
B 2011

Generating Hierarchical State Based
Representation From Event-B Models

Dipak L. Chaudhari 1,2

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay,

Mumbai, India

Om P. Damani 3

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay,

Mumbai, India

Abstract

Many properties of a system may not be obvious just by a quick inspection of the correspond-
ing Event-B model. Users typically rely on animation, scenario analysis, and inspection of state
transition graphs for discovering certain behavior of the system. We propose a methodology for
generating a hierarchical representation of the system for visualising Event-B models. Our repre-
sentation is succinct and it provides multiple views to aid in better comprehension of the Event-B
models.

Keywords: Event-B, Model visualization, Hierarchical state based representation

1 Introduction

In Event-B, desired global properties of the system are specified in the form of invari-
ants and the invariant preservation proofs ensure that these properties are maintained
by the system after execution of any enabled event[1]. However, after execution of
an enabled event, it is not obvious which events will be enabled or disabled next.

1 This work was supported in part by the Ministry of Human Resources Development,
Government of India and by the Tata Research Development and Design Center (TRDDC).
2 Email: dipakc@cse.iitb.ac.in
3 Email: damani@cse.iitb.ac.in

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:dipakc@cse.iitb.ac.in
mailto:damani@cse.iitb.ac.in

Chaudhari and Damani

Users typically rely on animation, scenario analysis, and inspection of state transi-
tion graphs to grasp the behavioral aspects of the system. The ProB animator[9],
with the aid of a model checker, can generate graphical visualization of the state
space of a B machine. However, because of the flat (non-hierarchical) nature of the
ProB state space representation, it becomes difficult to reduce the complexity of the
state space graphs even after employing the state space reduction techniques[10]. In
general, hierarchical state transition diagrams are found to be useful in reducing the
complexity of the state transition diagrams [6].

We propose a hierarchical representation, similar to the statechart diagrams, for
visualising Event-B models. We present a top-down methodology for constructing an
abstract representation of desired granularity directly from the given Event-B model.

2 Hierarchical Abstract State Transition Machine

To represent a discrete event system, we use a Hierarchical Abstract State Tran-
sition Machine (HASTM) representation which uses the concepts of hierarchical
states and guarded transitions similar to those in statechart diagrams [6]. In
HASTM, state-space is arranged in the form of a tree (which we call a state-
space partition tree) and the root node of the tree represents all the valid states
of the system, i.e., the states defined by the conjunction of all the invariants.

INV

door_open=T door_open=F

dir_up=T dir_up=F

cf=topFloor cf<topFloor cf=botFloorcf > botFloor

Fig. 1: State-space partition tree for the Lift ex-
ample. The hierarchy relation is shown by dotted
arrow.

The root node is partitioned into
substates based on some predicate.
The substates are in turn partitioned
further using appropriate predicates.
Figure 1 shows the state-space par-
tition tree generated by our method
(Algorithm 1) for the Lift Event-B
model 4 shown in Figure 2, given
the predicates (cf = topF loor),
(cf = botF loor), (doorOpen = T),
and (dirUp = T). The algorithm
starts constructing the tree from the
root node and at each node selects a partitioning predicate that minimizes the number
of transitions in the generated HASTM. This reduces the complexity of the gener-
ated HASTM.While partitioning the tree, the algorithm also computes the pre-states,
transition guards, and the post states (defined in Section 2.1) for the transitions.
The final HASTM for the Lift model is shown in Figure 4.

2.1 Structure and Semantics of HASTM

If v denotes the variables of a system then the set Φ = {v|True} is the entire state
space of the system. We use the term abstract state to represent any subset of Φ and

4 The Lift Event-B model is adapted from the B model that comes with the ProB tool [9].

2

Chaudhari and Damani

Constants:
botF loor, topF loor
Variables:
cf , doorOpen, callbtns,
dirUp
Axioms:
botF loor ∈ Z, topF loor ∈ Z
botF loor < topF loor
Invariants:
doorOpen ∈ BOOL
callbtns ⊆

