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Abstract 
 

We describe a system for converting English 

sentences into expressions of an interlingua called 

Universal Networking Language (UNL). UNL 

represents knowledge in form of semantic network, 

where nodes represent concepts and links represent 

semantic roles between concepts. UNL nodes also 

contain semantic attributes like number, tense, aspect, 

mood, negation etc. Our system uses a lexicalized 

probabilistic parser to get the typed dependency tree 

and the phrase structure tree for a given English 

sentence. The system then converts dependency 

relations into UNL relations and attributes based on 

the POS tags of the words involved in the relation, and 

their semantic attributes obtained from the Princeton 

Wordnet. UNL hypernodes called scopes are generated 

by considering the relative positions of the words in 

the phrase structure tree. Correct handling of UNL 

scopes is a distinctive aspect of our work. We are not 

aware of any other enconversion system that attempts 

generating scopes, which are essential for the eventual 

deconversion of the UNL into some other natural 

language. We measure the accuracy of our system by 

computing the BLEU score on the Hindi sentences 

generated from the UNL. On 60 sentences taken from a 

real life agricultural corpus, we achieve a BLEU score 

of .26 compared to a BLEU score of .33 for the 

manually generated UNLs, showing the promise of our 

approach. 

 

1. Introduction 
In interlingua based machine translation, a source 

language sentence, is transformed into a language 

independent interlingual representation. A target 

language sentences is then generated out of the 

interlingual representation. Given N languages, this 

method requires N enconversion and N Deconversion 

modules compared to N
2
 modules needed in the normal 

analysis, transfer, and generation approach [4].  

Universal Networking Language [1] is a relatively 

new interlingua which was proposed in mid 90s and 

was undergoing revisions till 2005. The process of 

converting a source language (natural language) 

expression into the UNL expression is referred to as 

“enconversion”. The process of converting UNL 

expressions into a target language representation is 

called “deconversion”.  

 

2. UNL Structure 
UNL is composed of three main elements: Universal 

Words (UWs), relations, and attributes. UWs are inter-

linked with other UWs to form a UNL expression 

corresponding to a natural language sentence. These 

links, called relations, specify the role of each word in 

a sentence. UWs can also be annotated with attributes 

like number, tense, etc., which provide further 

information about how the concept is being used in the 

specific sentence. Of special significance is the @entry 

attribute, typically attached to the main predicate. 

Consider the English sentence below in Example 1, 

and its UNL expression. A visual representation of this 

UNL expression is given in Figure 1. 
 

Example 1: John worked specially for the social fund.  

[UNL] 
agt(work(agt>human).@past.@entry, John(iof>person)) 

man(work(agt>human).@past.@entry, specially) 

pur(work(agt>human).@past.@entry, fund(icl>money)) 

mod(fund(icl>money), social(aoj>thing)) 

[/UNL] 

 
 

 

Figure 1: UNL graph for Example 1 

 

Here agt (agent), man (manner of the action), pur 

(purpose) and mod (modifier) are the UNL relations. 

work(agt>human), specially, fund(icl>money) etc. are 
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the Universal Words. These UWs have restrictions 

mentioned in parentheses for the purpose of denoting a 

unique sense. Here icl stands for inclusion and iof 

stands for instance of.  

 

2.1. UNL Scopes 
UNL represents coherent sentence parts (like 

clauses and phrases) through Compound UWs, also 

called scope nodes. These scope nodes are like graphs 

within graphs. These sub graphs have their own 

environment and the @entry node. UNL graph for the 

sentence in Example 2 is given in the Figure 2.  

 
Example 2: Funding for the first stage will be provided by 

government administrations and corporate sponsors.  

 

The phrase “government administrations and 

corporate sponsors” is considered as being within a 

scope. The scope is given a compound UW ID:03 to 

denote a separate environment of knowledge 

representation. The information for number, tense, 

aspect, mood, negation, etc., are represented using 

UNL attributes while gender and language specific 

morphological attributes like- vowel ending of nouns, 

adjectives, verbs, etc., are stored in the UNL-Target 

language dictionary.  

