quick recap

Last session: The getClick function for waiting for clicks.

This session: How to wait for other kinds of events.

Reference: Chapter 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Basics of Events

The term event is used in Simplecpp to denote

I Pressing of a button of the mouse.

I Release of a button of the mouse.

I Dragging of the mouse.
Dragging = moving the mouse with a button pressed.

I Pressing of a key on the keyboard.

A C++ program can choose to wait for above events to happen,
and once they happen, can find out what has happened, and then
continue.

A C++ program can also merely check whether any of the above
events has already happened, without any waiting.

If there are many windows on the screen, then you must first click
on the canvas so that subsequent events will be detected by your
program.



Basics of Events

The term event is used in Simplecpp to denote

I Pressing of a button of the mouse.

I Release of a button of the mouse.

I Dragging of the mouse.
Dragging = moving the mouse with a button pressed.

I Pressing of a key on the keyboard.

A C++ program can choose to wait for above events to happen,
and once they happen, can find out what has happened, and then
continue.

A C++ program can also merely check whether any of the above
events has already happened, without any waiting.

If there are many windows on the screen, then you must first click
on the canvas so that subsequent events will be detected by your
program.



Basics of Events

The term event is used in Simplecpp to denote

I Pressing of a button of the mouse.

I Release of a button of the mouse.

I Dragging of the mouse.
Dragging = moving the mouse with a button pressed.

I Pressing of a key on the keyboard.

A C++ program can choose to wait for above events to happen,
and once they happen, can find out what has happened, and then
continue.

A C++ program can also merely check whether any of the above
events has already happened, without any waiting.

If there are many windows on the screen, then you must first click
on the canvas so that subsequent events will be detected by your
program.



Basics of Events

The term event is used in Simplecpp to denote

I Pressing of a button of the mouse.

I Release of a button of the mouse.

I Dragging of the mouse.
Dragging = moving the mouse with a button pressed.

I Pressing of a key on the keyboard.

A C++ program can choose to wait for above events to happen,
and once they happen, can find out what has happened, and then
continue.

A C++ program can also merely check whether any of the above
events has already happened, without any waiting.

If there are many windows on the screen, then you must first click
on the canvas so that subsequent events will be detected by your
program.



Basics of Events

The term event is used in Simplecpp to denote

I Pressing of a button of the mouse.

I Release of a button of the mouse.

I Dragging of the mouse.
Dragging = moving the mouse with a button pressed.

I Pressing of a key on the keyboard.

A C++ program can choose to wait for above events to happen,
and once they happen, can find out what has happened, and then
continue.

A C++ program can also merely check whether any of the above
events has already happened, without any waiting.

If there are many windows on the screen, then you must first click
on the canvas so that subsequent events will be detected by your
program.



Basics of Events

The term event is used in Simplecpp to denote

I Pressing of a button of the mouse.

I Release of a button of the mouse.

I Dragging of the mouse.
Dragging = moving the mouse with a button pressed.

I Pressing of a key on the keyboard.

A C++ program can choose to wait for above events to happen,
and once they happen, can find out what has happened, and then
continue.

A C++ program can also merely check whether any of the above
events has already happened, without any waiting.

If there are many windows on the screen, then you must first click
on the canvas so that subsequent events will be detected by your
program.



Basics of Events

The term event is used in Simplecpp to denote

I Pressing of a button of the mouse.

I Release of a button of the mouse.

I Dragging of the mouse.
Dragging = moving the mouse with a button pressed.

I Pressing of a key on the keyboard.

A C++ program can choose to wait for above events to happen,
and once they happen, can find out what has happened, and then
continue.

A C++ program can also merely check whether any of the above
events has already happened, without any waiting.

If there are many windows on the screen, then you must first click
on the canvas so that subsequent events will be detected by your
program.



Basics of Events

The term event is used in Simplecpp to denote

I Pressing of a button of the mouse.

I Release of a button of the mouse.

I Dragging of the mouse.
Dragging = moving the mouse with a button pressed.

I Pressing of a key on the keyboard.

A C++ program can choose to wait for above events to happen,
and once they happen, can find out what has happened, and then
continue.

A C++ program can also merely check whether any of the above
events has already happened, without any waiting.