(botF loor..topF loor)
dirUp ∈ BOOL
(doorOpen = T)
⇒ (cf ∈ callbtns)

Init =̂
begin

cf := botF loor
doorOpen := F
callbtns := ∅
dirUp := T

end

PushCallBtn =̂
any f where

f ∈ topF loor..botF loor
f /∈ callbtns
f 6= cf

then
callbtns := callbtns ∪ {f}

end
OpenDoor =̂
when

doorOpen = F
cf ∈ callbtns

then
doorOpen := T

end
CloseDoor =̂
when

doorOpen = T
then

doorOpen := F
callbtns :=

callbtns\{cf}
end

MoveUp =̂
when

dirUp = T
doorOpen = F
upRequested
cf < topF loor
cf /∈ callbtns

then
cf := cf + 1

end
MoveDown =̂
when

dirUp = F
doorOpen = F
downRequested
cf > botF loor
cf /∈ callbtns

then
cf := cf − 1

end

ReverseUp =̂
when

dirUp = F
doorOpen = F
upRequested
¬downRequested
cf /∈ callbtns

then
dirUp := T

end
ReverseDown =̂
when

dirUp = T
doorOpen = F
¬upRequested
downRequested
cf /∈ callbtns

then
dirUp := F

end

Fig. 2. Event-B Model for the Lift Controller. upRequested stands for
∃c.(c ∈ Z ∧ c > cf ∧ c ∈ callbtns), downRequested stands for ∃c.(c ∈ Z ∧ c < cf ∧ c ∈ callbtns),T
stands for T rue, and F stands for F alse.

the term concrete state or just state to represent a particular element of Φ. 5

Abstract states are usually specified using predicates. If Q(v) is a predicate with
free variables in v then we represent by Q the set of all concrete states satisfying
Q(v), i.e., Q = {v|Q(v)}. If a system is in a concrete state q, and q ∈ Q where Q is
an abstract state then the system is said to be in the abstract state Q.

HASTM is a tuple H = 〈v,S,�, Σ, T, t0〉 , where
• v denotes the variables of the system.
• S is a finite set of abstract states. S ⊆ P(Φ) where Φ is the set of all the states of
the system.

• � is a hierarchy relation on S that satisfies the following conditions
· For any two abstract states X and Y in S, X � Y ⇒ X ⊇ Y .
· There exists a unique abstract state r ∈ S , called the root state ofH and denoted
as root(H), such that r /∈ ran(�), where ran(�) is the range of the relation �.
· For every X ∈ S \ {root(H)}, there exists a unique abstract state Y ∈ S such
that Y � X. Y is called the immediate superstate of X, whereas X is called an
immediate substate of Y . An abstract state without any immediate substate is
called a basic abstract state.
· If X is a non-basic abstract state in S and W is a set of all immediate substates
of X then W partitions the set X. i.e., all the immediate substates of X are
collectively exhaustive (

⋃
(W) = X) and any two distinct immediate substates

of X are mutually exclusive. (∀A∀B).A ∈ W ∧B ∈ W ⇒ A = B ∨ A ∩B = ∅)

5 The terms abstract state and concrete state should not be confused with the terms abstract
model and concrete model which are used in context of refinements.

3

Chaudhari and Damani

• Σ denotes set of event signatures. An event signature consists of an event name
and event parameters.

• T is a 5-ary transition relation. Each element of t of T represents a transition in
H. We refer the elements of 5-tuple t as t.Evt, t.Pre, t.K, t.Act and t.Post, where
· t.Evt ∈ Σ is an event signature, t.Pre ∈ S is the pre-state (originating abstract
state) of the transition, t.K(v, u) is a transition guard predicate (where u are the
event parameters of t.Evt), t.Post ∈ S is the post-state (target abstract state) of
the transition, and t.Act is the transition action for the event t.Evt. Transition
action is a simultaneous assignment to the variables of the system.
· For any two transitions t1 and t2, if t1.Evt = t2.Evt then

t1.P re(v) ∧ t1.K(v, u)⇒ ¬ (t2.P re(v) ∧ t2.K(v, u)) (1)

where u are the parameters of event t1.Evt (and t2.Evt). Motivation for this
condition is given at the end of this subsection.

