
J. Parallel Distrib. Comput. 63 (2003) 1193–1218

ARTICLE IN PRESS
�Corresp

the Univers

E-mail a

(O.P. Dam

garg@ece.u

0743-7315/$

doi:10.1016
Distributed recovery with K-optimistic logging

Om P. Damani,a,� Yi-Min Wang,b and Vijay K. Gargc

a IBM T.J. Watson Research Center, Hawthorne, NY, USA
bMicrosoft Research, Redmond, WA 98052, USA

cDepartment of Elect. and Computer Engineering, University of Texas at Austin, USA

Received 13 December 2000; revised 2 May 2003
Abstract

Fault-tolerance techniques based on checkpointing and message logging have been increasingly used in real-world applications to

reduce service down-time. Most industrial applications have chosen pessimistic logging because it allows fast and localized recovery.

The price that they must pay, however, is the high failure-free overhead. In this paper, we introduce the concept of K-optimistic

logging where K is the degree of optimism that can be used to fine-tune the trade-off between failure-free overhead and recovery

efficiency. Traditional pessimistic logging and optimistic logging then become the two extremes in the entire spectrum spanned by

K-optimistic logging. Our results generalize several previously known protocols.

Our approach is to prove that only dependencies on those states that may be lost upon a failure need to be tracked on-line, and so

transitive dependency tracking can be performed with a variable-size vector. The size of the vector piggy-backed on a message then

indicates the number of processes whose failures may revoke the message, and K corresponds to the upper bound on the vector size.

Furthermore, the parameter K is dynamically tunable in response to changing system characteristics.

r 2003 Published by Elsevier Inc.
1. Introduction

Log-based rollback-recovery [8] is an effective tech-
nique for providing low-cost fault tolerance to distrib-
uted applications [4,10,17,27]. For fault-resilience, a
process periodically records its state on a stable storage
[20]. This action is called checkpointing and the recorded
state is called a checkpoint. The checkpoint is used to
restore a process after a failure. However, information
stored in volatile memory is lost in a failure. This loss
may leave the restored system in an inconsistent state [5].
The goal of a recovery protocol is to bring back the
system to a consistent state after one or more processes
fail. A consistent state is one where the sending of a
message is recorded in the sender’s state if the receipt of
the message has been recorded in the receiver’s state.
In log-based recovery schemes, besides checkpoints,

the contents and processing orders of the received
messages are also saved on the stable storage as message
onding author. This work was done while the author was at

ity of Texas at Austin.

ddresses: damani@us.ibm.com

ani), ymwang@microsoft.com (Y.-M. Wang),

texas.edu (V.K. Garg).

- see front matter r 2003 Published by Elsevier Inc.

/j.jpdc.2003.07.003
logs. Upon a failure, the failed process restores a
checkpointed state and replays logged messages in their
original order to deterministically reconstruct its pre-
failure states. Log-based rollback-recovery is especially
useful for distributed applications that frequently
interact with the outside world [8]. It can be used either
to reduce the amount of lost work due to failures in
long-running scientific applications [8], or to enable fast
and localized recovery in continuously-running service-
providing applications [13].
Depending on when received messages are logged,

log-based rollback-recover techniques can be divided
into three main categories: pessimistic logging [4,13],
optimistic logging [17,27], and causal logging [2,9].
Pessimistic logging either synchronously logs each
message upon receiving it, or logs all delivered messages
before sending a message. It guarantees that any process
state from which a message is sent is always recreatable,
and therefore no process failure will ever revoke any
message to force its receiver to also roll back. This
advantage of localized recovery comes at the expense of
a higher failure-free overhead. In contrast, optimistic
logging first saves messages in a volatile buffer and later
writes several messages to stable storage in a single
operation. It incurs a lower failure-free overhead due to

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181194
the reduced number of stable storage operations and the
asynchronous logging. The main disadvantage is that
messages saved in the volatile buffer may be lost upon a
failure. Other states that are dependent on these lost

states are called orphan states and they need to be
explicitly rolled back. Causal logging provides orphan-
free recovery without incurring the overhead of syn-
chronous logging. It limits the rollback to the most
recent checkpoint on stable storage. It avoids synchro-
nous access to the stable storage except during output
commit. These advantages come at the expense of more
complex recovery protocols. It logs messages in pro-
cesses other than the receivers. So synchronization is
required during recovery.
In this paper, we focus on optimistic message logging

protocols. These protocols have the advantage of low
failure-free overhead. In addition, there are many
scenarios in which optimistic logging schemes are
desirable.

1. Non-crash failures: Traditional logging protocols are
based on the assumption that processes fail by simply
crashing, without causing any other harm such as
sending incorrect messages. In practice, there is some
latency between a fault-occurrence and the fault-
detection. Optimistic protocols can handle this
problem, when possible, by identifying and rolling
back the faulty states [27].