If there are many windows on the screen, then you must first click
on the canvas so that subsequent events will be detected by your
program.



Event Objects

Objects of (built-in) class XEvent are used for holding information
about events.

You do not need to know the exact definition of XEvent. Some
functions etc. are provided which enable you to get the required
information.



Event Objects

Objects of (built-in) class XEvent are used for holding information
about events.

You do not need to know the exact definition of XEvent. Some
functions etc. are provided which enable you to get the required
information.



Event Objects

Objects of (built-in) class XEvent are used for holding information
about events.

You do not need to know the exact definition of XEvent. Some
functions etc. are provided which enable you to get the required
information.



Waiting for an event

The function nextEvent is used for waiting for an event.
It takes as argument a reference to an XEvent object.

Typical use:
XEvent e1;

nextEvent(e1);

The call causes the program to wait for an event to happen.
Calling nextEvent is like waiting for the user to type in data, i.e.
executing cin >> ...

When some event finally happens, the information about it is put
into the passed XEvent object, in this case e1.
After this execution continues.



Waiting for an event

The function nextEvent is used for waiting for an event.

It takes as argument a reference to an XEvent object.

Typical use:
XEvent e1;

nextEvent(e1);

The call causes the program to wait for an event to happen.
Calling nextEvent is like waiting for the user to type in data, i.e.
executing cin >> ...

When some event finally happens, the information about it is put
into the passed XEvent object, in this case e1.
After this execution continues.



Waiting for an event

The function nextEvent is used for waiting for an event.
It takes as argument a reference to an XEvent object.

Typical use:
XEvent e1;

nextEvent(e1);

The call causes the program to wait for an event to happen.
Calling nextEvent is like waiting for the user to type in data, i.e.
executing cin >> ...

When some event finally happens, the information about it is put
into the passed XEvent object, in this case e1.
After this execution continues.



Waiting for an event

The function nextEvent is used for waiting for an event.
It takes as argument a reference to an XEvent object.

Typical use:
XEvent e1;

nextEvent(e1);

The call causes the program to wait for an event to happen.
Calling nextEvent is like waiting for the user to type in data, i.e.
executing cin >> ...

When some event finally happens, the information about it is put
into the passed XEvent object, in this case e1.
After this execution continues.



Waiting for an event

The function nextEvent is used for waiting for an event.
It takes as argument a reference to an XEvent object.

Typical use:
XEvent e1;

nextEvent(e1);

The call causes the program to wait for an event to happen.

Calling nextEvent is like waiting for the user to type in data, i.e.
executing cin >> ...

When some event finally happens, the information about it is put
into the passed XEvent object, in this case e1.
After this execution continues.



Waiting for an event

The function nextEvent is used for waiting for an event.
It takes as argument a reference to an XEvent object.

Typical use:
XEvent e1;

nextEvent(e1);

The call causes the program to wait for an event to happen.
Calling nextEvent is like waiting for the user to type in data, i.e.
executing cin >> ...

When some event finally happens, the information about it is put
into the passed XEvent object, in this case e1.
After this execution continues.



Waiting for an event

The function nextEvent is used for waiting for an event.
It takes as argument a reference to an XEvent object.

Typical use:
XEvent e1;

nextEvent(e1);

The call causes the program to wait for an event to happen.
Calling nextEvent is like waiting for the user to type in data, i.e.
executing cin >> ...

When some event finally happens, the information about it is put
into the passed XEvent object, in this case e1.

After this execution continues.



Waiting for an event

The function nextEvent is used for waiting for an event.
It takes as argument a reference to an XEvent object.

Typical use:
XEvent e1;

nextEvent(e1);

The call causes the program to wait for an event to happen.
Calling nextEvent is like waiting for the user to type in data, i.e.
executing cin >> ...

When some event finally happens, the information about it is put
into the passed XEvent object, in this case e1.
After this execution continues.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting information about events

The following functions are available

I bool mouseButtonPressEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being pressed.

I bool mouseButtonReleaseEvent(XEvent &e1);

Returns true iff e1 involves some mouse button being released.

I bool mouseDragEvent(XEvent &e1);

Returns true iff e1 involves the mouse being dragged.

I bool keyPressEvent(XEvent &e1);

Returns true iff e1 involves some key being pressed.