• t0 is a 5-tuple 〈t0.Evt, t0.P re, t0.K, t0.Act, t0.Post〉 representing the init transition,
where t0.Evt is the init event, t0.P re is a pseudo-state that represents the pre-state
of t0, the transition guard t0.K is True, Act0 is the initialization action, and S0 ∈ S
is the initial abstract state.

Transition t is represented as {t.Pre} t.Evt(u)[t.K(v,u)]/t.Act−−−−−−−−−−−−−−→ {t.Post} where u are the
parameters of Evt. If the system is in the abstract state t.Pre and also satisfies the
transition guard t·K(v, u), then the transition t is said to be enabled. A transition
can take place only when it is enabled. If the transition t is enabled and it occurs
then after the execution of t.Act , the system moves to the abstract state t.Post.
This behavioral semantics of a transition in HASTM is captured in the following
proof obligation.

t.Pre(v) ∧ t.K(v, u) ∧BA(v, u, v′) ` t.Post(v′)

where BA(v, u, v′) is the before-after predicate of the action t.Act. The init tran-
sition initializes the system to the initial abstract state S0 and is represented as
init[T rue]/Act0−−−−−−−−−→ {S0}. Proof obligation for the init transition is A(v′) ` S0(v′) where A

is the after predicate of the action Act0.
Condition in Equation 1 in the HASTM definition ensures that two transitions

corresponding to same event are not enabled for a given state and event parameters.

2.2 Representing Event-B Machine as a HASTM

Let M be an Event-B machine, v be its variables, and I(v) be the invariants. Let Em

be the event denoted by “any u where Gm(v, u) then v : |BAm(v, u, v′) end” where
Gm(v, u) is the guard and BAm(v, u, v′) is the before-after predicate corresponding to
the action Actm of event Em. Let A(v′) be the after predicate for the init event.(We
adapt the notation from [1])

HASTM H : 〈v,S,�, Σ, T, t0〉 is a representation of the Event-B machine M if

4

Chaudhari and Damani

(i) variables v and event signatures Σ in H are the same as the variables and event
signatures in M .

(ii) root(H)⇔ I(v).
(iii) For any transition t in H, the action t.Act is the same as the action of event

t.Evt in M . The action of the init transition in H is the same as the action of
the init event in M .

(iv) Let t1, t2, . . ., tk be the transitions in H corresponding to an event Em in M

(i.e. ti.Evt = Em for i ∈ 1..k) then

I(v) ∧Gm(v, u)⇔
∨

i∈1..k

(ti.P re(v) ∧ ti.K(v, u)) (2)

Condition in Equation 2 along with the condition in Equation 1 imply that
event Gm is enabled in M if and only if there is a single enabled transition t in
H with t.Evt = Gm.
The HASTM representation is for a specific Event-B model in the Event-

B refinement chain. Each Event-B model in the refinement chain will have
a separate HASTM representation. In this work, we do not establish a link
between HASTM representations corresponding to abstract and concrete Event-
B models.

3 Generating HASTM from Event-B Machine

We first explain the process for generating a HASTM interactively and then present
an algorithm for automatically generating a HASTM from a given Event-B machine.

Let t be a transition in H and X be a substate of t.Pre. Transition t is said to be
exclusively enabled in X if t.Pre(v) ∧ t.K(v, u)⇒ X(v) where u are the parameters
of t.Evt.

Consider a transition t : {t.Pre} t.Evt(u)[t.K(v,u)]/t.Act−−−−−−−−−−−−−−→ {t.Post} in H. Partitioning
t.Pre with predicate p(v) generates two immediate substates of t.Pre viz. X1 :
t.Pre(v) ∧ p(v) and X2 : t.Pre(v) ∧ ¬p(v). If t is exclusively enabled in either X1 or
X2 then t is said to be amenable to partitioning of t.Pre with respect to p(v).