2. Software bugs: Traditional logging protocols assume
that successive failures of a process are independent.
On restarting a failed process, the cause of the last
crash is not expected to lead to another crash.
However, when a software bug crashes a program,
deterministically recreating the pre-failure computa-
tion results in the same bug leading to the same crash.
A way to avoid this is to replay the last few messages
in a different order, thereby potentially bypassing the
bug that caused the original crash [27,29].

3. Optimistic computations: Many applications employ
techniques similar to optimistic logging and require
rollback capability. (e.g., optimistic distributed simu-
lation [14].) In such applications, the fault-tolerance
overhead can be reduced by employing the same
dependency tracking mechanism for both the appli-
cation and the recovery system.

4. Distributed debugging: If a program needs to be tested
under different message orderings, a technique
similar to optimistic recovery can be used. After the
result for a particular message ordering is available, a
failure can be simulated and a different message
ordering can be tried.

5. Input message cancellation: Traditional recovery
protocols assume that messages from the environ-
ment are irrevocable. However, many new classes of
distributed applications are emerging that allow the
environment to revoke input messages but still do not
allow the environment to be modeled as one of the
application process. One example is an application
based on the integration of log based techniques with
transaction processing. For such applications, revok-
ing of an input message can be modeled as a failure in
an optimistic system.

In Section 4.6 we modify a pessimistic protocol to
introduce roll back capability. In [1], the author states
that a causal protocol can be modified to have rollback
capability. As of now, however, we are unaware of any
causal protocol with explicit rollback capability.
Although pessimistic and optimistic protocols to-

gether provide a trade-off between failure-free overhead
and recovery efficiency, it is only a coarse-grain trade-
off: the application has to either tolerate the high
overhead of pessimistic logging, or accept the potentially
inefficient recovery of optimistic logging. In practice, it
is desirable to have a flexible scheme with tunable
parameters so that each application can fine-tune the
above trade-off based on the load and failure rate of the
system. For example, a telecommunications system
needs to choose a parameter to control the overhead
so that it can be responsive during normal operation,
and also control the rollback scope so that it can recover
quickly upon a failure. Furthermore, since system load
and failure rate may fluctuate during the execution, it is
desirable to have dynamically tunable parameters.
To address this issue, we introduce the concept of K-

optimistic logging where K is an integer between 0 and n

(the total number of processes). Given any message m in
a K-optimistic logging system, K is the maximum

number of processes whose failures can revoke m. Clearly,
pessimistic logging corresponds to 0-optimistic logging
because messages can never be revoked by any process
failures, while traditional optimistic logging corresponds
to n-optimistic logging because, in the worst case, any
process failure can revoke a given message. Between
these two extremes, the integer K then serves as a
tunable parameter that provides a fine-grain trade-off
between failure-free overhead and recovery efficiency.
Our protocol generalizes several previously known
protocols.
The trade-off provided is probabilistic in nature. In

the worst case, for any value of K; the recovery time can
be as bad as that for a completely optimistic protocol.
This is not surprising because in the worst case,
pessimistic protocols can have as bad a recovery time
as optimistic protocols.
The outline of the rest of the paper is as follows.

Section 2 presents the related work. Section 3 describes
the system model and the recovery problem. Formal
definition of the dependency relation and orphan are
also given in this section. Section 4 motivates and
defines the concept of K-optimistic logging, and gives a
description of the protocol. It also discusses several

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1195
optimizations and implementation issues. Section 6
concludes the paper. The correctness proof and the
properties of our protocol are presented in Appendix A.
2. Related work

Strom and Yemini [27] started the area of optimistic
message logging. The protocol presented in this paper is
similar in spirit to their protocol. They, however, did not
define orphans properly and did not distinguish between
failures and rollbacks. As a result, their protocol suffers
from the exponential rollback problem, where a single
failure of a process can roll back another process
exponential number of times. For the same reason, they
could not omit dependency tracking on stable states.
They also assumed FIFO message ordering which is not
required in optimistic protocols.
Johnson and Zwaenepoel [17] present a centralized

optimistic protocol. Unlike most optimistic protocols
including ours, their protocol does not require every
received message to be logged. This can be advanta-
geous in case average message size is much larger than
average checkpoint size. They also use direct depen-
dency tracking instead of transitive dependency track-
ing. This implies that instead of dependency vectors,
only a small constant amount of information is
piggybacked on each message. These advantages come
at the expense of a centralized recovery manager, which
itself needs to be made fault-tolerant.
Smith et al. [25] present the first completely asyn-

chronous optimistic protocol. Their protocol is com-
pletely asynchronous in that, in their system, neither a
process is ever blocked from progressing, nor a message
is ever blocked from being delivered. This is achieved by
piggybacking on each message a data structure that is
similar to our incarnation end table. This results in high
Table 1

