
English to UNL (Interlingua) Enconversion

Abstract

We describe a system for converting English

sentences into expressions of an interlingua called

Universal Networking Language (UNL). UNL

represents knowledge in form of semantic network,

where nodes represent concepts and links represent

semantic roles between concepts. UNL nodes also

contain semantic attributes like number, tense, aspect,

mood, negation etc. Our system uses a lexicalized

probabilistic parser to get the typed dependency tree

and the phrase structure tree for a given English

sentence. The system then converts dependency

relations into UNL relations and attributes based on

the POS tags of the words involved in the relation, and

their semantic attributes obtained from the Princeton

Wordnet. UNL hypernodes called scopes are generated

by considering the relative positions of the words in

the phrase structure tree. Correct handling of UNL

scopes is a distinctive aspect of our work. We are not

aware of any other enconversion system that attempts

generating scopes, which are essential for the eventual

deconversion of the UNL into some other natural

language. We measure the accuracy of our system by

computing the BLEU score on the Hindi sentences

generated from the UNL. On 60 sentences taken from a

real life agricultural corpus, we achieve a BLEU score

of .26 compared to a BLEU score of .33 for the

manually generated UNLs, showing the promise of our

approach.

1. Introduction
In interlingua based machine translation, a source

language sentence, is transformed into a language

independent interlingual representation. A target

language sentences is then generated out of the

interlingual representation. Given N languages, this

method requires N enconversion and N Deconversion

modules compared to N
2
 modules needed in the normal

analysis, transfer, and generation approach [4].

Universal Networking Language [1] is a relatively

new interlingua which was proposed in mid 90s and

was undergoing revisions till 2005. The process of

converting a source language (natural language)

expression into the UNL expression is referred to as

“enconversion”. The process of converting UNL

expressions into a target language representation is

called “deconversion”.

2. UNL Structure
UNL is composed of three main elements: Universal

Words (UWs), relations, and attributes. UWs are inter-

linked with other UWs to form a UNL expression

corresponding to a natural language sentence. These

links, called relations, specify the role of each word in

a sentence. UWs can also be annotated with attributes

like number, tense, etc., which provide further

information about how the concept is being used in the

specific sentence. Of special significance is the @entry

attribute, typically attached to the main predicate.

Consider the English sentence below in Example 1,

and its UNL expression. A visual representation of this

UNL expression is given in Figure 1.

Example 1: John worked specially for the social fund.

[UNL]
agt(work(agt>human).@past.@entry, John(iof>person))

man(work(agt>human).@past.@entry, specially)

pur(work(agt>human).@past.@entry, fund(icl>money))

mod(fund(icl>money), social(aoj>thing))

[/UNL]

Figure 1: UNL graph for Example 1

Here agt (agent), man (manner of the action), pur

(purpose) and mod (modifier) are the UNL relations.

work(agt>human), specially, fund(icl>money) etc. are

Manoj Jain and Om P. Damani
Department of Computer Science and Engineering

Indian Institute of Technology Bombay, India
manojk@it.iitb.ac.in, damani@cse.iitb.ac.in

the Universal Words. These UWs have restrictions

mentioned in parentheses for the purpose of denoting a

unique sense. Here icl stands for inclusion and iof

stands for instance of.

2.1. UNL Scopes
UNL represents coherent sentence parts (like

clauses and phrases) through Compound UWs, also

called scope nodes. These scope nodes are like graphs

within graphs. These sub graphs have their own

environment and the @entry node. UNL graph for the

sentence in Example 2 is given in the Figure 2.

Example 2: Funding for the first stage will be provided by

government administrations and corporate sponsors.

The phrase “government administrations and

corporate sponsors” is considered as being within a

scope. The scope is given a compound UW ID:03 to

denote a separate environment of knowledge

representation. The information for number, tense,

aspect, mood, negation, etc., are represented using

UNL attributes while gender and language specific

morphological attributes like- vowel ending of nouns,

adjectives, verbs, etc., are stored in the UNL-Target

language dictionary.

Figure 2: UNL graph for Example 2

2.2. Our System
In this paper we present our work on Enconverter

for English. Our system uses a lexicalized probabilistic

parser to get the typed dependency tree and the phrase

structure tree for a given English sentence. The system

then converts dependency relations into UNL relations

and attributes based on the POS tags of the words

involved in the relation, and their semantic attributes.

