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VIDEO  LECTURE  RECAP  QUIZ
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Video Lecture Recap Quiz

Q1. A function that calls itself is an example 
of _____________ function

A. Recursive

B. Iterative

C. Non-terminating

D. Mirror
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Video Lecture Recap Quiz

Q2. Which of the following is/are FALSE 
about recursive functions?

A. Must have at least one parameter
B. Can have only call-by-value parameters
C. May not terminate for some input 

parameters
D. Cannot call any function other than itself
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Video Lecture Recap Quiz

Q3. For recursion to terminate, the values of 
parameters

A. Can change in any order
B. Must move monotonically towards a 

termination case
C. Must stay unchanged in all calls to the 

function
D. Must never become negative
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Video Lecture Recap Quiz

Q4. Virahanka numbers can be computed

A. Recursively but not iteratively

B. Iteratively but not recursively

C. Both iteratively and recursively

D. Neither iteratively nor recursively
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Video Lecture Recap Quiz

Q5. When a function recursively calls itself
A. The activation record on top of the call 

stack is popped out
B. A new activation record is pushed in the 

call stack
C. The activation record on top of the call 

stack is overwritten
D. No activation records are pushed/popped
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Video Lecture Recap Quiz

Q6. Specifying a termination case
A. Guarantees that a recursive function 

terminates for all inputs
B. May not cause a recursive function to 

terminate for all inputs
C. Terminates a function if it calls itself
D. Helps the compiler avoid generating code 

for recursive functions
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VIDEO LECTURE RECAP SLIDES
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Calling a Function From Itself

• Same mechanism of function calls and returns we studied 
earlier works perfectly !!!
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Recursive Function: One that can call itself
Elegant and natural way to solve several problems 

Mutually recursive functions
func1 calls func2, which calls func3, 

which calls func1
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#include <iostream>

using namespace std;

int newEnc(int q1Marks,int q2Marks);

int main() { …

for ( … ) {  …

cipher = newEnc(q1Marks, q2Marks);

…}

…

return 0;

}

A Program With A Recursive Function
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// PRECONDITION:  …

int newEnc(int q1Marks,                            
int q2Marks)

{ switch(q2Marks) {
case 1: 

if (q1Marks == 1) {return 6;}
else {return

2*newEnc(q1Marks – 1, 1);
}
break;

default: … }
}
// POSTCONDITION:  …
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Caveats Using Recursive Functions

• Must specify how to terminate the recursion

Otherwise, recursion (calling a function from itself) can go 
on forever

• Must ensure that in any invocation, the recursion changes 
parameters in an orderly way such that recursion eventually 
terminates

encode(m, n) = encode(m, n-1) x 3, if m, n > 1

= encode(m-1, 1) x 2, if m > 1, n=1

= 2 x 3 = 6, if m=1, n=1
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Termination case 

Changing parameters in an 
orderly way to ensure 

termination
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Caveats Using Recursive Functions

• Think of all possible valuations of parameters as ordered 
with a fixed end (termination case)

• Recursion must change values of parameters so that we 
move along this order monotonically towards fixed end
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Recursion vs Iteration

• Recursive formulation usually clean, intuitive and succinct

Need to worry about recursion termination (well-founded 

ordering of parameter values)

Need to worry about number of recursive calls

• Iterative formulation may be less clean or intuitive (not always!)

Need to worry about loop invariants, loop variants and 

termination 

Can be very efficient if formulated correctly

• Best practice:  Judicious mix of iteration and recursion
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Practice Problem  

Let’s build on the problem discussed in last 
class. Recall the game of tic-tac-toe.
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Practice Problem (continued)

A configuration of the tic-tac-toe grid is 
represented by a sequence of 9 integer 
valued variables  x1, x2, … x9
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Practice Problem (continued)

A configuration of the tic-tac-toe grid is 
represented by a sequence of 9 integer 
valued variables  x1, x2, … x9
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0 x1 = 0,  x2 = 1, x3 = 0

x4 = -1,  x5 = 1, x6 = -1

x7 = 0,  x8 = 1, x9 = -1
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Practice Problem: Subproblem 1

Write a C++ function that takes as input an 
input configuration and determines who 
(“0” or “1”) should move next.

int nextTurn(int x1, int x2, … int x9)  

{   // Check if configuration is valid

// Count no. of 0’s and 1’s

// Determine who moves next

}
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Practice Problem (continued)

Given a configuration of tic-tac-toe, we want 
to determine if there is a winning/losing 
move of the next player.