How to get more detailed information: next.



Getting more information about an event e1

The following data members can be accessed.

I e1.xbutton.button : Equals 1, 2, 3 depending upon which
button was pressed or released, assuming event e1 involved
pressing or releasing a mouse button.

I e1.xbutton.x : Equals the x-coordinate of the position
where e1 happened.

I e1.xbutton.y : Equals the y-coordinate of the position
where e1 happened.

I e1.xmotion.x : Equals the x-coordinate of where dragging
happened, in case e1 was a mouse drag event.

I e1.xmotion.y : Equals the y-coordinate of where dragging
happened, in case e1 was a mouse drag event.



Getting more information about an event e1

The following data members can be accessed.

I e1.xbutton.button : Equals 1, 2, 3 depending upon which
button was pressed or released, assuming event e1 involved
pressing or releasing a mouse button.

I e1.xbutton.x : Equals the x-coordinate of the position
where e1 happened.

I e1.xbutton.y : Equals the y-coordinate of the position
where e1 happened.

I e1.xmotion.x : Equals the x-coordinate of where dragging
happened, in case e1 was a mouse drag event.

I e1.xmotion.y : Equals the y-coordinate of where dragging
happened, in case e1 was a mouse drag event.



Getting more information about an event e1

The following data members can be accessed.

I e1.xbutton.button : Equals 1, 2, 3 depending upon which
button was pressed or released, assuming event e1 involved
pressing or releasing a mouse button.

I e1.xbutton.x : Equals the x-coordinate of the position
where e1 happened.

I e1.xbutton.y : Equals the y-coordinate of the position
where e1 happened.

I e1.xmotion.x : Equals the x-coordinate of where dragging
happened, in case e1 was a mouse drag event.

I e1.xmotion.y : Equals the y-coordinate of where dragging
happened, in case e1 was a mouse drag event.



Getting more information about an event e1

The following data members can be accessed.

I e1.xbutton.button : Equals 1, 2, 3 depending upon which
button was pressed or released, assuming event e1 involved
pressing or releasing a mouse button.

I e1.xbutton.x : Equals the x-coordinate of the position
where e1 happened.

I e1.xbutton.y : Equals the y-coordinate of the position
where e1 happened.

I e1.xmotion.x : Equals the x-coordinate of where dragging
happened, in case e1 was a mouse drag event.

I e1.xmotion.y : Equals the y-coordinate of where dragging
happened, in case e1 was a mouse drag event.



Getting more information about an event e1

The following data members can be accessed.

I e1.xbutton.button : Equals 1, 2, 3 depending upon which
button was pressed or released, assuming event e1 involved
pressing or releasing a mouse button.

I e1.xbutton.x : Equals the x-coordinate of the position
where e1 happened.

I e1.xbutton.y : Equals the y-coordinate of the position
where e1 happened.

I e1.xmotion.x : Equals the x-coordinate of where dragging
happened, in case e1 was a mouse drag event.

I e1.xmotion.y : Equals the y-coordinate of where dragging
happened, in case e1 was a mouse drag event.



Getting more information about an event e1

The following data members can be accessed.

I e1.xbutton.button : Equals 1, 2, 3 depending upon which
button was pressed or released, assuming event e1 involved
pressing or releasing a mouse button.

I e1.xbutton.x : Equals the x-coordinate of the position
where e1 happened.

I e1.xbutton.y : Equals the y-coordinate of the position
where e1 happened.

I e1.xmotion.x : Equals the x-coordinate of where dragging
happened, in case e1 was a mouse drag event.

I e1.xmotion.y : Equals the y-coordinate of where dragging
happened, in case e1 was a mouse drag event.



Getting more information about an event e1

The following data members can be accessed.

I e1.xbutton.button : Equals 1, 2, 3 depending upon which
button was pressed or released, assuming event e1 involved
pressing or releasing a mouse button.

I e1.xbutton.x : Equals the x-coordinate of the position
where e1 happened.

I e1.xbutton.y : Equals the y-coordinate of the position
where e1 happened.

I e1.xmotion.x : Equals the x-coordinate of where dragging
happened, in case e1 was a mouse drag event.

I e1.xmotion.y : Equals the y-coordinate of where dragging
happened, in case e1 was a mouse drag event.