3.1 Interactive Generation of HASTM

We first define a Primitive HASTM representation of an Event-B machine which is
a very simple HASTM with a single abstract state I. Consider the Event-B machine
M described in Section 2.2. Let r be the number of events in M .
Primitive HASTM of M is a HASTM with the same variables and event signatures
as those of M , a single abstract state I, and the following transitions.
init[T rue]/Act0−−−−−−−−−→ {I} and {I} Ei[Gi]/Acti−−−−−−−→ {I} for i from 1 to r.

The proof obligations for all the transitions in the primitive HASTM are the
same as those of M . It is easy to verify that Primitive HASTM of M satisfies the
conditions mentioned in section 2.2, and hence represents M .

5

Chaudhari and Damani

To generate a HASTM of desired granularity, we start with a primitive HASTM
of the given Event-B machine and then successively partition the basic abstract states
and modify the transitions according to the following procedure.
Process for partitioning a basic abstract state X.

(i) Partitioning: Select a partitioning predicate p(v) and partition the abstract
state X into two substates X1 : X(v) ∧ p(v) and X2 : X(v) ∧ ¬p(v).

(ii) Modify the pre-state:
For any transition t:{X} E(u)[K(v,u)]/Act−−−−−−−−−−→ {.} originating from X, there are two
possibilities.
(a) t is exclusively enabled in X1: In this case, we strengthen the pre-state of

t to X1. If the transition guard K(v, u) has p(v) as a conjunct, remove
it from K(v, u) since it is redundant now as X1 already has the conjunct.
The transition now becomes t:{X1}

E(u)[K′(v,u)]/Act−−−−−−−−−−−→ {.} where K ′(v, u) is
the predicate obtained after removing the conjunct p(v) from K(v, u).

(b) t is exclusively enabled in X2: This case is symmetric to case a.
(c) t is exclusively enabled in neither X1 nor in X2: We have two choices in

this case.
• In place of the transition {X} E(u)[K(v,u)]/Act−−−−−−−−−−→ {.}, create two new transi-
tions : {X1}

E(u)[K(v,u)]/Act−−−−−−−−−−→ {.} and {X2}
E(u)[K(v,u)]/Act−−−−−−−−−−→ {.}

• Keep the transition as it is {X} E(u)[K(v,u)]/Act−−−−−−−−−−→ {.}. This is the default
option in the automatic HASTM generation algorithm (to be discussed in
Section 3.2). We choose this option in Algorithm 1 to prevent the number
of transitions from increasing.

(iii) Strengthen the post-state: Strengthen the post-state of all the affected tran-
sitions (transitions whose pre-state has changed in step c and the transitions
whose post-state has been partitioned in step i).
Consider transition t : {.} E(u)[K(v,u)]/Act−−−−−−−−−−→ {Y } whose post-state is Y . Let Y ′ be
the immediate substate of Y that already exists in the state-space partition tree.
If the proof obligation for {.} E(u)[K(v,u)]/Act−−−−−−−−−−→ {Y ′} is discharged then strengthen
the post-state of the transition to Y ′. Now with Y ′ as the new post state, we
repeat the above step till we fail to discharge the proof obligation or we reach a
basic abstract state. The algorithm is given in function strengthenPostState in
Algorithm 1.

Example:
Consider the Lift Event-B model given in Figure 2. We start with a primitive

HASTM which has a single abstract state I , transitions: {I} Ei[Gi]/Acti−−−−−−−→ {I} for i

from 1 to 7, and an init transition init[T rue]/Act0−−−−−−−−−→ {I}. Invariants I and the events are
as shown in Figure 2.

We now show how the transitions corresponding to events MoveUp and
CloseDoor are modified after the partitioning of the root abstract state I.

6

Chaudhari and Damani

• We use the predicate p=̂(dirUp = T) for partitioning the abstract state I into two
immediate substates (I ∧ p) and (I ∧ ¬p)

• Consider the transition in primitive HASTM corresponding to the event MoveUp.