Comparison with related work

Message Number of

ordering integers

piggybacked

Strom and

Yemini [27] FIFO OðnÞ
Sistla and

Welch [26] FIFO OðnÞ
Johnson and

Zwaenepoel [17] None Oð1Þ
Peterson and

Kearns [22] FIFO OðnÞ
Smith et al. [25] None Oðn2f Þ
Damani and

Garg [7] None OðnÞ
Smith and

Johnson [24] None Oðnf Þ

n is the number of processes in the system and f is the maximum number o
failure-free overhead. In their protocol, no failure
announcement is used. Since the incarnation end table
is piggybacked on every message, each process learns
about a failure when a message path is established
between the restarted failed process and every other
process. We believe that rather than letting orphan
computation continue for a long time, it is better to
announce failure and let every process know as soon as
possible. In Strom and Yemini’s and in our protocol, a
process does not block after a failure, but a message may
be blocked from delivery.
To address the scalability issue of dependency

tracking for large systems, Sistla and Welch [26] divided
the entire system into clusters and treated inter-cluster
messages as output messages. Lowry et al. [19]
introduced the concept of recovery unit gateways to
compress the vector at the cost of introducing false
dependencies. Direct dependency tracking techniques
[26,17,16] piggyback only the sender’s current state
interval index, and are more scalable in general. The
trade-off is that, at the time of output commit or
recovery, the system needs to assemble direct dependen-
cies to obtain transitive dependencies.
In Table 1 we present a comparison of our protocol

with other optimistic protocols that track transitive
dependencies. Since no other protocol bridges the gap
between optimism and pessimism, we consider our
protocol for K equal to n: Note that, using our ideas
presented in [7], Smith and Johnson reduced the size of
dependency vectors in their algorithm [24].
Our protocol generalizes several previously known

protocols. For K equal to n; our protocol reduces to the
optimistic protocol presented in [7], while for K equal to
0, it reduces to the pessimistic protocol presented in [15].
The protocol in [3] can be thought of as a variant of our
protocol where the server processes set K to 0 and the
clients set K to n:
Number of Number of Asynchronous

concurrent rollbacks recovery

failures per failure

n Oð2nÞ Mostly

1 1 No

n 1 No

1 1 No

n 1 Yes

n 1 Mostly

n 1 Yes

f failures of any single process.

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181196
Although no parallel exists to our protocol in the area
of message logging, in the area of checkpoint-based
rollback-recovery, the concept of lazy checkpoint
coordination [28] has been proposed to provide a fine-
grain trade-off in-between the two extremes of uncoor-
dinated checkpointing and coordinated checkpointing.
An integer parameter Z; called the laziness, is intro-
duced to control the degree of optimism by controlling
the frequency of coordination. The concept of K-
optimistic logging can be considered as the counterpart
of lazy checkpoint coordination for the area of log-
based rollback-recovery.
3. Theoretical framework

In this section, we introduce the formal model of the
system. We formally define what it means for a state to
be dependent on another state. This dependency relation
is an extension of the Lamport’s happened before
relation [18] to failure prone computations.

3.1. Abstract model

A process execution is a pair ðS;!Þ: S is a set of
elementary entities called state interval (si for short).
There exists a boolean-valued function init that takes a
si as its input and returns true for exactly one of the
members of S: The relation ! is an acyclic binary
relation on S satisfying following conditions:

* 8s : jfu : initðsÞ4u!sgj ¼ 0
* 8s : jfu ::initðsÞ4u!sgj ¼ 1

The relation ! induces a tree on S: If u!s; u is a
parent of s and s is a child of u:
In an online execution, new elements can be added to

S at any time with an accompanying strengthening of
the relation !:
A si can have one of three labels: useful, lost and

rolled back. Every si starts as useful. A newly added si

becomes child of a useful si that has no useful child. The
label of only a useful, non-init si can be changed. When
the label of a si is changed, labels of all its useful children
are also changed in the same way. This change
propagates recursively to all descendents.
Consider a system consisting of n processes P1;y;Pn:

Let the execution of Pi be ðSi;!iÞ: The system
execution is a triplet ðH;!;*Þ: The set H is defined
as H

S
i Si: The acyclic binary relation ! is defined

on H as !

S

i !i: The relation *; another acyclic
binary relation defined on H; satisfies the following
conditions:1
1As an aside we note that just like!;* also induces n disjoint trees

on H:
* 8s : jfu : initðsÞ4u*sgj ¼ 0
* 8s : jfu : :initðsÞ4u*sgj ¼ 1

Let the relation - be the transitive closure of
!,*: Two system executions are considered equiva-
lent if their- relations, restricted to useful si; are same.