Getting more information about an event e1

The function

char charFromEvent(XEvent &e1);

returns the ASCII value of the key pressed, in case e1 is a key press
event.
The following data members are also useful.

I e1.xkey.x : Equals the x-coordinate of the cursor position
when e1 happened.

I e1.xkey.y : Equals the y-coordinate of the cursor position
when e1 happened.

Key press events may not be detected properly if ”caps lock” or
”Num lock” modes are on. Remove these first.



Getting more information about an event e1

The function

char charFromEvent(XEvent &e1);

returns the ASCII value of the key pressed, in case e1 is a key press
event.
The following data members are also useful.

I e1.xkey.x : Equals the x-coordinate of the cursor position
when e1 happened.

I e1.xkey.y : Equals the y-coordinate of the cursor position
when e1 happened.

Key press events may not be detected properly if ”caps lock” or
”Num lock” modes are on. Remove these first.



Getting more information about an event e1

The function

char charFromEvent(XEvent &e1);

returns the ASCII value of the key pressed, in case e1 is a key press
event.
The following data members are also useful.

I e1.xkey.x : Equals the x-coordinate of the cursor position
when e1 happened.

I e1.xkey.y : Equals the y-coordinate of the cursor position
when e1 happened.

Key press events may not be detected properly if ”caps lock” or
”Num lock” modes are on. Remove these first.



Getting more information about an event e1

The function

char charFromEvent(XEvent &e1);

returns the ASCII value of the key pressed, in case e1 is a key press
event.

The following data members are also useful.

I e1.xkey.x : Equals the x-coordinate of the cursor position
when e1 happened.

I e1.xkey.y : Equals the y-coordinate of the cursor position
when e1 happened.

Key press events may not be detected properly if ”caps lock” or
”Num lock” modes are on. Remove these first.



Getting more information about an event e1

The function

char charFromEvent(XEvent &e1);

returns the ASCII value of the key pressed, in case e1 is a key press
event.
The following data members are also useful.

I e1.xkey.x : Equals the x-coordinate of the cursor position
when e1 happened.

I e1.xkey.y : Equals the y-coordinate of the cursor position
when e1 happened.

Key press events may not be detected properly if ”caps lock” or
”Num lock” modes are on. Remove these first.



Getting more information about an event e1

The function

char charFromEvent(XEvent &e1);

returns the ASCII value of the key pressed, in case e1 is a key press
event.
The following data members are also useful.

I e1.xkey.x : Equals the x-coordinate of the cursor position
when e1 happened.

I e1.xkey.y : Equals the y-coordinate of the cursor position
when e1 happened.

Key press events may not be detected properly if ”caps lock” or
”Num lock” modes are on. Remove these first.



Getting more information about an event e1

The function

char charFromEvent(XEvent &e1);

returns the ASCII value of the key pressed, in case e1 is a key press
event.
The following data members are also useful.

I e1.xkey.x : Equals the x-coordinate of the cursor position
when e1 happened.

I e1.xkey.y : Equals the y-coordinate of the cursor position
when e1 happened.

Key press events may not be detected properly if ”caps lock” or
”Num lock” modes are on. Remove these first.



Getting more information about an event e1

The function

char charFromEvent(XEvent &e1);

returns the ASCII value of the key pressed, in case e1 is a key press
event.
The following data members are also useful.

I e1.xkey.x : Equals the x-coordinate of the cursor position
when e1 happened.

I e1.xkey.y : Equals the y-coordinate of the cursor position
when e1 happened.

Key press events may not be detected properly if ”caps lock” or
”Num lock” modes are on. Remove these first.



Checking for events

Function checkEvent checks if an event has happened.
It takes as argument a reference to an XEvent object.
It returns true iff an event has happened after the last call to
nextEvent and has not been yet reported in any checkEvent.

Typical use:
XEvent e1;

if(checkEvent(e1)){ ..A..}
else { ..B..}

The call to checkEvent does not wait; either code A or code B is
immediately executed, depending upon whether the event
happened.

Information about the event that happened (if any) can be
obtained using the functions and members described earlier.



Checking for events

Function checkEvent checks if an event has happened.