{I}

MoveUp

[
(dirUp = T) ∧ (cf /∈ callbtn) ∧ upRequested∧

(cf < topF loor) ∧ (doorOpen = F)

]
/cf :=cf+1

−−→ {I}
Since the primitive HASTM has a single abstract state I, pre-state as well as post-
state of the transition is I. Pre-state I and the transition guard imply (dirUp = T)
and hence I∧(dirUp = T). This transition is exclusively enabled in I∧(dirUp = T)
and hence amenable to partitioning of the abstract state I with predicate (dirUp =
T). As per step a, we strengthen the pre-state of the transition to I ∧ (dirUp = T)
and weaken the transition guard by removing the conjunct (dirUp = T). The
modified transition is

{I ∧ (dirUp = T)}

MoveUp

[
(cf /∈ callbtn) ∧ upRequested∧

(cf < topF loor) ∧ (doorOpen = F)

]
/cf :=cf+1

−−−→ {I}

• Now we try to strengthen the post-state of the transition to one of the sub-states
of the current post-state I. The proposed transition is

{I ∧ (dirUp = T)}

MoveUp

[
(cf /∈ callbtn) ∧ upRequested∧

(cf < topF loor) ∧ (doorOpen = F)

]
/cf :=cf+1

−−−→ {I ∧ (dirUp = T)}
Proof obligation for this transition is discharged successfully. Hence, we strengthen
the post-state of the transition to I ∧ (dirUp = T).

• We now consider the transition in primitive HASTM corresponding to the Close-
Door event.

{I}
CloseDoor [doorOpen = T] /doorOpen := F ; callbtns := callbtns\{cf}
−−→ {I}

For this transition, pre-state I along with the transition guard (doorOpen = T)
neither imply (dirUp = T) nor imply (dirUp = F). Hence this transition is not
amenable to partitioning of I with predicate (doorOpen = T). According to step c,
we now have two choices: i) Do not modify the transition ii) Split the transition
into two new transitions. Here we opt for the later choice and create two new
transitions as follows.

{I ∧ dirUp = T}

CloseDoor [doorOpen = T] /
doorOpen := F ;

callbtns := callbtns\{cf}
−−−→ {I}

{I ∧ dirUp = F}

CloseDoor [doorOpen = T] /
doorOpen := F ;

callbtns := callbtns\{cf}
−−−→ {I}

• The post-states of both these transitions can be strengthened as follows after ver-
ifying the corresponding proof obligations.

{I ∧ dirUp = T}

CloseDoor [doorOpen = T] /
doorOpen := F ;

callbtns := callbtns\{cf}
−−−→ {I ∧ dirUp = T}

{I ∧ dirUp = F}

CloseDoor [doorOpen = T] /
doorOpen := F ;

callbtns := callbtns\{cf}
−−−→ {I ∧ dirUp = F}

7

Chaudhari and Damani

dirUp=T dirUp=F

INV

Fig. 3. HASTM representation of the Lift Event-B machine generated interactively by using par-
titioning predicate (dirUp = T).

Following the above procedure for all the transitions, we get a HASTM as shown in
Figure 3. We can further partition a basic abstract state with another predicate and
continue the process.

3.2 Automatic Generation of HASTM

Algorithm 1 automatically generates a HASTM from a given Event-B machine and
a set of partitioning predicates. Algorithm 1 is similar to the interactive genera-
tion algorithm, except that basic abstract states are recursively partitioned and the
partitioning predicate is automatically selected from the given set of predicates.

We start with a primitive HASTM of M and then recursively partition the ab-
stract state I. At each basic abstract state in the state-space partition tree, further
partitioning predicate is selected to maximize the number of events amenable to par-
titioning with the selected predicate. This allows us the strengthen pre-state of these
events without any increase in the number of transitions in the generated HASTM.

We define a score function that assigns each partitioning predicate p with the
number of transitions that are amenable to partitioning X with p (Refer function
SelectPredicate from Algorithm 1). Figure 4 shows a HASTM representation of the
Lift Event-B machine generated by Algorithm 1 given the partitioning predicates
(cf = topF loor), (cf = botF loor), (doorOpen = T), and (dirUp = T). The score
function for the abstract state I is score = {(doorOpen = T) 7→ 6, (dirUp = T) 7→
4, (cf = topF loor) 7→ 2, (cf = botF loor) 7→ 2}. We select the predicate (doorOpen =
T) that has maximum score for partitioning the abstract state I. We repeat this
process for the sub-states till all the predicates are utilized while creating that abstract
state or score of all the given predicates is zero.