3.2. Physical model and the recovery problem

We consider an application system consisting of n

processes communicating only through messages. The
communication system used is unreliable in that it can
lose, delay, duplicate, or reorder the messages. The
environment also uses messages to provide inputs to and
receive outputs from the application system. Each
process has its own volatile storage and also has access
to stable storage [20]. The data saved on volatile storage
is lost in a process crash, while the data saved on stable
storage remains unaffected by a process crash.
The state of a process consists of values of all program

variables and the program counter. A state interval is a
sequence of states between two consecutive message
receipts by the application process. The execution within
each interval is assumed to be completely deterministic,
i.e., actions performed between two message receives are
completely determined by the content of the first
message received and the state of the process at the
time of the first receive. For the purpose of recovery, we
are interested in state intervals only and not in states,
and therefore for convenience, we use the term state

instead of state interval.
A state interval here corresponds to a state interval

(si) in the abstract model. If in the abstract model, s!u;
then the interval corresponding to s immediately
precedes the interval corresponding to u: If s*u then
a message is send in the interval corresponding to s and
the receive of that message results in the interval that
corresponds to u: From now on, when there is no
confusion, we use the term ‘state s’ instead of saying
‘state interval that corresponds to si s:’
Although an abstract process execution is a tree, a

physical process execution is a sequence of state
intervals in real time. All n process executions together
constitute a system execution. Two physical system
executions are considered equivalent if their abstract
counterparts are equivalent.
We assume perfect failure detection [6], i.e. each non-

failed process eventually learns about all failures in the
system and no process falsely assumes that a non-failed
process has failed. A process fails by simply crashing. In
a crash failure, a process stops executing and loses the
data in its volatile storage. The process does no other
harm, such as sending incorrect message. Pre-failure
states of a process that cannot be recreated after a
failure are called lost states. A lost state gets the label
lost in the abstract model.

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1197
The application system is controlled by an underlying
recovery system. The type of control may be of various
forms, such as saving a checkpoint of the application
process, stopping an application process, adding control
information to the state of an application process,
adding control information to a message, rolling back
the application to an earlier state, etc.
If an application state is rolled back by the recovery

system then that state is called rolled back.
The recovery problem is to specify the behavior of a

recovery system that controls the application system to
ensure that despite crash failures, the system execution
remains equivalent to a possible crash-free execution of
the stand-alone application system.
From here on, when there is no confusion, instead of

saying ‘the system does something for the corresponding
process’, we will say ‘a process does something’. We next
give a general description of optimistic protocols in this
model.

3.3. Optimistic recovery

Optimistic recovery is a special class of log-based
rollback recovery, where the recovery system employs
checkpointing and message logging to control the
application [8]. In optimistic recovery, received messages
are logged in volatile storage. The volatile log is
periodically written to stable storage in an asynchronous
fashion. By asynchronous, we mean that a process does
not stop executing while its volatile log is being written
to stable storage. Each process, either independently or
in coordination with other processes, takes periodic
checkpoints [8].
After a crash, a process is restarted by restoring its last

checkpoint and replaying logged messages that were
received after the restored checkpoint. Since some of the
messages might not have been logged at the time of the
failure, some pre-failure states, called lost states, cannot
be recreated. States in other processes that causally
depend on lost states are called orphan. Causal
dependency corresponds to the - relation in the
abstract model. A message sent by a lost or orphan
state is called an orphan message. If the current state of
a process is orphan then the process itself is called
orphan. All orphan states are rolled back. All orphan
messages are also discarded. Each restart or rollback
starts a new incarnation of the process. A failure or a
rollback does not start a new interval. It simply restores
an old interval.
Traditional optimistic protocols treat rollback of a

failed process as if the process has failed and restarted.
We note the distinction between a restart and a rollback.
A failed process restarts whereas a rollback is done by a
non-failed process. Information stored in volatile
memory before a failure is not available at restart. In
a rollback, no information is lost. Unlike in traditional
protocols, in our protocols, a process informs other
processes about its failures only and not about roll-
backs.
In all optimistic protocols (or all log-based recovery

protocols), the recovered state could have happened in a
failure-free execution of the application, with relatively
slower processor speed and relatively increased network
delays. Therefore, in an asynchronous system, optimistic
protocols solve the recovery problem.

3.3.1. Output commit

Distributed applications often need to interact with
‘‘the outside world.’’ Examples include setting hardware
switches, performing database updates, printing com-
putation results, displaying execution progress, etc.
Since the outside world in general does not have the
capability of rolling back its state, the applications must
guarantee that any output sent to the outside world will
never need to be revoked. This is called the output

commit problem.
In optimistic recovery, an output can be committed

when the state intervals that the output depends on have
all become stable [27]. An interval is said to be stable if it
can be recreated from the information saved on stable
storage. To determine when output can be committed,
each process periodically broadcasts a logging progress
notification to let other processes know which of its state
intervals have become stable. Such information is
accumulated at each process to allow output commit.

