
Computer Programming

Dr. Deepak B Phatak
Dr. Supratik Chakraborty

Department of Computer Science and Engineering
IIT Bombay

Session: Graphics objects in arrays and structures
Guest Lecturer: Dr. Abhiram Ranade



Quick recap

Last sessions: Graphics facilities in Simplecpp.

This session:

I Graphics objects in structures/arrays.

I A fun application

Reference: Chapters 5, 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Quick recap

Last sessions: Graphics facilities in Simplecpp.

This session:

I Graphics objects in structures/arrays.

I A fun application

Reference: Chapters 5, 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Quick recap

Last sessions: Graphics facilities in Simplecpp.

This session:

I Graphics objects in structures/arrays.

I A fun application

Reference: Chapters 5, 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Quick recap

Last sessions: Graphics facilities in Simplecpp.

This session:

I Graphics objects in structures/arrays.

I A fun application

Reference: Chapters 5, 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Quick recap

Last sessions: Graphics facilities in Simplecpp.

This session:

I Graphics objects in structures/arrays.

I A fun application

Reference: Chapters 5, 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Quick recap

Last sessions: Graphics facilities in Simplecpp.

This session:

I Graphics objects in structures/arrays.

I A fun application

Reference: Chapters 5, 20 of ”An introduction to programming
through C++”, McGraw Hill Education, 2014.



Graphics objects in arrays

You can make an array of graphics objects, e.g.

Rectangle r[10];

This creates 10 degenerate rectangles with zero width, height etc.

You must then make it have the appropriate position, height,
width by calling reset, e.g.

r[5].reset(100,100,50,70);

Similarly for other graphics objects.



Graphics objects in arrays

You can make an array of graphics objects, e.g.

Rectangle r[10];

This creates 10 degenerate rectangles with zero width, height etc.

You must then make it have the appropriate position, height,
width by calling reset, e.g.

r[5].reset(100,100,50,70);

Similarly for other graphics objects.



Graphics objects in arrays

You can make an array of graphics objects, e.g.

Rectangle r[10];

This creates 10 degenerate rectangles with zero width, height etc.

You must then make it have the appropriate position, height,
width by calling reset, e.g.

r[5].reset(100,100,50,70);

Similarly for other graphics objects.



Graphics objects in arrays

You can make an array of graphics objects, e.g.

Rectangle r[10];

This creates 10 degenerate rectangles with zero width, height etc.

You must then make it have the appropriate position, height,
width by calling reset, e.g.

r[5].reset(100,100,50,70);

Similarly for other graphics objects.



Graphics objects in arrays

You can make an array of graphics objects, e.g.

Rectangle r[10];

This creates 10 degenerate rectangles with zero width, height etc.

You must then make it have the appropriate position, height,
width by calling reset, e.g.

r[5].reset(100,100,50,70);

Similarly for other graphics objects.



Graphics objects in arrays

You can make an array of graphics objects, e.g.

Rectangle r[10];

This creates 10 degenerate rectangles with zero width, height etc.

You must then make it have the appropriate position, height,
width by calling reset, e.g.

r[5].reset(100,100,50,70);

Similarly for other graphics objects.



Graphics objects in arrays

You can make an array of graphics objects, e.g.

Rectangle r[10];

This creates 10 degenerate rectangles with zero width, height etc.

You must then make it have the appropriate position, height,
width by calling reset, e.g.

r[5].reset(100,100,50,70);

Similarly for other graphics objects.



Graphics objects in the heap

Can be created in the natural manner, e.g.

Rectangle *rptr = new Rectangle(100, 100, 50, 70);

The new operator will get called with the required constructor.



Graphics objects in the heap

Can be created in the natural manner, e.g.

Rectangle *rptr = new Rectangle(100, 100, 50, 70);

The new operator will get called with the required constructor.



Graphics objects in the heap

Can be created in the natural manner, e.g.

Rectangle *rptr = new Rectangle(100, 100, 50, 70);

The new operator will get called with the required constructor.



Graphics objects in the heap

Can be created in the natural manner, e.g.

Rectangle *rptr = new Rectangle(100, 100, 50, 70);

The new operator will get called with the required constructor.



Graphics objects in structures

Are allowed, e.g.

struct Button{Rectangle border; Text label;};

This will create border and label using default constructors. The
correct values can be given using reset.



Graphics objects in structures

Are allowed, e.g.

struct Button{Rectangle border; Text label;};

This will create border and label using default constructors. The
correct values can be given using reset.



Graphics objects in structures

Are allowed, e.g.

struct Button{Rectangle border; Text label;};

This will create border and label using default constructors. The
correct values can be given using reset.



Graphics objects in structures

Are allowed, e.g.

struct Button{Rectangle border; Text label;};

This will create border and label using default constructors. The
correct values can be given using reset.



An application: The 13-15-14 puzzle

I A 4× 4 board

I 15 tiles of size 1× 1, numbered 1 through 15.
Initially placed randomly in the 16 possible positions.

Goal: Arrange the tiles in order 1..15 top to bottom left to right,
i.e. so that it looks like

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Operations allowed: If a tile is adjacent to an empty position, it
can be slid into the empty position.

Getting the required order is not always possible!



An application: The 13-15-14 puzzle

I A 4× 4 board

I 15 tiles of size 1× 1, numbered 1 through 15.
Initially placed randomly in the 16 possible positions.