For the selected partitioning predicate if there are events not amenable to parti-
tioning then we decide not to strengthen the pre-state. This choice is not required
as per the definition of HASTM. However, we choose this option in the automatic
generation algorithm to prevent the number of transitions from increasing. The
procedure for partitioning and pre-state strengthening is implemented in functions

8

Chaudhari and Damani

Global Variables:
Input Variables:
M : Event-B machine with r events
P : set of partitioning predicates

Output: HASTM H = 〈v,S,�, Σ, T, t0〉

function Main()
BuildPrimitiveHASTM()
PartitionAbstractState(I)
for transition t in T

StrengthenPostState(t)
StrengthenPostState(t0)

function BuildPrimitiveHASTM()
v := variables of M
Σ := Event signatures of M
I := Conjunction of invariants of M
S := {I}
� : = ∅
T := {〈Evt : Em, P re : I, K : Gm,

Act : Actm, P ost : I〉|m ∈ 1..r}
t0 := 〈Evt : init, P re : Null,

K : T rue, Act : Act0, P ost : I〉
function PartitionAbstractState(X:
abstract state)

p : =SelectPredicate(X)
if p = Null

return
X1:= AddSubState(X, p)
X2:= AddSubState(X,¬p)
PartitionAbstractState(X1)
PartitionAbstractState(X2)

function AddSubState(X: abstract
state, q: predicate)

X ′(v) := X(v) ∧ q(v)
S := S ∪ {X ′}
�:=� ∪{X 7→ X ′}
for t in T such that t.P re = X

if (X(v) ∧ t.K(v, u)⇒ q(v))
t.P re := X ′

t.K = K′ where K′ is the
predicate obtained
after removing
conjuct q(v) from t.K
if it exists.

return X ′

function SelectPredicate(X: abstract state)
score := ∅ //score ∈ P → N
for p in P

if X(v) already has conjuct p(v) or ¬p(v)
continue

eT :=

{
t ∈ T

∣∣∣∣∣ t.P re = X and t is amenable
to partitioning of X with p

}
score(p) := |eT |

if score = ∅
return Null

bestP red :∈ argmaxp score(p)
if score(bestP red) = 0

bestP red := Null
return bestP red

function StrengthenPostState(t: transition)
Y = {Y ∈ S|t.P ost � Y }
if Y = ∅ //t.P ost is a basic abstract state

return
for Y in Y

if

 proof obligation for

{t.P re} t.Evt[t.K]/t.Act−−−−−−−−−−→ {Y }
is discharged


t.P ost := Y
strengthenPostState(t)
break

return

Algorithm 1. Algorithm for generating HASTM representation from an Event-B machine given
a set of partitioning predicates.

PartitionAbstractState and AddSubState in Algorithm 1. The number of transitions
in the HASTM generated by Algorithm 1 always equals the number of events in the
Event-B model.

After the complete state-partition tree is ready and pre-state of all the transitions
is strengthened to appropriate abstract states, we strengthen the post-states of all
the transitions. Refer function StrengthenPostState in Algorithm 1 for details.

After the automatic generation of a HASTM, user can further modify the repre-
sentation by employing the interactive algorithm and partition the basic states with
different predicates.

9

Chaudhari and Damani

INV

dirUp = FdirUp = T

doorOpen=F

doorOpen=T

cf = botFloor

cf=topFloor

cf < topFloor

cf > botFloor

Fig. 4. HASTM representation of the Lift Event-B machine generated by Algorithm 1 given the
partitioning predicates (cf = topF loor), (cf = botF loor), (doorOpen = T), and (dirUp = T).