Winning Move of 0: A move of 0 from which 
there is at least one way for 0 to win no 
matter how 1 plays.

Winning Move of 1 similarly defined
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Practice Problem (continued)

Example:  tic-tac-toe configuration

x1 = x3 = 0, x2 = x6 = 1,  Rest are -1
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x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 0

Winning move of 0: 
x7 = 00

Guaranteed win for 0 no matter how 1 plays



IIT Bombay

Practice Problem (continued)

Example:  tic-tac-toe configuration

x1 = x3 = 0, x2 = x5 = 1,  Rest are -1
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x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 0

No winning move of 0

Cannot guarantee win for 0 from any next move
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Practice Problem (continued)

Losing Move: A move from which there is 

at least one winning move of the opponent

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 22



IIT Bombay

Practice Problem (continued)

Example:  tic-tac-toe configuration

x1 = x3 = 0, x2  = 1,  Rest are -1
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x1 x2 x3

x6

x9x8x7

x4 x5

0

1

0 Next move: 1

Losing move of 1: 
x6 = 1

Winning move of 0 exists after this

1

0



IIT Bombay

Practice Problem (continued)

Useful Observation:
If 0 has a winning move from a configuration, 
then after this move is taken, 1 cannot have 
a winning move from the new configuration.

Similarly, with roles of 0 and 1 reversed.
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Practice Problem (continued)

Useful Observation:
If 0 has a losing move from a configuration, 
then after this move is taken, 1 has a 
winning move from the new configuration.

Similarly, with roles of 0 and 1 reversed.
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Practice Problem: Subproblem 2

Write mutually recursive C++ functions 
winMove and loseMove, 

such that each  takes as inputs 
(i) a configuration, and (ii) next player (0 or 1) 

and determines 
If next player has at least one winning move      

and
If all moves of next player are losing moves
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Practice Problem: Subproblem 3

If there is a winning move for the next player, 
winMove(…) should return the position for the 
winning move, else it should return -1

If all moves for the next player are losing 
moves, loseMove(…) should return true, else it 
should return false.
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Practice Problem (continued)

Recall example:  tic-tac-toe configuration

x1 = x3 = 0, x2 = x6 = 1,  Rest are -1
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x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 0

Winning move of 0: 
x7 = 0

0
winMove(0,1,0,-1,-1,1,-1,-1,-1,    0) returns 7
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Practice Problem (continued)

Example:  tic-tac-toe configuration

x1 = x3 = 0, x2 = x5 = 1,  Rest are -1
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x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 0

No winning move

winMove(0,1,0,-1,1,-1,-1,-1,-1,    0) returns -1
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Practice Problem (continued)

Recall example:  tic-tac-toe configuration

x1 = x3 = 0, x2 = x6 = 1,  Rest are -1

Dr. Deepak B. Phatak & Dr. Supratik Chakraborty, IIT Bombay 30

x1 x2 x3

x6

x9x8x7

x4 x5

0 1 0

1

Next move: 1

All moves of 1: 
Losing

0
loseMove(0,1,0,-1,-1,1,0,-1,-1,    1) returns true
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Practice Problem: Subproblem 3

int winMove(int x1, … int x9, int nextPlayer)
{   // Validate inputs

// Determine if winning move exists for
// nextPlayer

}
[Hint: Check if opponent has only losing 

moves after nextPlayer takes a move.
What are the termination cases?]
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Practice Problem: Subproblem 3

int loseMove(int x1, … int x9, int nextPlayer)

{   // Validate inputs

// Determine if all moves of nextPlayer

// are losing moves

}

[Hint: Check if opponent has a winning move 
for every next move of nextPlayer]
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