Example

An example of an optimistic recovery system is shown
in Fig. 1. Solid horizontal lines show the useful
computation, and dashed horizontal lines show the
computation that is either lost in a failure or rolled back
by the recovery protocol. In the figure, c1 and c2; shown
by squares, are checkpoints of processes P1 and P2
respectively. State intervals are numbered from s0 to s7
and they extend from one message receive to the next.
The numbers shown in rectangular boxes will be
explained later in this section.
In Fig. 1(a), process P1 takes a checkpoint c1; acts on

some messages (not shown in the figure) and starts the
interval s0: P1 logs to stable storage all messages that
have been received so far. It starts interval s2 by
processing the message m0: In interval s2; message m2 is
sent to P2: P1 then fails without logging the message m0
to stable storage or receiving the message m1: It loses its
volatile memory, which includes the knowledge about
processing the message m0: During this time, P2 acts on
the message m2:
Fig. 1(b) shows the post-failure computation. On

restarting after the failure, P1 restores its last checkpoint
c1; replays all the logged messages and restores the
interval s1: It then broadcasts a failure announcement
(not shown in Fig. 1). It continues its execution and
starts interval s6 by processing m1: P2 receives the

ARTICLE IN PRESS

(1,1)

(0,0)

(0,0)

fail

(0,0)

(2,8)

(1,5)

(1,2)
(1,2)
(1,6)

P1

P2

(a) (b)

m0

(0,0)

(1,7)

(1,3)

(0,0)

(1,2)

(1,5)

(1,1)

(1,8)

(1,3)

(1,1)

(1,8)

(1,6)

c1

c2

c1

c2

P0

(1,2)
(1,1)
(1,1)s0

s1

s3

s2

s5

m2

s3s0

s1

s6

s4

s5

s7

m0

m2
m3

s2

s4

m1

m1

Fig. 1. Example: optimistic recovery in action.

O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181198
failure announcement in interval s5 and realizes that it is
dependent on a lost state. It rolls back, restores its last
checkpoint c2; and replays the logged messages until it is
about to process m2; the message that made it
dependent on a lost state. It discards m2 and continues
its execution by processing m3: The message m2 is not
regenerated in post-failure computation. P0 remains
unaffected by the failure of P1:

Notations

We next define notations that are used throughout the
paper.

* i; j; k refer to process identification numbers.
* t refers to the incarnation number of a process.
* s; u; v;w; z refer to a state (or a state interval).
* Pi refers to the ith process.
* Pi;t refers to incarnation t of Pi:
* s:p denotes the identification number of the process to
which s belongs, that is, s:p ¼ i) sASi:

* x; y refer to state sequence numbers.
* ðt; xÞi refers to the xth state of the tth incarnation of
process Pi:

* m refers to a message.
* c refers to a dependency vector (defined in Section
3.5).

3.4. Causal dependency between states

In the previous section, we talked about one state
being dependent on another. The application state
resulting from a message delivery depends on (is
determined by) the content of the message delivered
and therefore depends on the state sending the message.
This dependency relation is transitive. It corresponds to
the - relation defined in the abstract model. Lamport
defined the happened before relation [18] for a failure-
free computation. Our dependency relation is an
adaptation of the happened before relation to a
failure-prone systems. The physical meaning of the
abstract relation - is as follows. In a failure-prone
system, happened before ð-Þ is the transitive closure of
the relation defined by the following two conditions:

* u-v; if the processing of an application message in
state u results in state v; (for example, s1-s6 in Fig.
1(b)),

* u-v; if the processing of an application message sent
from u starts v (for example, s2-s5 in Fig. 1(a)).

We say that u is transitively dependent or simply
dependent on s if s happened before u: By s

%
-u; we

mean s-u or s ¼ u: By sQu we mean s did not happen
before u: For example, in Fig. 1(b), s2Qs6:
Only application messages contribute to the happened

before relation. The recovery protocol might also send
some messages. These messages do not contribute to the
happened before relation.
Earlier we mentioned that a state dependent on a lost

state is called orphan. We can now formally define
orphan as
Definition 1. orphanðsÞ
 (u: lostðuÞ 4 u
%
-s:

To detect orphans, we need a mechanism to track
dependencies between states.

3.5. Dependency tracking mechanism

We use dependency vectors to track transitive
dependencies between states in a failure-prone system.
Although dependency vectors have been used before
[27], their properties have not been discussed.
A dependency vector has n entries, where n is the

number of processes in the system. Each entry contains
an incarnation number and a state sequence number (or
simply sequence number). Let us consider the depen-
dency vector of a process Pi: The incarnation number in
the ith entry of Pi’s dependency vector (its own
incarnation number) is equal to the number of times
Pi has failed or rolled back. The incarnation number in

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1199
the jth entry is equal to the highest incarnation number
of Pj on which Pi depends. Let entry e correspond to a
tuple (incarnation t; sequence number seq). Then,
e1oe2
 ðt1ot2Þ3½ðt1 ¼ t2Þ4ðseq1oseq2Þ:
A process sends its dependency vector along with

every outgoing message. Before delivering a message to
the application, a process updates its dependency vector
with the message’s dependency vector by taking the
componentwise maximum of all entries. The process
then increments its own sequence number.
To start a new incarnation, a process increments its

incarnation number (it leaves the sequence number
unchanged). A new incarnation is always started after a
rollback or a failure.
The dependency tracking mechanism is given in

Fig. 2. An example of the mechanism is shown in
Fig. 1. The dependency vector of each state is shown
in a rectangular box near it. The row i of the dependency
vector corresponds to Pi (Pi is shown as Pi in Fig. 1) .