INV

dirUp = FdirUp = T

CloseDoor
OpenDoor

doorOpen=F

cf>botFloor

cf<topFloor

MoveUp

MoveUp

MoveDown

MoveDown

ReverseDown

ReverseDown

ReverseUp

ReverseUp

doorOpen=T

cf=topFloor

cf<topFloor

cf=botFloor

cf=topFloor

cf>botFloor

cf=botFloor

P
ushC

allB
tn

Init

Fig. 5. An alternate HASTM representation of the Lift Event-B machine. At node (dirUp = T),
we interactively choose the partitioning predicate (cf = botF loor). Transition guards and actions
are not shown in the figure and are the same as in Figure 4 for all the events.

3.3 Multiple Views

In the HASTM shown in Figure 4, the automatic HASTM generation algorithm has
not partitioned the node (doorOpen = T) since score of all the predicates is zero.
Partitioning with any of the given predicates would not have allowed us to strengthen
the pre-state of the CloseDoor transition without splitting it.

Although the automatic generation algorithm avoids generating multiple transi-
tions for a single event, user can force selection of different predicate resulting in a
different state-space partition tree. For example, at node (dirUp = T) in Figure 4, if
we choose the predicate (cf = botF loor) instead of (cf = topF loor), we get a different
representation as shown in Figure 5. This partitioning has increased the complexity
of the HASTM representation since two transitions are generated for the MoveUp

event. However, this is sometimes desirable since multiple HASTM representations
highlight different aspects of the system.

Note from Figure 4 that after execution of OpenDoor event, all other events
except CloseDoor and PushCallBtn are disabled. This property might not be clear
from the Event-B machine. Another property that ReverseUp event is disabled when
(cf = topF loor) is not clear from the Event-B model. Guard of the ReverseUp event
together with the invariants imply (cf < topF loor). This fact is not clear even in the

10

Chaudhari and Damani

HASTM in Figure 4 since the abstract state (dirUp = F) is not partitioned with the
predicate (cf = topF loor). However, if we partition the state-space differently as in
the HASTM shown in Figure 5, it becomes clear that ReverseUp is only enabled in
abstract states with (cf < topF loor).

4 Related and Future Work

A lot of work has been done [8,11,12,13] on deriving formal B models from the speci-
fications in visual representations(mostly UML). Our approach is the reverse of this.
We start from an existing Event-B model and build multiple visual representations
that focus on different behavioral aspects of the system.

In [5], a method for specifying structured models is presented and its use for
sequential program development is demonstrated. This approach is especially useful
for modeling of problems that require sequential ordering of events. The algorithm
presented in this work can be used to extract structure out of the Event-B models
in which abstract program counters are used to achieve ordering of events. For such
models, predicates involving the program counters are the natural choices for the
partitioning predicates. Although, in this paper, we only consider binary partitioning
of the state-space, the approach can easily be extended to multi-ary partitioning.

In [7], three techniques based on animation and proof are presented for con-
structing state transition diagrams. The work proposes to associate the states of the
diagram with abstract invariants in order to reduce the number of states to a finite
one. The ProB tool [9] can generate state-space graph of a B machine by traversing
the state-space of the machine. However, for most models, complete state-space is
not explored. Also, for larger state-spaces these graphs become very complex. In [10],
two algorithms for reducing the complexity of the state-space graphs are presented
making it possible to visualise larger state spaces. However, the transitions in the
state-space graphs are not labeled with predicates. In [2], flow graph is derived from
an Event-B model which is very useful for uncovering implicit algorithmic structures.
Flow graph does not employ hierarchical states and can get very complex as the num-
ber of events in the model increase. In HASTM, complexity of the representation
can be maintained to a comprehensible level by selective partitioning of hierarchical
abstract states. However, sometimes getting the right perspective might need human
intervention in selecting the right partitioning predicates.

The work in [3,4] presents a method and a tool (GeneSyst) to build symbolic
labeled transition systems from Event-B specifications. GeneSyst system requires the
invariants associated with the states in the transition system to be specified by the
user. GeneSyst system supports refinements of the models. HASTM has hierarchical
states but more work is needed to establish a link between HASTM corresponding
to the abstract and concrete Event-B models in the refinement chain.