 

 
Figure 2: UNL graph for Example 2 

 

2.2. Our System 
In this paper we present our work on Enconverter 

for English. Our system uses a lexicalized probabilistic 

parser to get the typed dependency tree and the phrase 

structure tree for a given English sentence. The system 

then converts dependency relations into UNL relations 

and attributes based on the POS tags of the words 

involved in the relation, and their semantic attributes. 

UNL hypernodes called scopes are generated by 

considering the relative positions of the words in the 

phrase structure tree. Correct handling of UNL scopes 

is a distinctive aspect of our work. We are not aware of 

any other enconversion system that attempts generating 

scopes, which are essential for the eventual 

deconversion of the UNL into some natural language 

sentence. 

The motivation for our work comes from [2] which 

used the concept of Semantically Relatable Set (SRS). 

We recognized that the information obtained from SRS 

can be simply obtained by using a dependency parser. 

Unlike SRS, dependency parsing is an active area of 

research, and hence we can benefit from the efforts of 

other researchers in the field. Since several dependency 

parsers are publicly available, we decided to opt for the 

dependency parsing route. Still, our rule formats are 

very much inspired by the rule formats in [2]. 

 

3. Related Work 
The UNDL Foundation provides a Universal 

Parser[2] that takes an annotated natural sentence as 

input and generates a UNL graph as output. The 

annotations required are the UNL attributes and 

relations. Hence, in effect, it takes a linearized UNL 

graph and delinearizes it. Thus, this parser merely 

reduces the problem of generating UNL graph to that 

of generating linearized graphs. 

Other than Semantically Relatable Sequence (SRS)  

based approach presented in [2] and [8], hardly any 

public information exist on Enconversion. A 

semantically relatable sequence (SRS) of a sentence is 

a group of words in the sentence, not necessarily 

consecutive, that appear in the semantic graph of a 

sentence as linked nodes. For example consider the 

sentence, “The professors made comments on the 

paper.” Some of the SRSes for this sentence are (made, 

comments), (professors, made), (comments, on, paper). 

In this approach English text is first converted into 

SRS, and then SRS is converted to UNL. 

 

4. Architecture of our English to UNL 

Enconverter 
The architecture of our system is shown in Figure 3. 

English to UNL enconversion process consist of six 

phases. Out of these phases parsing is done by the 

Stanford Parser [5]. Stanford Parser gives two types of 

parse trees: phrase structure tree and dependency tree. 

These parse trees are converted into UNL expressions 

by using rule bases. Before describing each of the six 

phases in detail we will first describe the Stanford 

Parser.  

 

4.1. Parsing 
In Stanford Parser, both semantic (lexical 

dependency) and syntactic (PCFG: probabilistic 

context free grammar) structures are scored with 



separate models. It produces two types of parse trees: 

phrase structure tree and dependency tree. A typed 

dependency parse represents dependencies between 

individual words in a sentence with grammatical 

relations as labels, such as subject or object. Stanford 

Parser generates typed dependency parse tree from the 

phrase structure parses. An example is given next. 

Consider the sentence in Example 3, its output phrase 

structure tree (bracketed form), and the typed 

dependency parse tree. First word in each grammatical 

relation is the head and the second word is dependent. 

Each word is given a unique number.  

 
Example 3: This will reduce the spread of germs and 

contagious diseases. 

 

Phrase Structure Parse 

(ROOT 

  (S 

    (NP (DT this)) 

    (VP (MD will) 

      (VP (VB reduce) 

        (NP 

          (NP (DT the) (NN spread)) 

          (PP (IN of) 

            (NP 

              (NP (NNS germ)) 

              (CC and) 

              (NP (JJ contagious)  

                (NNS disease))))))) 

    (. .))) 

 

Dependency Parse 

nsubj(reduce-3, this-1) 

aux(reduce-3, will-2) 

det(spread-5, the-4) 

dobj(reduce-3, spread-5) 

prep_of(spread-5, germ-7) 

amod(disease-10, contagious-9) 

conj_and(germ-7, disease-10) 
 

Forty-eight grammatical relations used in Stanford 

Parser are arranged in a hierarchical manner, rooted 

with the most generic relation as dep (dependent).  

When the relation between a head and its dependent 

can be identified more precisely, relations further down 

in the hierarchy can be used. For example dep 

(dependent) relation can be specialized to aux 

(auxiliary), conj (conjunct), or mod (modifier).  

