
IIT Bombay

Computer Programming
Dr. Deepak B Phatak

Dr. Supratik Chakraborty
Department of Computer Science and Engineering

IIT Bombay

Session: Recap of Recursive Functions

1Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

IIT Bombay

VIDEO LECTURE RECAP QUIZ

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 2

IIT Bombay

Video Lecture Recap Quiz

Q1. A function that calls itself is an example
of _____________ function

A. Recursive

B. Iterative

C. Non-terminating

D. Mirror

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 3

IIT Bombay

Video Lecture Recap Quiz

Q2. Which of the following is/are FALSE
about recursive functions?

A. Must have at least one parameter
B. Can have only call-by-value parameters
C. May not terminate for some input

parameters
D. Cannot call any function other than itself

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 4

IIT Bombay

Video Lecture Recap Quiz

Q3. For recursion to terminate, the values of
parameters

A. Can change in any order
B. Must move monotonically towards a

termination case
C. Must stay unchanged in all calls to the

function
D. Must never become negative

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 5

IIT Bombay

Video Lecture Recap Quiz

Q4. Virahanka numbers can be computed

A. Recursively but not iteratively

B. Iteratively but not recursively

C. Both iteratively and recursively

D. Neither iteratively nor recursively

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 6

IIT Bombay

Video Lecture Recap Quiz

Q5. When a function recursively calls itself
A. The activation record on top of the call

stack is popped out
B. A new activation record is pushed in the

call stack
C. The activation record on top of the call

stack is overwritten
D. No activation records are pushed/popped

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 7

IIT Bombay

Video Lecture Recap Quiz

Q6. Specifying a termination case
A. Guarantees that a recursive function

terminates for all inputs
B. May not cause a recursive function to

terminate for all inputs
C. Terminates a function if it calls itself
D. Helps the compiler avoid generating code

for recursive functions

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 8

IIT Bombay

VIDEO LECTURE RECAP SLIDES

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 9

IIT Bombay

Calling a Function From Itself

• Same mechanism of function calls and returns we studied
earlier works perfectly !!!

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 10

Recursive Function: One that can call itself
Elegant and natural way to solve several problems

Mutually recursive functions
func1 calls func2, which calls func3,

which calls func1

IIT Bombay

#include <iostream>

using namespace std;

int newEnc(int q1Marks,int q2Marks);

int main() { …

for (…) { …

cipher = newEnc(q1Marks, q2Marks);

…}

…

return 0;

}

A Program With A Recursive Function

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay

11

// PRECONDITION: …

int newEnc(int q1Marks,
int q2Marks)

{ switch(q2Marks) {
case 1:

if (q1Marks == 1) {return 6;}
else {return

2*newEnc(q1Marks – 1, 1);
}
break;

default: … }
}
// POSTCONDITION: …

IIT Bombay

Caveats Using Recursive Functions

• Must specify how to terminate the recursion

Otherwise, recursion (calling a function from itself) can go
on forever

• Must ensure that in any invocation, the recursion changes
parameters in an orderly way such that recursion eventually
terminates

encode(m, n) = encode(m, n-1) x 3, if m, n > 1

= encode(m-1, 1) x 2, if m > 1, n=1

= 2 x 3 = 6, if m=1, n=1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 12

Termination case

Changing parameters in an
orderly way to ensure

termination

IIT Bombay

Caveats Using Recursive Functions

• Think of all possible valuations of parameters as ordered
with a fixed end (termination case)

• Recursion must change values of parameters so that we
move along this order monotonically towards fixed end

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 13

Termination
Case

1 2 3 4 5 6 7
1

2

3

4

5

m

n

encode(4, 3)

IIT Bombay

Recursion vs Iteration

• Recursive formulation usually clean, intuitive and succinct

Need to worry about recursion termination (well-founded

ordering of parameter values)

Need to worry about number of recursive calls

• Iterative formulation may be less clean or intuitive (not always!)

Need to worry about loop invariants, loop variants and

termination

Can be very efficient if formulated correctly

• Best practice: Judicious mix of iteration and recursion

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 14

IIT Bombay

Practice Problem

Let’s build on the problem discussed in last
class. Recall the game of tic-tac-toe.