3.5.1. Properties of dependency vectors

Dependency vectors have properties similar to Mat-
tern’s vector clocks [21]. They can be used to detect
transitive dependencies between useful states (states
which are neither lost nor orphan).
We define an ordering between two dependency

vectors c1 and c2 as follows:

c1oc2
 ð8i : c1½ipc2½iÞ4ð(j : c1½ joc2½ jÞ:
Let s:c denote the dependency vector of Ps:p in state s:

The following lemma gives a necessary condition for the
Q relation between two useful states.
Lemma 1. Let s and u be distinct useful states (neither

lost nor orphan). Then, sQu) u:c½s:pos:c½s:p:
Fig. 2. Dependency v
Proof. Let s:p ¼ u:p: Since s and u are distinct useful
states, it follows that u-s: During processing of a
message, Ps:p takes the maximum of dependency
vectors and then increments the sequence number of
its own component. On restart after a failure or a
rollback, Ps:p increments its incarnation number.
Since for each state transition along the path from u

to s; the local dependency vector is incremented,
u:c½s:pos:c½s:p:
Let s:pau:p . As sQu; Pu:p could not have seen

s:c½s:p; the local dependency vector of Ps:p: Hence
u:c½s:pos:c½s:p: &

As shown in the next theorem, the above condition is
also sufficient for the Q relation. The next theorem
shows that, despite failures, dependency vectors keep
track of causality for useful states.

Theorem 1. Let s and u be useful states in a distributed

computation. Then, s-u iff s:cou:c:
Proof. If s ¼ u; then the theorem is trivially true. Let
s-u: Since both s and u are useful, there is a message
path from s to u such that none of the intermediate
states are either lost or orphan. Due to monotonicity of
dependency vectors along each link in the path, 8j :
s:c½ jpu:c½ j: Since uQs; from Lemma 1, s:c½u:po
u:c½u:p: Hence, s:cou:c:
The converse follows from Lemma 1. &

Dependency vectors do not detect the causality for
either lost or orphan states. To detect causality for lost
or orphan states, we use an incarnation end table, as
explained in Section 4.3.
ector algorithm.

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181200
4. K-optimistic protocol

In this section, we first prove several fundamental
properties about optimistic recovery. Using these
properties, we design a K-optimistic protocol that
bridges the gap between optimism and pessimism. This
protocol provides a trade-off between recovery time and
failure-free overhead. For K equal to n; the protocol
reduces to the optimistic protocol presented in [7], while
for K equal to 0, it reduces to the pessimistic protocol
presented in [15].

4.1. Motivation

Traditional pessimistic logging and optimistic logging
provide a coarse-grain trade-off between failure-free
overhead and recovery efficiency: the application has to
either tolerate the high overhead of pessimistic logging
or accept the potentially inefficient recovery of optimis-
tic logging. For long-running scientific applications, the
primary performance measure is the total execution
time. For these applications, minimizing failure-free
overhead is more important than improving recovery
efficiency because failures are rare events. Hence,
optimistic logging is a better choice. In contrast, for
continuously-running service-providing applications,
the primary performance measure is the service quality.
Systems running such applications are often designed
with extra capacity which can absorb reasonable over-
head without causing noticeable service degradation. On
the other hand, improving recovery efficiency to reduce
service down time can greatly improve service quality.
As a result, many commercial service-providing applica-
tions have chosen pessimistic logging [13].
The above coarse-grain trade-off, however, may not

provide optimal performance when the typical scenarios
are no longer valid. For example, although hardware
failures are rare, programs can also fail or exit due to
transient software or protocol errors such as triggered
boundary conditions, temporary resource unavailabil-
ity, and by-passable deadlocks. If an application suffers
from these additional failures in a particular execution
environment, slow recovery due to optimistic logging
may not be acceptable. Similarly, for a service-providing
application, the initial design may be able to absorb
higher run-time overhead incurred by message logging.
However, as more service features are introduced in
later releases, they consume more and more computa-
tion power and the system may no longer have the
luxury to perform pessimistic logging.
These observations motivate the concept of K-

optimistic protocol where K is the degree of optimism
that can be tuned to provide a fine-grain trade-off. The
basic idea is to ask each message sender to control the
maximum amount of risk placed on each message. A
sender can release a message only after it can guarantee
that failures of at most K processes can possibly revoke
the message (see Theorem A.3 in Appendix A).
This protocol provides a trade-off between recovery

time and logging overhead, with traditional optimistic
and pessimistic protocols being two extremes. As the
value of K moves from n to 0, the recovery time goes
down with a corresponding increase in the logging
overhead. The parameter K can be dynamically changed
to adjust to a changing environment.