UNL hypernodes called scopes are generated by

considering the relative positions of the words in the

phrase structure tree. Correct handling of UNL scopes

is a distinctive aspect of our work. We are not aware of

any other enconversion system that attempts generating

scopes, which are essential for the eventual

deconversion of the UNL into some natural language

sentence.

The motivation for our work comes from [2] which

used the concept of Semantically Relatable Set (SRS).

We recognized that the information obtained from SRS

can be simply obtained by using a dependency parser.

Unlike SRS, dependency parsing is an active area of

research, and hence we can benefit from the efforts of

other researchers in the field. Since several dependency

parsers are publicly available, we decided to opt for the

dependency parsing route. Still, our rule formats are

very much inspired by the rule formats in [2].

3. Related Work
The UNDL Foundation provides a Universal

Parser[2] that takes an annotated natural sentence as

input and generates a UNL graph as output. The

annotations required are the UNL attributes and

relations. Hence, in effect, it takes a linearized UNL

graph and delinearizes it. Thus, this parser merely

reduces the problem of generating UNL graph to that

of generating linearized graphs.

Other than Semantically Relatable Sequence (SRS)

based approach presented in [2] and [8], hardly any

public information exist on Enconversion. A

semantically relatable sequence (SRS) of a sentence is

a group of words in the sentence, not necessarily

consecutive, that appear in the semantic graph of a

sentence as linked nodes. For example consider the

sentence, “The professors made comments on the

paper.” Some of the SRSes for this sentence are (made,

comments), (professors, made), (comments, on, paper).

In this approach English text is first converted into

SRS, and then SRS is converted to UNL.

4. Architecture of our English to UNL

Enconverter
The architecture of our system is shown in Figure 3.

English to UNL enconversion process consist of six

phases. Out of these phases parsing is done by the

Stanford Parser [5]. Stanford Parser gives two types of

parse trees: phrase structure tree and dependency tree.

These parse trees are converted into UNL expressions

by using rule bases. Before describing each of the six

phases in detail we will first describe the Stanford

Parser.

4.1. Parsing
In Stanford Parser, both semantic (lexical

dependency) and syntactic (PCFG: probabilistic

context free grammar) structures are scored with

separate models. It produces two types of parse trees:

phrase structure tree and dependency tree. A typed

dependency parse represents dependencies between

individual words in a sentence with grammatical

relations as labels, such as subject or object. Stanford

Parser generates typed dependency parse tree from the

phrase structure parses. An example is given next.

Consider the sentence in Example 3, its output phrase

structure tree (bracketed form), and the typed

dependency parse tree. First word in each grammatical

relation is the head and the second word is dependent.

Each word is given a unique number.

Example 3: This will reduce the spread of germs and

contagious diseases.

Phrase Structure Parse

(ROOT

 (S

 (NP (DT this))

 (VP (MD will)

 (VP (VB reduce)

 (NP

 (NP (DT the) (NN spread))

 (PP (IN of)

 (NP

 (NP (NNS germ))

 (CC and)

 (NP (JJ contagious)

 (NNS disease)))))))

 (. .)))

Dependency Parse

nsubj(reduce-3, this-1)

aux(reduce-3, will-2)

det(spread-5, the-4)

dobj(reduce-3, spread-5)

prep_of(spread-5, germ-7)

amod(disease-10, contagious-9)

conj_and(germ-7, disease-10)

Forty-eight grammatical relations used in Stanford

Parser are arranged in a hierarchical manner, rooted

with the most generic relation as dep (dependent).

When the relation between a head and its dependent

can be identified more precisely, relations further down

in the hierarchy can be used. For example dep

(dependent) relation can be specialized to aux

(auxiliary), conj (conjunct), or mod (modifier).

4.2. Preprocessing multi-word prepositions
For multi-word prepositions like “according to”,

Stanford Parser does not give correct dependency parse

as output. So we first identify these multi-word

prepositions by looking in the list of multi-word

prepositions obtained from [2], then clubbing them and

giving a tag IN (Preposition or subordinating

conjunction

). Input sentence “Fertilizers should be

given according to the soil examination.” will be

preprocessed and input to the parser will be

“Fertilizers should be given according-to/IN the soil

examination.” This is allowed because Stanford Parser

can take partially POS-Tagged input.