 

4.2. Preprocessing multi-word prepositions 
For multi-word prepositions like “according to”, 

Stanford Parser does not give correct dependency parse 

as output. So we first identify these multi-word 

prepositions by looking in the list of multi-word 

prepositions obtained from [2], then clubbing them and 

giving a tag IN (Preposition or subordinating 

conjunction
 
). Input sentence “Fertilizers should be 

given according to the soil examination.” will be 

preprocessed and input to the parser will be 

“Fertilizers should be given according-to/IN the soil 

examination.” This is allowed because Stanford Parser 

can take partially POS-Tagged input. 

 

4.3. Parse Tree Post Processing 
While multi-word prepositions needed 

preprocessing because parser could not handle it 

correctly, certain post processing is also needed even 

with a correct parse tree because of multi-word nouns, 

phrasal verbs etc. In this phase some modification 

takes place on dependency parse of the sentence. Some 

of these modifications are as follows: 

 

4.3.1. Multi-Word Nouns: Stanford Parser itself 

recognizes multi-word nouns and produces nn 

grammatical relation for them. Since in UNL, proper 

nouns form a single UW, we club parts of proper 

nouns together by looking at the POS tag of the word 

in nn relations. If both are NNP (Proper noun), then 

they will be clubbed together to give a single word. As 

shown in the Example 4, in the dependency parse, 

there is a grammatical relation “nn(Singh-2, Udai-1)”. 

And both the word Singh and Udai are tagged as 

proper noun (NNP) in the phrase structure parse. So 

they will be clubbed together to get a single word 

‘Udai Singh’.  For common noun multi-word, a lookup 

is performed in wordnet. If the multi-word is present in 

the wordnet then we club them.  
 
Example 4: Udai Singh and his family had wisely moved to 

the safety of the nearby hills. 

 

Parts of Dependency Parse 
nn(Singh-2, Udai-1) 

nsubj(move-8, Singh-2) 

 

Modified Dependency Parse 
nsubj(move-8, Udai Singh-2) 

 
4.3.2. Phrasal Verbs: Parser produces prt grammatical 

relation for phrasal verbs. So we club them together to 

give a single word. As shown in the Example 5 below, 

there is a grammatical relation prt between pick and 

up. So we club them to get a phrasal verb ‘pick up’.  
 
Example 5: He picked up the book cheerfully. 

 

Dependency Parse 
nsubj(pick-2, he-1) 

prt(pick-2, up-3) 

 

Modified Dependency Parse 
nsubj(pick up-2, he-1)



Figure 3 English->UNL Encoverter Architecture  

 

 

 

 

Aux String Type UNL Attributes 

MD will VB Simple .@future 

VBZ have VBN be VBN Simple .@present.@complete.@passive 

VBZ have VBN be VBN Interrogative .@interrogative.@present.@complete.@passive 

Table 1 Syntax of Auxiliary Conversion Rules 

 

 

 

 

Grammatical 

Relation 

Head Word 

Attributes 

Dependent 

Word 

Attributes 

Head 

Word 

Dependent 

Word 

UNL 

Relation 

UW1 UW2 UW1 

Attributes 

UW2 

Attributes 

prep_in - :PLACE - - plc 1 2 - - 

prep_in VB :ABS - - scn 1 2 - - 

prep_in VB :TIME - - tim 1 2 - - 

conj_but - - - - and 1 2 @contrast - 

xcomp VB:Intransitive - - - pur 1 2 - - 

nsubj VB:UnErgBe - - - aoj 1 2 - - 

nsubj VB:UnErgDo - - - agt 1 2 - - 

Table 2 Syntax of Relation Generation Rules (UnErgBe: Unergative Be type Verb, UnErgDo: Unergative Do 

type Verb,  ABS: Abstract) 

 
 

Figure 4: Phrase structure tree for Example 1



4.3.3. Relative Clauses: When there is a relative 

clause in a sentence and two clause are attached with 

relative pronoun (that, which, what etc.) or wh-word 

(when, where) then the dependency parse of that 

sentence contains a relation rcmod (relative clause 

modifier) between the heads of the two clauses. The 

parser also produces either nsubj, dobj, or advmod 

between the head of the second clause and the relative 

pronoun or wh-word as shown in the Example 6. The 

dependency parse is modified in a way so that 

pronouns or wh-words are replaced with their 

antecedents. 