4.2. Theoretical basis

In Section 3.2, we presented the distinction between
restart due to a process’s own failure and rollback due to
some other process’s failure. Traditional optimistic
recovery protocols [25,27] blur this distinction and refer
to lost states as rolled back states. In order to relate our
results to those in the literature, we use the following
terminology. A state satisfies predicate rolled back if it
has been either lost in a failure or explicitly rolled back
by the recovery protocol. In traditional protocols, any
state dependent on a rolled back state is called an
orphan. The following predicate formally defines an
orphan state for these protocols.
Definition 2. orphanðsÞ
 (u : rolled backðuÞ 4 u
%
-s:

We have presented above definition only for an
understanding of the traditional protocols and for the
proof of the theorems in this section. In rest of the
paper, we use the orphan definition given in Section 3.4.
For emphasis, we reproduce that definition here:
Definition 1. orphanðsÞ
 (u : lostðuÞ 4 u
%
-s:

For orphan detection, traditional optimistic protocols
usually require every non-failed rolled back process to
behave as if it itself has failed [25,27]. After each failure
or rollback, a process starts a new incarnation and
announces the rollback. A process Pi announces a
failure or a rollback by broadcasting index ðt; x0Þi where
all states of incarnation t of Pi with sequence number
greater than x0 have been lost in the corresponding
failure or rollback. We observe that announcing failures
is sufficient for orphan detection. We give a proof of this
observation in the following theorem.
Theorem 2. With transitive dependency tracking, announ-

cing only failures (instead of all rollbacks) is sufficient for

orphan detection.
Proof. Let a state interval v be orphan because of
rollback of another interval u: Interval u rolled back
either because Pu:p failed or because a rollback of
another interval z made u orphan. By repeatedly
applying this observation, we find an interval w whose

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1201
rollback due to Pw:p’s failure caused v to become
orphan. Because of transitive dependency tracking,
Pv:p can detect that v depends on w: Therefore, Pv:p will
detect that v is orphan when it receives the failure
announcement from Pw:p: &

The above observation was first used in [7] and later
used in [24]. We carry this observation even further in
Theorem 3, by proving that any dependencies on stable
intervals can be omitted without affecting the correct-
ness of a recovery protocol which tracks transitive
dependencies. A state interval is said to be stable, if it
can be reconstructed from the information saved in
stable storage.
We say that v is commit dependent on w if v is transitively

dependent on w and w is not stable. A system is said to
employ commit dependency tracking if it can detect the
commit dependency between any two state intervals. The
following theorem suggests a way to reduce dependency
tracking for recovery purposes. It states that if all state
intervals of Pj; on which Pi is dependent, are stable then Pi

does not need to track its dependency on Pj :
Theorem 3. Commit dependency tracking and failure

announcements are sufficient for orphan detection.
Proof. Once a state interval becomes stable, it cannot be
lost in a failure. It can always be reconstructed by
restarting from its previous checkpoint and replaying
the logged messages. Following the proof in Theorem 2,
an orphan interval v must transitively depend on an
interval w that is lost in Pw:p’s failure. This implies that w

had not become stable when the Pw:p’s failure occurred.
By definition of commit dependency tracking, Pv:p can
detect that v transitively depends on w: Therefore, on
receiving the failure announcement from Pw:p; Pv:p will
detect v to be orphan. &

A process can explicitly inform other processes of new
stable state intervals by periodically sending logging
progress notifications. Such information can also be
obtained in a less obvious way. A failure announcement
containing index ðt; x0Þi indicates that all states of
incarnation t of Pi with sequence number greater than
x0 have been lost in a failure. Since the state with
sequence number x0 has been restored after a failure, the
announcement also serves as a logging progress
notification that interval ðt; x0Þi has become stable.
Corollary 1 summarizes this result.
Corollary 1. Upon receiving a failure announcement

containing index ðt;x0Þi; a process can omit the depen-

dency entry ðt; xÞi if xpx0:

Corollary 1 is implicitly used by Strom and Yemini
[27] to allow tracking dependency on only one
incarnation of each process so that the size of
dependency vector always remains n: when process Pj

receives a message m carrying a dependency entry ðt; xÞi

before it receives the rollback announcement for Pi’s
incarnation ðt � 1Þ; Pj should delay the delivery of m until

that rollback announcement arrives. This in fact im-
plicitly applies Corollary 1.
We can further apply Corollary 1 to eliminate

unnecessary delays in message delivery. Suppose Pj

has a dependency on ðt � 2; xÞi when it receives message
m carrying a dependency on ðt; x þ 10Þi: According to
Theorem 3, Pj only needs to be informed that interval
ðt � 2; xÞi has become stable. It does not need to be
informed anything about incarnation ðt � 1Þ before it
can acquire the dependency on ðt; x þ 10Þi and overwrite
ðt � 2; xÞi: Pj can obtain that information when it
receives either a logging progress notification or a
failure announcement from Pi: A more interesting and
useful special case is when Pj does not have any
dependency entry for Pi at all and so the delay is
altogether eliminated.
Based on these results, we have developed an efficient

optimistic protocol, which is described next.