4.3. Parse Tree Post Processing
While multi-word prepositions needed

preprocessing because parser could not handle it

correctly, certain post processing is also needed even

with a correct parse tree because of multi-word nouns,

phrasal verbs etc. In this phase some modification

takes place on dependency parse of the sentence. Some

of these modifications are as follows:

4.3.1. Multi-Word Nouns: Stanford Parser itself

recognizes multi-word nouns and produces nn

grammatical relation for them. Since in UNL, proper

nouns form a single UW, we club parts of proper

nouns together by looking at the POS tag of the word

in nn relations. If both are NNP (Proper noun), then

they will be clubbed together to give a single word. As

shown in the Example 4, in the dependency parse,

there is a grammatical relation “nn(Singh-2, Udai-1)”.

And both the word Singh and Udai are tagged as

proper noun (NNP) in the phrase structure parse. So

they will be clubbed together to get a single word

‘Udai Singh’. For common noun multi-word, a lookup

is performed in wordnet. If the multi-word is present in

the wordnet then we club them.

Example 4: Udai Singh and his family had wisely moved to

the safety of the nearby hills.

Parts of Dependency Parse
nn(Singh-2, Udai-1)

nsubj(move-8, Singh-2)

Modified Dependency Parse
nsubj(move-8, Udai Singh-2)

4.3.2. Phrasal Verbs: Parser produces prt grammatical

relation for phrasal verbs. So we club them together to

give a single word. As shown in the Example 5 below,

there is a grammatical relation prt between pick and

up. So we club them to get a phrasal verb ‘pick up’.

Example 5: He picked up the book cheerfully.

Dependency Parse
nsubj(pick-2, he-1)

prt(pick-2, up-3)

Modified Dependency Parse
nsubj(pick up-2, he-1)

Figure 3 English->UNL Encoverter Architecture

Aux String Type UNL Attributes

MD will VB Simple .@future

VBZ have VBN be VBN Simple .@present.@complete.@passive

VBZ have VBN be VBN Interrogative .@interrogative.@present.@complete.@passive

Table 1 Syntax of Auxiliary Conversion Rules

Grammatical

Relation

Head Word

Attributes

Dependent

Word

Attributes

Head

Word

Dependent

Word

UNL

Relation

UW1 UW2 UW1

Attributes

UW2

Attributes

prep_in - :PLACE - - plc 1 2 - -

prep_in VB :ABS - - scn 1 2 - -

prep_in VB :TIME - - tim 1 2 - -

conj_but - - - - and 1 2 @contrast -

xcomp VB:Intransitive - - - pur 1 2 - -

nsubj VB:UnErgBe - - - aoj 1 2 - -

nsubj VB:UnErgDo - - - agt 1 2 - -

Table 2 Syntax of Relation Generation Rules (UnErgBe: Unergative Be type Verb, UnErgDo: Unergative Do

type Verb, ABS: Abstract)

Figure 4: Phrase structure tree for Example 1

4.3.3. Relative Clauses: When there is a relative

clause in a sentence and two clause are attached with

relative pronoun (that, which, what etc.) or wh-word

(when, where) then the dependency parse of that

sentence contains a relation rcmod (relative clause

modifier) between the heads of the two clauses. The

parser also produces either nsubj, dobj, or advmod

between the head of the second clause and the relative

pronoun or wh-word as shown in the Example 6. The

dependency parse is modified in a way so that

pronouns or wh-words are replaced with their

antecedents.

There are three cases as shown below. In all cases

rcmod relation will be deleted.

1. If second relation is nsubj or dobj, then relative

pronoun in nsubj or dobj is replaced with the

head of the rcmod relation. As shown in the

Example 6, the modified dependency parse

contains only nsubj relation with dependent

quality.

2. If second relation is advmod and word

attaching two clause is when then advmod

dependency relation will be changed to tmod

(temporal modifier) and also dependent of the

advmod will be changed to head of the rcmod.

3. If second relation is advmod and word

attaching two clause is where then advmod

dependency relation will be changed to plcmod

(place modifier) and also dependent of the

advmod will be changed to head of the

{rcmod}.