In this work, we partition the global state-space of the Event-B machine. We
would like to explore the partitioning of the local state-space defined by the event
parameters. Having developed the basic concept of a HASTM and an algorithm for

11

Chaudhari and Damani

automatic generation of a HASTM from an Event-B model, we now plan to implement
this algorithm and try out this visualisation technique on various Event-B models.

5 Conclusions

In this work, we present a methodology for visualising Event-B models by using
Hierarchical State Transition Machines (HASTM). We specify the conditions that a
HASTM should satify in order to represent an Event-B machine. We then present
an algorithm for automatic generation of a HASTM representation from a given
Event-B model and a set of partitioning predicates. With the help of examples, we
demonstrate that multiple HASTM representations aid in grasping certain behavioral
aspects of the systems.

References
[1] Jean-Raymond Abrial. Modeling in Event-B : system and software engineering. Cambridge

University Press, Cambridge, New York, 2010.

[2] Jens Bendisposto and Michael Leuschel. Automatic flow analysis for Event-B. In
Dimitra Giannakopoulou and Fernando Orejas, editors, Fundamental Approaches to Software
Engineering, volume 6603 of Lecture Notes in Computer Science, pages 50–64. Springer Berlin
/ Heidelberg, 2011. 10.1007/978-3-642-19811-3_5.

[3] Didier Bert and Francis Cave. Construction of finite labelled transistion systems from B
abstract systems. In Proceedings of the Second International Conference on Integrated Formal
Methods, IFM ’00, pages 235–254, London, UK, 2000. Springer-Verlag.

[4] Didier Bert, Marie-Laure Potet, and Nicolas Stouls. GeneSyst: a tool to reason about
behavioral aspects of B event specifications. application to security properties. CoRR,
abs/1004.1472, 2010.

[5] Stefan Hallerstede. Structured Event-B models and proofs. In Marc Frappier, Uwe Glässer,
Sarfraz Khurshid, Régine Laleau, and Steve Reeves, editors, Abstract State Machines, Alloy,
B and Z, volume 5977 of Lecture Notes in Computer Science, pages 273–286. Springer Berlin
/ Heidelberg, 2010. 10.1007/978-3-642-11811-1_21.

[6] David Harel. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[7] A. Idani and Y. Ledru. Dynamic graphical UML views from formal B specifications.
Information and Software Technology, 48(3):154–169, 2006.

[8] Hung Ledang and Jeanine Souquières. Contributions for modelling UML State-Charts in B.
In Proceedings of the Third International Conference on Integrated Formal Methods, IFM ’02,
pages 109–127, London, UK, UK, 2002. Springer-Verlag.

[9] Michael Leuschel and Michael Butler. ProB: a model checker for B. In FME 2003: FORMAL
METHODS, LNCS 2805, pages 855–874. Springer-Verlag, 2003.

[10] Michael Leuschel and Edd Turner. Visualising larger state spaces in pro B. In ZB 2005:
Formal Specification and Development in Z and B, volume 3455 of Lecture Notes in Computer
Science, pages 6–23. Springer Berlin / Heidelberg, 2005.

[11] Emil Sekerinski and Rafik Zurob. Translating statecharts to B. In Proc. of the 3rd International
Conference on Integrated Formal Methods (IFM’02), volume 2335 of LNCS, pages 128–144.
Springer-Verlag, 2002.

[12] Colin Snook and Michael Butler. UML-B: formal modeling and design aided by UML. ACM
Transactions on Software Engineering and Methodology, 15(1):92–122, 2006.

[13] Colin Snook and Michael Butler. UML-B and Event-B: an integration of languages and tools.
In Proceedings of the IASTED International Conference on Software Engineering, SE ’08, pages
336–341, Anaheim, CA, USA, 2008. ACTA Press.

12

	Introduction
	Hierarchical Abstract State Transition Machine
	Structure and Semantics of HASTM
	Representing Event-B Machine as a HASTM

	Generating HASTM from Event-B Machine
	Interactive Generation of HASTM
	Automatic Generation of HASTM
	Multiple Views

	Related and Future Work
	Conclusions
	References

