
Handout on Map Class

Maps are associative containers that store elements in the form of a key value pair combination in a
sorted order based on the key.

Header file

To use this class, we need to include the following header file in our program
#include<map>

All the member functions of the map class and the map class itself is in the namespace std. Map
objects can be constructed based on the contructor used.

In general, every map<key_type, value_type> object is a collection of (key,value) pairs.
Various ways in which a map object can be created are as follows:

Usage Explanation
map<char, int> m1; This creates an empty map object 'm1' with key of type

char and the value of type int

m1['a']=1; This creates a new key value pair by storing the value 1
of type int along with key 'a' of type char in the map
named 'm1'.

m1['b']=2; Can be explained in the similar fashion as above

m1['c']=3;

map<char,int> m2(m1.begin(),m1.end()); This creates a map object m2 of 3 (key,value) pairs by
iterating through the map object m1.

map<char,int> m3 (m2); This copies the map object m2 to map object m3.

map<char,int> m4 {{'a',1}, {'b',2},{'c',3}} Map objects can also be initialized in this fashion

If we want to access the element indexed by the key value, we can write the following
cout << m1['A'];

This will print 49.

The 'operator=' can be used to copy a map opject to another map object of the same type
For example , 'm4=m3;' will copy map object 'm3' to map object 'm4'

Iterators:

Iterators are public member functions defined for iterating through the element of type defined for
the containers. Following are the list of iterators available for the 'map' class.
begin()

This returns an iterator referring to the first element in the map. The following statement will
initialize the iterator pointing to the begining of the map container
map<char, int> m1;

map<char, int>::iterator it = m1.begin();
In order to access the key of the element in the map, we need to use 'it->first', whereas to access the
value of the element, we need to use 'it->second'.

E.g.

 map<char,int> m1;
 m1['A'] = 49;

 m1['C'] = 51;
 m1['B'] = 50;

 map<char,int>::iterator it = m1.begin();
 cout << "Key = "<< it->first <<endl;

 cout << "Value = " << it -> second <<endl;
Output

 Key = A
 Value = 49

end()

This returns an iterator pointing to the past-the-end element in the map. The following statement
will initialize the iterator pointing to the past-the-end element of the map container
map<char, int> m1;

map<char, int>::iterator it = m1.end();
In order to access the key of the element in the map, we need to use 'it->first', whereas to access the
value of the element, we need to use 'it->second'. We cannot use this immediately after executing
this 'm1.end()' as it does not point to any element of the map container and should no be used to
dereference. We need to decrement this iterator and then use it.

E.g.
 map<char,int> m1;

 m1['A'] = 49;
 m1['C'] = 51;

 m1['B'] = 50;
 map<char,int>::iterator it = m1.end();

 it--;
 cout << "Key = "<< it->first <<endl;

 cout << "Value = " << it -> second <<endl;
Output

 Key = C
 Value = 51

'begin' in conjunction with 'end' can be used to iterate through the map elements as follows:

 for (map<char,int>::iterator it=m1.begin(); it!=m1.end(); ++it) {
 cout << it->first << " => " << it->second << '\n';

}

rbegin()
'rbegin' is a backward iterator and it returns a reverse iterator pointing to the last element in the map
container. Incrementing this iterator, moves to the begining of the container. The following
statement will initialize the reverse iterator pointing to the last element of the map container

map<char, int> m1;

map<char, int>::reverse_iterator rit = m1.rbegin();

In order to access the key of the element in the map, we need to use 'rit->first', whereas to access
the value of the element, we need to use 'rit->second'.
E.g.

 map<char,int> m1;
 m1['A'] = 49;

 m1['C'] = 51;
 m1['B'] = 50;

 map<char,int>::reverse_iterator rit = m1.rbegin();
 cout << "Key = "<< rit->first <<endl;

 cout << "Value = " << rit -> second <<endl;
Output Key = C

 Value = 51
rend()

rend is a backward iterator and it returns a reverse iterator pointing to the element before the first
element in the map container. The following statement will initialize the reverse iterator pointing to
the element one before the first element
map<char, int> m1;

map<char, int>::reverse_iterator rit = m1.rend();
In order to access the key of the element in the map, we need to use 'rit->first', whereas to access
the value of the element, we need to use 'rit->second'. Just after executing 'm1.rend()', we should
not use 'rit->first' or 'rit->second', to access the element of the map container, as it will point to the
element before the first element of the map container.

E.g.
 map<char,int> m1;

 m1['A'] = 49;
 m1['C'] = 51;

 m1['B'] = 50;
 map<char,int>::reverse_iterator rit = m1.rend();

 rit--;
 cout << "Key = "<< rit->first <<endl;

 cout << "Value = " << rit -> second <<endl;
Output

 Key = A
 Value = 49

rbegin in conjunction with rend can be used to reverse iterate through the map elements as follows:

for (rit=m1.rbegin(); rit!=m1.rend(); ++rit)
 cout << rit->first << " => " << rit->second << '\n';

Capacity:

When maps are initialized, they typically consist of a pointer to a dynamically allocated memory.
The allocated size(capacity) may be larger than the actual size used in the program. When new
elements are added, the size of the map object is automatically set. Below we mention some of the
useful member functions for checking size of the map object.