Example 6: This knowledge implies reflection about the

common ground between all individuals as well as the

qualities that differentiate them.

Dependency Parse

nsubj(differentiate-18, that-17)

rcmod(quality-16, differentiate-18)

Modified Dependency Parse

nsubj(differentiate-18, quality-16)

4.4. Attribute Generation
In this phase two types of attributes are generated:

morphological attributes and attributes from auxiliary

verbs.

4.4.1 Morphological attribute: Morphological

attribute @pl (plural word) is generated based on the

POS tag of the word. If it is NNPS (Proper noun,

plural) or NNS (Common Noun, plural), then @pl

should be attached with the word. As shown in the

Example 3 germs and diseases are tagged as NNS,

hence @pl should be attached with both the words.

4.4.2. Attributes from auxiliary verbs: Parser

generates two types of dependency relations for

auxiliary verbs, aux (auxiliary) and auxpass (passive

auxiliary). In Example 3, presence of “aux(reduce-3,

will-2)” in dependency tree shows that the sentence

contains a auxiliary verb will for the main verb reduce.

Auxiliary verbs can be used for generating attributes

describing speaker's view on aspects of event

(@progress, @complete etc.), attributes describing

time with respect to the speaker (@present, @past etc.)

and attributes describing speaker's attitudes

(@imperative, @interrogative). For finding the exact

attribute all auxiliaries and their POS (part of speech)

tag is used with the main verb's POS tag (if any).

1. Rules for generating the attributes are given in

Table 1. Here “Aux String” represents the

string to be matched. Let us look at the rule in

the second row which says there should be two

auxiliaries, have and be with POS tag VBZ

(Verb, 3rd person singular present) and VBN

(Verb, past participle) respectively and main

verb should have POS tag VBG (Verb, gerund

or present participle). Type represents type of

the sentence: simple, interrogative, or

imperative. And “UNL attributes” shows UNL

attributes generated for the word.

In Example 3, modal will is followed by a verb, and

hence the sentence will match “MD will VB” as given

in rule 1 in Table 1. Hence as per the rule, @future will

be attached to the word reduce.

Interrogative and Imperative sentences: For

interrogative sentences, parser produces a clause level

tag SBARQ (Direct question introduced by a wh-word

or wh-phrase) or SQ (Inverted yes/no question, or main

clause of a wh-question, following the wh-phrase in

SBARQ) in the phrase structure tree. By looking at

these tags interrogative sentences can be identified as

shown in the Example 7 below.

Example 7: How do I sell this product?

Phrase Structure Parse
(ROOT

 (SBARQ

 (WHADVP (WRB how))

 (SQ (VBP do)

 (NP (PRP I))

 (VP (VB sell)

 (NP (DT this) (NN product))))

 (. ?)))

In case of imperative sentences (Example 8), the

first word of the sentence will have the tag VB (Verb,

Imperative). All other sentences will be simple

sentences.

Example 8: Use pure seeds to prevent the disease.

4.5. Relation Generation

In this stage every grammatical relation is converted

into UNL relations and attributes. Rules for conversion

use semantic attributes of the words
1
, POS tag, and

word itself. Syntax of the rules is given in Table 2.

For e.g. if the relation is ‘prep_in' and the dependent

word has attribute ‘PLACE’ then the relation should be

converted into plc relation. As shown in the Example 9

below, word area has ‘PLACE’ attribute, hence it

should be converted into plc relation.
Example 9: Do not let the she-goats to feed in the disease-

infected area.

prep_in(feed-7, area-11) � plc(feed,area)

4.5.1 Residual attribute generation: While most of

the attributes are generated in the attribute generation

phase, some attributes are generated in this phase. As

shown in the fourth rule of the Table 2 for conj_but

relation @contrast attribute is also attached to UW1.

4.6. Scope Identification
As discussed in Section 2.1 scope is a mechanism used

in the UNL format to express compound concepts in a

sentence as well as coordinating concepts. Clauses can

be considered as compound concepts and these are

usually marked with a scope.