There are three cases as shown below. In all cases 

rcmod relation will be deleted.  

1. If second relation is nsubj or dobj, then relative 

pronoun in nsubj or dobj is replaced with the 

head of the rcmod relation. As shown in the 

Example 6, the modified dependency parse 

contains only nsubj relation with dependent 

quality. 

2. If second relation is advmod and word 

attaching two clause is when then advmod 

dependency relation will be changed to tmod 

(temporal modifier) and also dependent of the 

advmod will be changed to head of the rcmod.  

3. If second relation is advmod and word 

attaching two clause is where then advmod 

dependency relation will be changed to plcmod 

(place modifier) and also dependent of the 

advmod will be changed to head of the 

{rcmod}.  

 
Example 6: This knowledge implies reflection about the 

common ground between all individuals as well as the 

qualities that differentiate them.  

 

Dependency Parse 

nsubj(differentiate-18, that-17) 

rcmod(quality-16, differentiate-18) 

 

Modified Dependency Parse 

nsubj(differentiate-18, quality-16) 

 

4.4. Attribute Generation 
In this phase two types of attributes are generated: 

morphological attributes and attributes from auxiliary 

verbs.  

 

4.4.1 Morphological attribute: Morphological 

attribute @pl (plural word) is generated based on the 

POS tag of the word. If it is NNPS (Proper noun, 

plural) or NNS (Common Noun, plural), then @pl 

should be attached with the word. As shown in the 

Example 3 germs and diseases are tagged as NNS, 

hence @pl should be attached with both the words.  

4.4.2. Attributes from auxiliary verbs: Parser 

generates two types of dependency relations for 

auxiliary verbs, aux (auxiliary) and auxpass (passive 

auxiliary). In Example 3, presence of “aux(reduce-3, 

will-2)” in dependency tree shows that the sentence 

contains a auxiliary verb will for the main verb reduce. 

Auxiliary verbs can be used for generating attributes 

describing speaker's view on aspects of event 

(@progress, @complete etc.), attributes describing 

time with respect to the speaker (@present, @past etc.) 

and attributes describing speaker's attitudes 

(@imperative, @interrogative). For finding the exact 

attribute all auxiliaries and their POS (part of speech) 

tag is used with the main verb's POS tag (if any).  

 

1. Rules for generating the attributes are given in 

Table 1. Here “Aux String” represents the 

string to be matched. Let us look at the rule in 

the second row which says there should be two 

auxiliaries, have and be with POS tag VBZ 

(Verb, 3rd person singular present) and VBN 

(Verb, past participle) respectively and main 

verb should have POS tag VBG (Verb, gerund 

or present participle). Type represents type of 

the sentence: simple, interrogative, or 

imperative. And “UNL attributes” shows UNL 

attributes generated for the word.   

 

In Example 3, modal will is followed by a verb, and 

hence the sentence will match “MD will VB” as given 

in rule 1 in Table 1. Hence as per the rule, @future will 

be attached to the word reduce. 

 

Interrogative and Imperative sentences: For 

interrogative sentences, parser produces a clause level 

tag SBARQ (Direct question introduced by a wh-word 

or wh-phrase) or SQ (Inverted yes/no question, or main 

clause of a wh-question, following the wh-phrase in 

SBARQ) in the phrase structure tree. By looking at 

these tags interrogative sentences can be identified as 

shown in the Example 7 below.  

 
Example 7: How do I sell this product? 

 

Phrase Structure Parse 
(ROOT 

  (SBARQ 

    (WHADVP (WRB how)) 

    (SQ (VBP do) 

      (NP (PRP I)) 

      (VP (VB sell) 

        (NP (DT this) (NN product)))) 

    (. ?))) 

 

In case of imperative sentences (Example 8), the 

first word of the sentence will have the tag VB (Verb, 



Imperative). All other sentences will be simple 

sentences.  

 
Example 8: Use pure seeds to prevent the disease. 

 

4.5. Relation Generation 

In this stage every grammatical relation is converted 

into UNL relations and attributes. Rules for conversion  

use semantic attributes of the words
1
, POS tag, and 

word itself. Syntax of the rules is given in Table 2.  