Goal: Arrange the tiles in order 1..15 top to bottom left to right,
i.e. so that it looks like

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Operations allowed: If a tile is adjacent to an empty position, it
can be slid into the empty position.

Getting the required order is not always possible!



An application: The 13-15-14 puzzle

I A 4× 4 board

I 15 tiles of size 1× 1, numbered 1 through 15.

Initially placed randomly in the 16 possible positions.

Goal: Arrange the tiles in order 1..15 top to bottom left to right,
i.e. so that it looks like

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Operations allowed: If a tile is adjacent to an empty position, it
can be slid into the empty position.

Getting the required order is not always possible!



An application: The 13-15-14 puzzle

I A 4× 4 board

I 15 tiles of size 1× 1, numbered 1 through 15.
Initially placed randomly in the 16 possible positions.

Goal: Arrange the tiles in order 1..15 top to bottom left to right,
i.e. so that it looks like

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Operations allowed: If a tile is adjacent to an empty position, it
can be slid into the empty position.

Getting the required order is not always possible!



An application: The 13-15-14 puzzle

I A 4× 4 board

I 15 tiles of size 1× 1, numbered 1 through 15.
Initially placed randomly in the 16 possible positions.

Goal: Arrange the tiles in order 1..15 top to bottom left to right,
i.e. so that it looks like

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Operations allowed: If a tile is adjacent to an empty position, it
can be slid into the empty position.

Getting the required order is not always possible!



An application: The 13-15-14 puzzle

I A 4× 4 board

I 15 tiles of size 1× 1, numbered 1 through 15.
Initially placed randomly in the 16 possible positions.

Goal: Arrange the tiles in order 1..15 top to bottom left to right,
i.e. so that it looks like

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Operations allowed: If a tile is adjacent to an empty position, it
can be slid into the empty position.

Getting the required order is not always possible!



An application: The 13-15-14 puzzle

I A 4× 4 board

I 15 tiles of size 1× 1, numbered 1 through 15.
Initially placed randomly in the 16 possible positions.

Goal: Arrange the tiles in order 1..15 top to bottom left to right,
i.e. so that it looks like

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Operations allowed: If a tile is adjacent to an empty position, it
can be slid into the empty position.

Getting the required order is not always possible!



About the program

I Tile = rectangle and + text giving the number.

I Board = a two dimensional array slots of type Slot, where:
slots[i][j] will hold a pointer to the rectangle in it if any
and the text in it if any.

I The board will be initialized in some random manner.

I When the user clicks, we check if the clicked slot is next to
the empty slot. If so, the rectangle and the text in the clicked
slot is moved into the empty slot.



About the program

I Tile = rectangle and + text giving the number.

I Board = a two dimensional array slots of type Slot, where:
slots[i][j] will hold a pointer to the rectangle in it if any
and the text in it if any.

I The board will be initialized in some random manner.

I When the user clicks, we check if the clicked slot is next to
the empty slot. If so, the rectangle and the text in the clicked
slot is moved into the empty slot.



About the program

I Tile = rectangle and + text giving the number.

I Board = a two dimensional array slots of type Slot, where:

slots[i][j] will hold a pointer to the rectangle in it if any
and the text in it if any.

I The board will be initialized in some random manner.

I When the user clicks, we check if the clicked slot is next to
the empty slot. If so, the rectangle and the text in the clicked
slot is moved into the empty slot.



About the program

I Tile = rectangle and + text giving the number.

I Board = a two dimensional array slots of type Slot, where:
slots[i][j] will hold a pointer to the rectangle in it if any
and the text in it if any.

I The board will be initialized in some random manner.

I When the user clicks, we check if the clicked slot is next to
the empty slot. If so, the rectangle and the text in the clicked
slot is moved into the empty slot.



About the program

I Tile = rectangle and + text giving the number.

I Board = a two dimensional array slots of type Slot, where:
slots[i][j] will hold a pointer to the rectangle in it if any
and the text in it if any.

I The board will be initialized in some random manner.

I When the user clicks, we check if the clicked slot is next to
the empty slot. If so, the rectangle and the text in the clicked
slot is moved into the empty slot.



About the program

I Tile = rectangle and + text giving the number.

I Board = a two dimensional array slots of type Slot, where:
slots[i][j] will hold a pointer to the rectangle in it if any
and the text in it if any.

I The board will be initialized in some random manner.

I When the user clicks, we check if the clicked slot is next to
the empty slot. If so, the rectangle and the text in the clicked
slot is moved into the empty slot.



Remark regarding the puzzle:

Celebrated puzzle from 19th century.

Theorem: From an arbitrary initial position, you can reach one of
the following positions but not both.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14



Remark regarding the puzzle:

Celebrated puzzle from 19th century.

Theorem: From an arbitrary initial position, you can reach one of
the following positions but not both.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14



Remark regarding the puzzle:

Celebrated puzzle from 19th century.

Theorem: From an arbitrary initial position, you can reach one of
the following positions but not both.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.



Concluding remarks

Main goals of the lecture

I Study how to create arrays/structures of graphics objects.

I Nothing really new was stated!

I Give another example of graphics..

I Arrays of objects will be needed if you want lots of objects on
the screen, e.g. gas molecules bouncing around in a chamber.

Chapter 20 gives an example of a ”Snake” game that uses arrays
of graphics objects.

The possibilities for doing interesting projects are endless..

End of lecture series on graphics.