For identification of scope, UNL relations are

divided into two types of relations:

Cumulative relations: Cumulative relations include

and, or and mod. Let us say node n3 is the first

common parent of node n1 and n2 in a phrase structure

tree. If the node n1 of the UNL graph has a cumulative

relation r with node n2, which then other relations on

n1 are processed in this way:

1. All relations which are not r and fall below node

n3 should have been processed earlier in

recursive way.

2. All relation r which falls below n3 are grouped

with r.

3. All other relations should be processed later in

recursive way.

Other relations: All other relations fall in this

category. When there is a relation from node A to

node B of this type, and node B also have some

outgoing relations (1 or more), then all descendent

1
 We are getting semantic attributes for noun using

Princeton Wordnet [10] and the list of ergative verbs

from Wikitionary [11].

nodes of B and B itself are grouped together to give a

scope.

We next explain our scope identification algorithm

with the help of an example. For Example 10, the

dependency parse is given below and the phrase

structure tree is given in Figure 4.

Example 10: Funding for the first stage will be provided by

government administrations and corporate sponsors.

Dependency Parse
nsubjpass(provide-8, Funding-1)

det(stage-5, the-3)

amod(stage-5, first-4)

prep_for(Funding-1, stage-5)

aux(provide-8, will-6)

auxpass(provide-8, be-7)

nn(administration-11, government-10)

agent(provide-8, administration-11)

amod(sponsor-14, corporate-13)

conj_and(administration-11, sponsor-14)

Figure 5: UNL graph without scope for Example 10

The output UNL graph after the relation generation

stage is shown in Figure 5. Now we have to identify

scopes in this UNL graph. Look at the and relation

between administration and sponsor. According to our

algorithm, there should be a scope containing the and

relation and its arguments. But before this we have to

look for the other relation attached with the arguments

of the and relation. These are government and

corporate. In the parse tree we have to look if these

nodes fall below the first common parent of

administration and sponsor. In the parse tree first

common parent of administration and sponsor is the

circled NP and both government and corporate fall

below the common parent NP. Hence both should be

processed first and it will result in scope :04 and :05.

Now scope :03 will combine scope :04 and :05 with

the and relation. The UNL graph after scope generation

stage is shown in Figure 6.

If there was some other node not falling below the

common parent NP then that would have been

processed after scope :03. For example, consider

Example 11 and phrase tree showed in Figure 7. Here

there is an and relation between restaurant and cinema

and in the parse tree first common parent of restaurant

and cinema is circled NP. But Maharastra does not fall

below the first common parent NP. Hence it should be

processed after the and relation is taken into a scope

:2. The corresponding UNL graphs are shown in

Figures 8 and 9.

Example 11: This has been started at restaurants and

cinemas of Maharashtra .

Dependency Parse
nsubjpass(start-4, this-1)

aux(start-4, have-2)

auxpass(start-4, be-3)

prep_at(start-4, restaurant-6)

conj_and(restaurant-6, cinema-8)

prep_of(restaurant-6, Maharashtra-10)

Figure 6: UNL graph (with scope) for Example 10

Figure 7: Phrase structure parse tree for Example 11

5. A Complete Example
We will take Example 3 and show step-by-step details

of UNL generation. Because there are no multi-word

prepositions, so no preprocessing is done. After

parsing, the output parse were given earlier with the

example itself. No parse modification will take place

because there are no nn, prt or rcmod grammatical

relations. Attribute generation will result in @pl for

germ and @pl for disease. In relation generation phase

nsubj will converted into agt relation, det will give

@def attribute for spread, dobj will change into obj

relation, prep_of will change into mod relation, amod

will also change into mod relation, and conj_and will

change into and relation. The final UNL expression

after scope generation is given below. UNL graph for

this is given in Figure 11.
[UNL]

obj(reduce.@future.@entry, :01)

agt(reduce.@future.@entry, this)

mod:01(spread.@def, :02)

and:02(germ.@entry.@pl, :03)

mod:03(disease.@pl, contagious)

[/UNL]

Figure 8: UNL graph without scope for Example 12

Figure 9: UNL graph with scope for Example 12

Figure 10: UNL graph and Hindi translation (without

scope) for Example 3

Figure 11: UNL graph and Hindi translation (with

scope) for Example 3

5.1. Impact of generating scopes: To look at the

impact of generating scopes in translation, we show

Example 3 and its Hindi translation obtained by using

Hindi Deconverter [6]. UNL graph without scope and

with scope for the Example 3 is given in Figure 10 and

Figure 11 respectively. As shown, the output

translation has really improved after generating scopes.