For e.g. if the relation is ‘prep_in' and the dependent 

word has attribute ‘PLACE’ then the relation should be 

converted into plc relation. As shown in the Example 9 

below, word area has ‘PLACE’ attribute, hence it 

should be converted into plc relation. 
Example 9: Do not let the she-goats to feed in the disease-

infected area. 

prep_in(feed-7, area-11) � plc(feed,area) 

 

4.5.1 Residual attribute generation: While most of 

the attributes are generated in the attribute generation 

phase, some attributes are generated in this phase. As 

shown in the fourth rule of the Table 2 for conj_but 

relation @contrast attribute is also attached to UW1.  

 

4.6. Scope Identification 
As discussed in Section 2.1 scope is a mechanism used 

in the UNL format to express compound concepts in a 

sentence as well as coordinating concepts. Clauses can 

be considered as compound concepts and these are 

usually marked with a scope.  

For identification of scope, UNL relations are 

divided into two types of relations: 

Cumulative relations: Cumulative relations include 

and, or and mod. Let us say node n3 is the first 

common parent of node n1 and n2 in a phrase structure 

tree. If the node n1 of the UNL graph has a cumulative 

relation r with node n2, which then other relations on 

n1 are processed in this way:  

1. All relations which are not r and fall below node 

n3 should have been processed earlier in 

recursive way. 

2. All relation r which falls below n3 are grouped 

with r. 

3. All other relations should be processed later in 

recursive way. 

 

Other relations: All other relations fall in this 

category. When there is a relation from node A to 

node B of this type, and node B also have some 

outgoing relations (1 or more), then all descendent 

                                                           
1
 We are getting semantic attributes for noun using 

Princeton Wordnet [10] and the list of ergative verbs 

from Wikitionary [11]. 

nodes of B and B itself are grouped together to give a 

scope.  

We next explain our scope identification algorithm 

with the help of an example. For Example 10, the 

dependency parse is given below and the phrase 

structure tree is given in Figure 4.  
 
Example 10: Funding for the first stage will be provided by 

government administrations and corporate sponsors. 

 

Dependency Parse 
nsubjpass(provide-8, Funding-1) 

det(stage-5, the-3) 

amod(stage-5, first-4) 

prep_for(Funding-1, stage-5) 

aux(provide-8, will-6) 

auxpass(provide-8, be-7) 

nn(administration-11, government-10) 

agent(provide-8, administration-11) 

amod(sponsor-14, corporate-13) 

conj_and(administration-11, sponsor-14) 

 

 

 

Figure 5: UNL graph without scope for Example 10 

The output UNL graph after the relation generation 

stage is shown in Figure 5. Now we have to identify 

scopes in this UNL graph. Look at the and relation 

between administration and sponsor. According to our 

algorithm, there should be a scope containing the and 

relation and its arguments. But before this we have to 

look for the other relation attached with the arguments 

of the and relation. These are government and 

corporate. In the parse tree we have to look if these 

nodes fall below the first common parent of 

administration and sponsor. In the parse tree first 

common parent of administration and sponsor is the 

circled NP and both government and corporate fall 

below the common parent NP. Hence both should be 

processed first and it will result in scope :04 and :05. 

Now scope :03 will combine scope :04 and :05 with 

the and relation. The UNL graph after scope generation 

stage is shown in Figure 6. 

If there was some other node not falling below the 

common parent NP then that would have been 

processed after scope :03. For example, consider 

Example 11 and phrase tree showed in Figure 7. Here 

there is an and relation between restaurant and cinema 



and in the parse tree first common parent of restaurant 

and cinema is circled NP. But Maharastra does not fall 

below the first common parent NP. Hence it should be 

processed after  the and relation is taken into a scope 

:2. The corresponding UNL graphs are shown in 

Figures 8 and 9. 
 
Example 11: This has been started at restaurants and 

cinemas of Maharashtra . 