It takes as argument a reference to an XEvent object.
It returns true iff an event has happened after the last call to
nextEvent and has not been yet reported in any checkEvent.

Typical use:
XEvent e1;

if(checkEvent(e1)){ ..A..}
else { ..B..}

The call to checkEvent does not wait; either code A or code B is
immediately executed, depending upon whether the event
happened.

Information about the event that happened (if any) can be
obtained using the functions and members described earlier.



Checking for events

Function checkEvent checks if an event has happened.
It takes as argument a reference to an XEvent object.

It returns true iff an event has happened after the last call to
nextEvent and has not been yet reported in any checkEvent.

Typical use:
XEvent e1;

if(checkEvent(e1)){ ..A..}
else { ..B..}

The call to checkEvent does not wait; either code A or code B is
immediately executed, depending upon whether the event
happened.

Information about the event that happened (if any) can be
obtained using the functions and members described earlier.



Checking for events

Function checkEvent checks if an event has happened.
It takes as argument a reference to an XEvent object.
It returns true iff an event has happened after the last call to
nextEvent and has not been yet reported in any checkEvent.

Typical use:
XEvent e1;

if(checkEvent(e1)){ ..A..}
else { ..B..}

The call to checkEvent does not wait; either code A or code B is
immediately executed, depending upon whether the event
happened.

Information about the event that happened (if any) can be
obtained using the functions and members described earlier.



Checking for events

Function checkEvent checks if an event has happened.
It takes as argument a reference to an XEvent object.
It returns true iff an event has happened after the last call to
nextEvent and has not been yet reported in any checkEvent.

Typical use:
XEvent e1;

if(checkEvent(e1)){ ..A..}
else { ..B..}

The call to checkEvent does not wait; either code A or code B is
immediately executed, depending upon whether the event
happened.

Information about the event that happened (if any) can be
obtained using the functions and members described earlier.



Checking for events

Function checkEvent checks if an event has happened.
It takes as argument a reference to an XEvent object.
It returns true iff an event has happened after the last call to
nextEvent and has not been yet reported in any checkEvent.

Typical use:
XEvent e1;

if(checkEvent(e1)){ ..A..}
else { ..B..}

The call to checkEvent does not wait; either code A or code B is
immediately executed, depending upon whether the event
happened.

Information about the event that happened (if any) can be
obtained using the functions and members described earlier.



Checking for events

Function checkEvent checks if an event has happened.
It takes as argument a reference to an XEvent object.
It returns true iff an event has happened after the last call to
nextEvent and has not been yet reported in any checkEvent.

Typical use:
XEvent e1;

if(checkEvent(e1)){ ..A..}
else { ..B..}

The call to checkEvent does not wait; either code A or code B is
immediately executed, depending upon whether the event
happened.

Information about the event that happened (if any) can be
obtained using the functions and members described earlier.



An example program

We will write a program that allows you to draw on the canvas.

I Drawing starts when you press a mouse button.

I If you drag the mouse, then the line follows the path taken by
the mouse.

I The drawing stops when the mouse button is released.

I If you merely move the mouse without pressing any button,
no line is drawn.

I If the escape key is pressed, the program ends.



An example program

We will write a program that allows you to draw on the canvas.

I Drawing starts when you press a mouse button.

I If you drag the mouse, then the line follows the path taken by
the mouse.

I The drawing stops when the mouse button is released.

I If you merely move the mouse without pressing any button,
no line is drawn.

I If the escape key is pressed, the program ends.



An example program

We will write a program that allows you to draw on the canvas.

I Drawing starts when you press a mouse button.

I If you drag the mouse, then the line follows the path taken by
the mouse.

I The drawing stops when the mouse button is released.

I If you merely move the mouse without pressing any button,
no line is drawn.

I If the escape key is pressed, the program ends.



An example program

We will write a program that allows you to draw on the canvas.

I Drawing starts when you press a mouse button.

I If you drag the mouse, then the line follows the path taken by
the mouse.

I The drawing stops when the mouse button is released.

I If you merely move the mouse without pressing any button,
no line is drawn.

I If the escape key is pressed, the program ends.



An example program

We will write a program that allows you to draw on the canvas.

I Drawing starts when you press a mouse button.

I If you drag the mouse, then the line follows the path taken by
the mouse.