size()

size is a member function which returns the size(number of elements) of the map object. The
following statements can be used to calculate the size of the map object. In this example, the size
returned is 3.
map<char,int> m4 {{'a',1}, {'b',2},{'c',3}};

cout << m5.size();

If we had used map<char,int> m4; instead of the above statement, the size returned would have
been 0.

max_size()
This returns the maximum number of elements the vector can hold. It is system dependent. On
some systems, you would get the value as high as 1073741823.

empty()

This can be used to test if the map object is empty(no elements). The function returns a boolean
result.
Usage: Explanation

if(!m3.empty()){ 'm3' is a map container checked to see if it is not empty
//do this

}
else{

//do something
}

Element Access:
Elements of a map container can be accessed using operator[] and at() functions as described below:

operator[]
If the key value matches with a key in the map container, it returns a reference to the mapped value
in the container. The member operator[] does not check for bounds and has undefined behavior if
access is made using a position value which is out of bound.

The following statements of code will illustrate the usage of an operator[]
Usage Explanation

map<char,int> m1; This creates a map container 'm1'
m1['A']=49; This inserts the key value pair

cout<< m1['A']; This prints the value at key 'A' i.e. 49

at()
If the key value matches with the key in the map container, it returns a reference to the mapped
value of the element in the map container.

The following statements of code will illustrate the usage of an at() member function
Usage Explanation

map<char,int> m1; This creates a map container 'm1'
m1['A']=49; This inserts the key value pair

m1.at('A'); This prints the value at key 'A' i.e. 49

Modifiers:

These are member functions which help in inserting, updating, and deleting elements of map
containers. The following member functions are used to perform such operations:

insert()

The map container can also be extended by inserting new elements. The size of the map is
automatically increased. This operation is very inefficient as all the elements after the position
specified need to be reallocated to make space for the new elements.
The below example illustrates the insert() function.

Usage Explanation

map<char,int> m1; This creates a map 'm1'
m1['A'] = 49; This initializes the map

m1['C'] = 51;
m1['B'] = 50;

m1.insert (pair<char,int>('D',100)); This inserts the key pair value 'D, 100' after all the
elements in the map

erase()
The element(s) from the map container can also be removed by using this function. It can either
remove a single element or a range of elements specified in the arguments. In using the range from
first and last as an argument, it will remove all the elements positioned between the first and the
last, including the element pointed by first(but not last). The size of the vector container will be
automatically decreased

The below example illustrates the erase() function:
Usage Explanation

map<char,int> m1; This creates a map container 'm1'
m1['A']=49; This inserts the key value pairs

m1['B']=50;
m1['C']=51;

m1['D']=52;
map<char,int>::iterator it = m1.begin(); initializing iterator 'it'

m1.erase(it); Erases the first element from the map
m1.erase(it, m1.end()); Erases the elements from where the iterator is pointing

till the end

swap()

This member function exchanges the content of the container by the content of another container of
the same type specified in the argument. The iterators reamain valid even after swapping map
contents.
E.g.

 map<char,int>::iterator it;

 map<char,int> m1;

 m1['A'] = 49;
 m1['C'] = 51;

 m1['B'] = 50;
 map<char,int> m2;

 m2['D'] = 52;
 m2['E'] = 53;

 cout<<"Before Swapping: "<<endl;
 cout<<"Map 1: \n";

 for (it=m1.begin(); it!=m1.end(); ++it)
 cout << it->first << " => " << it->second << '\n';

 cout<<"\nMap 2: \n";
 for (it=m2.begin(); it!=m2.end(); ++it)

 cout << it->first << " => " << it->second << '\n';
 m1.swap(m2);

 cout<<"\nAfter Swapping: "<<endl;
 cout<<"Map 1: \n";

 for (it=m1.begin(); it!=m1.end(); ++it)
 cout << it->first << " => " << it->second << '\n';

 cout<<"\nMap 2: \n";
 for (it=m2.begin(); it!=m2.end(); ++it)

 cout << it->first << " => " << it->second << '\n';
Output

Before Swapping:
Map 1:

A => 49
B => 50

C => 51
Map 2:

D => 52
E => 53

After Swapping:
Map 1:

D => 52
E => 53

Map 2:
A => 49

B => 50
C => 51

Operations:

These are public member functions which help in locating a key in the map container.
find()

This searches the map container for an element with a key equivalent to the value given in the
function argument. If it finds, then it returns the iterator to it, else it returns an iterator to
'map::end'.
In the following, the iterator 'it' is made to point to the eleemnt indexed by the key 'B'

map<char, int>::iterator it = m1.find('B');

we can use the iterator to perform other operations like 'erase'
m1.erase(it); // This will erase the element pair containing key value 'B',50

count()

This public memeber function searches the map container for an element with a key equivalent to
the value given in the function argument. If it matches(all emenets are unique) it returns 1, else it
returns 0.
E.g. Assume that the map 'm1' is already created and initialized.

 if(m1.count('B') > 0)
 cout<<"Element found";

 else
 cout<<"Element not found";

For more details, please refer to the following reference links:
http://www.cplusplus.com/reference

http://en.wikipedia.org/wiki/C++_Standard_Library

http://en.wikipedia.org/wiki/C%2B%2B_Standard_Library
http://www.cplusplus.com/reference