Dependency Parse 
nsubjpass(start-4, this-1) 

aux(start-4, have-2) 

auxpass(start-4, be-3) 

prep_at(start-4, restaurant-6) 

conj_and(restaurant-6, cinema-8) 

prep_of(restaurant-6, Maharashtra-10) 

 

 

Figure 6: UNL graph (with scope) for Example 10 

 

 

Figure 7: Phrase structure parse tree for Example 11 

 

5. A Complete Example 
We will take Example 3 and show step-by-step details 

of UNL generation. Because there are no multi-word 

prepositions, so no preprocessing is done. After 

parsing, the output parse were given earlier with the 

example itself. No parse modification will take place 

because there are no nn, prt or rcmod grammatical 

relations. Attribute generation will result in @pl for 

germ and @pl for disease. In relation generation phase 

nsubj will converted into agt relation, det will give 

@def attribute for spread, dobj will change into obj 

relation, prep_of will change into mod relation, amod 

will also change into mod relation, and conj_and will 

change into and relation. The final UNL expression 

after scope generation is given below. UNL graph for 

this is given in Figure 11.  
[UNL] 

obj(reduce.@future.@entry, :01) 

agt(reduce.@future.@entry, this) 

mod:01(spread.@def, :02) 

and:02(germ.@entry.@pl, :03) 

mod:03(disease.@pl, contagious)  

[/UNL] 

 
 

 
Figure 8: UNL graph without scope for Example 12 

 
 

Figure 9: UNL graph with scope for Example 12 
 

 

Figure 10: UNL graph and Hindi translation (without 

scope) for Example 3 

 

Figure 11: UNL graph and Hindi translation (with 

scope) for Example 3 
 



5.1. Impact of generating scopes: To look at the 

impact of generating scopes in translation, we show 

Example 3 and its Hindi translation obtained by using 

Hindi Deconverter [6]. UNL graph without scope and 

with scope for the Example 3 is given in Figure 10 and 

Figure 11 respectively. As shown, the output 

translation has really improved after generating scopes. 

 

6. Evaluation 
Since there are not many published enconverters, 

hence there is no standard evaluation methodology. In 

[2], precision and recall metrics are defined for the 

enconversion task. The quality of enconversion is 

measured by the number of entries that match between 

a gold standard UNL and the one generated by the 

system. An entry is said to be matched, if the UNL 

expression finds the UW1, UW2 and the relation 

correctly.  For example, entries 1 and 2 below match 

but entries 1 and 3 do not match. 

1 agt(reduce.@future.@entry, this) 

2 agt(reduce.@future.@entry, this) 

3 aoj(reduce.@future.@entry, this) 

 

However, we are uncomfortable with this definition for 

two reasons. First, it completely ignores the issue of 

scope. Second, the purpose of UNL generation is to 

facilitate machine translation. It is not clear how the 

precision and recall measures correlate with the final 

translation quality. We measure the accuracy of our 

system by computing the BLEU score on the Hindi 

sentences generated from the UNL.  

On 60 sentences taken from a real life agricultural 

corpus, we achieve a BLEU score of .26 compared to a 

BLEU score of .33 for the manually generated UNLs, 

thus showing the promise of our approach. Since we do 

not have access to the SRS based system, we cannot 

compare our results with theirs. 

 

6.2 Error Analysis 
The main reason for UNL generation failure is the 

incorrect parsing in case of attachment ambiguity and 

stranded prepositions.  

Another reason is the absence of semantic information 

for a large number of verbs. We do not have access to 

the kind of information discussed in [9]. For verbs we 

are only using the information whether verb is ergative 

or not. If some more properties of verbs are used then 

accuracy of the system can improve significantly.  For 

example, dependency parse of sentence “He will 

appear in court.” has a dependency “nsubj(appear-3, 

he-1)”. Here nsubj can be converted into agt or aoj 

relation based on the type of verb. If it is “unergative 

do type verb” then output UNL relation will be agt, if 

it is “unergative be type verb” then output relation will 

be aoj.  Correct UNL relation can be generated, using 

this information. From [11] we have found a list of 200 

ergative verbs but there are thousands of other verbs in 

English. We plan to prepare a detailed analysis of verb 

properties from [7]. 

 

7. Conclusions 
A new approach for enconverting English sentences 

into UNL is proposed, designed, and implemented. On 

deconverting the generated UNLs, we achieve a BLEU 

score of .26 compared to a BLEU score of .33 for the 

manually generated UNLs, showing the promise of our 

approach. The system still needs many improvements 

like handling parser errors, improving rule base, 

compiling verb properties etc.  
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