I The drawing stops when the mouse button is released.

I If you merely move the mouse without pressing any button,
no line is drawn.

I If the escape key is pressed, the program ends.



An example program

We will write a program that allows you to draw on the canvas.

I Drawing starts when you press a mouse button.

I If you drag the mouse, then the line follows the path taken by
the mouse.

I The drawing stops when the mouse button is released.

I If you merely move the mouse without pressing any button,
no line is drawn.

I If the escape key is pressed, the program ends.



An example program

We will write a program that allows you to draw on the canvas.

I Drawing starts when you press a mouse button.

I If you drag the mouse, then the line follows the path taken by
the mouse.

I The drawing stops when the mouse button is released.

I If you merely move the mouse without pressing any button,
no line is drawn.

I If the escape key is pressed, the program ends.



Summary

We discussed how to handle mouse and keyboard events.

I nextEvent enables waiting for mouse and keyboard events.

I checkEvent enables determining if an event has already
happened.

I Information about events can be obtained by calling functions
on the event object, or examining its members.

I Chapter 20 gives an example of a ”Snake” game that can be
developed. Other games are also possible.

I The drawing program developed above can be extended to
recognize what is drawn: Is the user writing something? Is the
user drawing a circle?

I The possibilities for doing interesting projects are endless..



Summary

We discussed how to handle mouse and keyboard events.

I nextEvent enables waiting for mouse and keyboard events.

I checkEvent enables determining if an event has already
happened.

I Information about events can be obtained by calling functions
on the event object, or examining its members.

I Chapter 20 gives an example of a ”Snake” game that can be
developed. Other games are also possible.

I The drawing program developed above can be extended to
recognize what is drawn: Is the user writing something? Is the
user drawing a circle?

I The possibilities for doing interesting projects are endless..



Summary

We discussed how to handle mouse and keyboard events.

I nextEvent enables waiting for mouse and keyboard events.

I checkEvent enables determining if an event has already
happened.

I Information about events can be obtained by calling functions
on the event object, or examining its members.

I Chapter 20 gives an example of a ”Snake” game that can be
developed. Other games are also possible.

I The drawing program developed above can be extended to
recognize what is drawn: Is the user writing something? Is the
user drawing a circle?

I The possibilities for doing interesting projects are endless..



Summary

We discussed how to handle mouse and keyboard events.

I nextEvent enables waiting for mouse and keyboard events.

I checkEvent enables determining if an event has already
happened.

I Information about events can be obtained by calling functions
on the event object, or examining its members.

I Chapter 20 gives an example of a ”Snake” game that can be
developed. Other games are also possible.

I The drawing program developed above can be extended to
recognize what is drawn: Is the user writing something? Is the
user drawing a circle?

I The possibilities for doing interesting projects are endless..



Summary

We discussed how to handle mouse and keyboard events.

I nextEvent enables waiting for mouse and keyboard events.

I checkEvent enables determining if an event has already
happened.

I Information about events can be obtained by calling functions
on the event object, or examining its members.

I Chapter 20 gives an example of a ”Snake” game that can be
developed. Other games are also possible.

I The drawing program developed above can be extended to
recognize what is drawn: Is the user writing something? Is the
user drawing a circle?

I The possibilities for doing interesting projects are endless..



Summary

We discussed how to handle mouse and keyboard events.

I nextEvent enables waiting for mouse and keyboard events.

I checkEvent enables determining if an event has already
happened.

I Information about events can be obtained by calling functions
on the event object, or examining its members.

I Chapter 20 gives an example of a ”Snake” game that can be
developed. Other games are also possible.

I The drawing program developed above can be extended to
recognize what is drawn: Is the user writing something? Is the
user drawing a circle?

I The possibilities for doing interesting projects are endless..



Summary

We discussed how to handle mouse and keyboard events.

I nextEvent enables waiting for mouse and keyboard events.

I checkEvent enables determining if an event has already
happened.

I Information about events can be obtained by calling functions
on the event object, or examining its members.

I Chapter 20 gives an example of a ”Snake” game that can be
developed. Other games are also possible.

I The drawing program developed above can be extended to
recognize what is drawn: Is the user writing something? Is the
user drawing a circle?

I The possibilities for doing interesting projects are endless..