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 15

0

1

01

0 1

IIT Bombay

Practice Problem (continued)

A configuration of the tic-tac-toe grid is
represented by a sequence of 9 integer
valued variables x1, x2, … x9

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 16

x1 x2 x3

x6

x9x8x7

x4 x5

IIT Bombay

Practice Problem (continued)

A configuration of the tic-tac-toe grid is
represented by a sequence of 9 integer
valued variables x1, x2, … x9

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 17

1

01

0 1

0 x1 = 0, x2 = 1, x3 = 0

x4 = -1, x5 = 1, x6 = -1

x7 = 0, x8 = 1, x9 = -1

IIT Bombay

Practice Problem: Subproblem 1

Write a C++ function that takes as input an
input configuration and determines who
(“0” or “1”) should move next.

int nextTurn(int x1, int x2, … int x9)

{ // Check if configuration is valid

// Count no. of 0’s and 1’s

// Determine who moves next

}
Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 18

IIT Bombay

Practice Problem (continued)

Given a configuration of tic-tac-toe, we want
to determine if there is a winning/losing
move of the next player.

Winning Move of 0: A move of 0 from which
there is at least one way for 0 to win no
matter how 1 plays.

Winning Move of 1 similarly defined

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 19

IIT Bombay

Practice Problem (continued)

Example: tic-tac-toe configuration

x1 = x3 = 0, x2 = x6 = 1, Rest are -1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 20

x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 0

Winning move of 0:
x7 = 00

Guaranteed win for 0 no matter how 1 plays

IIT Bombay

Practice Problem (continued)

Example: tic-tac-toe configuration

x1 = x3 = 0, x2 = x5 = 1, Rest are -1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 21

x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 0

No winning move of 0

Cannot guarantee win for 0 from any next move

IIT Bombay

Practice Problem (continued)

Losing Move: A move from which there is

at least one winning move of the opponent

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 22

IIT Bombay

Practice Problem (continued)

Example: tic-tac-toe configuration

x1 = x3 = 0, x2 = 1, Rest are -1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 23

x1 x2 x3

x6

x9x8x7

x4 x5

0

1

0 Next move: 1

Losing move of 1:
x6 = 1

Winning move of 0 exists after this

1

0

IIT Bombay

Practice Problem (continued)

Useful Observation:
If 0 has a winning move from a configuration,
then after this move is taken, 1 cannot have
a winning move from the new configuration.

Similarly, with roles of 0 and 1 reversed.

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 24

IIT Bombay

Practice Problem (continued)

Useful Observation:
If 0 has a losing move from a configuration,
then after this move is taken, 1 has a
winning move from the new configuration.

Similarly, with roles of 0 and 1 reversed.

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 25

IIT Bombay

Practice Problem: Subproblem 2

Write mutually recursive C++ functions
winMove and loseMove,

such that each takes as inputs
(i) a configuration, and (ii) next player (0 or 1)

and determines
If next player has at least one winning move

and
If all moves of next player are losing moves
Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 26

IIT Bombay

Practice Problem: Subproblem 3

If there is a winning move for the next player,
winMove(…) should return the position for the
winning move, else it should return -1

If all moves for the next player are losing
moves, loseMove(…) should return true, else it
should return false.

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 27

IIT Bombay

Practice Problem (continued)

Recall example: tic-tac-toe configuration

x1 = x3 = 0, x2 = x6 = 1, Rest are -1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 28

x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 0

Winning move of 0:
x7 = 0

0
winMove(0,1,0,-1,-1,1,-1,-1,-1, 0) returns 7

IIT Bombay

Practice Problem (continued)

Example: tic-tac-toe configuration

x1 = x3 = 0, x2 = x5 = 1, Rest are -1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 29

x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 0

No winning move

winMove(0,1,0,-1,1,-1,-1,-1,-1, 0) returns -1

IIT Bombay

Practice Problem (continued)

Recall example: tic-tac-toe configuration

x1 = x3 = 0, x2 = x6 = 1, Rest are -1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 30

x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 1

All moves of 1:
Losing

0
loseMove(0,1,0,-1,-1,1,0,-1,-1, 1) returns true

IIT Bombay

Practice Problem: Subproblem 3

int winMove(int x1, … int x9, int nextPlayer)
{ // Validate inputs

// Determine if winning move exists for
// nextPlayer

}
[Hint: Check if opponent has only losing

moves after nextPlayer takes a move.
What are the termination cases?]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 31

IIT Bombay

Practice Problem: Subproblem 3

int loseMove(int x1, … int x9, int nextPlayer)

{ // Validate inputs

// Determine if all moves of nextPlayer

// are losing moves

}

[Hint: Check if opponent has a winning move
for every next move of nextPlayer]

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 32