6. Evaluation
Since there are not many published enconverters,

hence there is no standard evaluation methodology. In

[2], precision and recall metrics are defined for the

enconversion task. The quality of enconversion is

measured by the number of entries that match between

a gold standard UNL and the one generated by the

system. An entry is said to be matched, if the UNL

expression finds the UW1, UW2 and the relation

correctly. For example, entries 1 and 2 below match

but entries 1 and 3 do not match.

1 agt(reduce.@future.@entry, this)

2 agt(reduce.@future.@entry, this)

3 aoj(reduce.@future.@entry, this)

However, we are uncomfortable with this definition for

two reasons. First, it completely ignores the issue of

scope. Second, the purpose of UNL generation is to

facilitate machine translation. It is not clear how the

precision and recall measures correlate with the final

translation quality. We measure the accuracy of our

system by computing the BLEU score on the Hindi

sentences generated from the UNL.

On 60 sentences taken from a real life agricultural

corpus, we achieve a BLEU score of .26 compared to a

BLEU score of .33 for the manually generated UNLs,

thus showing the promise of our approach. Since we do

not have access to the SRS based system, we cannot

compare our results with theirs.

6.2 Error Analysis
The main reason for UNL generation failure is the

incorrect parsing in case of attachment ambiguity and

stranded prepositions.

Another reason is the absence of semantic information

for a large number of verbs. We do not have access to

the kind of information discussed in [9]. For verbs we

are only using the information whether verb is ergative

or not. If some more properties of verbs are used then

accuracy of the system can improve significantly. For

example, dependency parse of sentence “He will

appear in court.” has a dependency “nsubj(appear-3,

he-1)”. Here nsubj can be converted into agt or aoj

relation based on the type of verb. If it is “unergative

do type verb” then output UNL relation will be agt, if

it is “unergative be type verb” then output relation will

be aoj. Correct UNL relation can be generated, using

this information. From [11] we have found a list of 200

ergative verbs but there are thousands of other verbs in

English. We plan to prepare a detailed analysis of verb

properties from [7].

7. Conclusions
A new approach for enconverting English sentences

into UNL is proposed, designed, and implemented. On

deconverting the generated UNLs, we achieve a BLEU

score of .26 compared to a BLEU score of .33 for the

manually generated UNLs, showing the promise of our

approach. The system still needs many improvements

like handling parser errors, improving rule base,

compiling verb properties etc.

Acknowledgements

We would like to give our sincere thanks to the SRS

based encoverter team. This sytem remains our main

source of inspiration. We also want to specially thank

Amit Sangodkar for all his help with Hindi

Deconverter.

8. References
[1] Universal Networking Digital Language

Foundation. http://www.undl.org/

[2] R. Mohanty, A. Dutta and P. Bhattacharyya,

Semantically Relatable Sets: Building Blocks for

Repesenting Semantics, MT Summit, 2005.

[3] Universal Parser, UNDL Foundation.

http://www.undl.org/unlsys/uparser/UP.htm

[4] Hutchins W., Somers H. (1992). An Introduction to

Machine Translation, Academic Press, New York

[5] D. Klein and C. Manning. "Fast Exact Inference

with a Factored Model for Natural Language Parsing.''

NIPS 2002, 2003,

[6] S. Singh, M. Dalal, V. Vachhani, P. Bhattacharyya,

O. Damani. Hindi Generation from Interlingua (UNL),

Machine Translation Summit XI, 2007.

[7] Beth Levin. English Verb Classes and Alternations:

A Preliminary Investigation. U. Chicago Press, 1993.

[8] S. Dave, J. Parikh and P. Bhattacharyya, Interlingua

Based English Hindi Machine Translation and

Language Divergence, Journal of Machine Translation

(JMT), Volume 17, September, 2002.

[9] R. Mohanty and P. Bhattacharyya, Lexical

Resources for Semantics Extraction, LREC 2008.

[10] Princeton Wordnet. http:// wordnet.princeton.edu/

[11] Wikitionary,

http://en.wiktionary.org/wiki/Category:English_ergativ

e_verbs