4.3. The protocol

4.3.1. Data structures

The variables maintained by a process in this protocol
are shown in Fig. 3. The integer K is the degree of
optimism. Dependency tracking is done by the depen-
dency vector c: The messages received from the
communication subsystem but not yet delivered to the
application are kept in the Receive buffer. The messages
sent by the application, but not yet delivered to the
communication subsystem are stored in the Send buffer.
In Log prog, logging progress information is maintained
by keeping an entry for the highest known stable
interval of each known incarnation of each process. The
received failure announcements are stored in an
incarnation end table (iet). Variable cur inc stores the
current incarnation number in stable storage. This
avoids the loss of incarnation number information in a
failure. A simplification that we use to clarify the
correctness proof is that of replacing checkpointing and
message logging with saving of entire states. Our
implementation indeed uses checkpointing and message
logging. We discuss this point in detail in Section 4.3.10.

4.3.2. Auxiliary functions and predicates

Fig. 4 shows predicates and functions used in the
protocol. We next explain each of them.

* knows orphan: If a state s knows that a state u is
orphan then the predicate knows orphanðs; uÞ is true.
This is the case, when the iet of s shows u to be
dependent on a lost state.

ARTICLE IN PRESS

Fig. 4. Predicates and functions used in the protocol.

Fig. 3. Variables maintained by a process.

O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181202
* stable: If s belongs to Stable state list of Ps:p; then
stableðsÞ is said to be true.

* seq num: This function takes a set of entries and an
incarnation number and returns the sequence number
associated with the given incarnation number in the
set.

* knows stable: A state u is said to correspond to entry
e if u:c½u:p is equal to e: If a state s knows that Pj’s
state corresponding to entry e is stable then predicate
knows stableðs; e; jÞ is true.

* admissible: The predicate admissibleðm; sÞ is true if a
message m can be processed in a state s: The message
can be processed if no dependency on any unstable
interval will be overwritten in taking maximum of m:c
and s:c:

* get state: This function takes a process id and an
entry and returns the state interval of the given
process that corresponds to that entry.

* Insert: This function inserts an entry ðt; xÞ in a set se:
If an entry ðt; yÞ for incarnation t already exists in se;
then that entry is replaced by ðt;maxðx; yÞÞ: This
ensures that the set se contains the latest information
about incarnation t:

* NULL: A NULL entry is defined to be lexicographi-
cally smaller than any non-NULL entry.

In the protocol, unspecified state variable s stands for
the current state unless otherwise stated. In a predicate,
if a message m is used instead of a state u then u:c in
predicate definition is replaced by m.c.

4.3.3. Initialization

We next describe the actions taken by a process Pi

upon the occurrence of different events. The initializa-
tion routine is given in Fig. 5.

Initialize: Upon starting the execution, a process has
no dependency on any other process. Therefore, Pi sets
all dependency vector entries, except its own, to NULL.
Since each process execution can be considered as
starting with an initial checkpoint, the first state interval
is always stable. Therefore, Pi updates its Log prog

accordingly. We show the initial state being added to the
State list. In practice, this is not done as the program
itself serves as the initial state.

4.3.4. Message manipulation

Routines that manipulate messages are given in
Fig. 6.

Send message: To send a message, the current
dependency vector is attached to the message and the
message is added to Send buffer. The message is held in
Send buffer if the number of non-NULL entries in its
dependency vector is greater than K : Messages held in
Send buffer are sent in the routine Check send buffer

(in Fig. 7).
Receive message: A received message is discarded if it

is known to be orphan. Otherwise, it is added to
Receive buffer.

Process message: When the application needs to
process a message, any of the admissible messages
among the received ones is selected. A message is
admissible, if its delivery does not result in the

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1203
overwriting of any non-stable entry in the dependency
vector. In other words, if delivering a message to the
application would cause Pi to depend on two incarna-
tions of any process, Pi waits for the interval with the
smaller incarnation number to become stable. This
information may arrive in the form of a logging progress
notification or a failure announcement. Such situation
Fig. 5. K-optimistic protocol: initialization routine.

Fig. 6. K-optimistic protocol: Routines that manipulate messages.

Fig. 7. K-optimistic logging protocol
may arise only for a small time interval after a failure
and failure are expected to be rare, hence such blocking
will rarely occur. After application processes a message,
the current state is included in volatile log. In Section
4.5, a detailed example is given. Delivery of message m4
to the application is delayed till the corresponding
failure announcement is received.

4.3.5. Routines executed periodically

We now describe the routines in Fig. 7. These routines
are executed periodically.

Check orphan: This routine is called to discard orphan
messages from the receive and the send buffers.

Check send buffer: This routine updates the depen-
dency vectors of messages in Send buffer. It is invoked
by the events that can announce new stable state
intervals, including: (1) Receive log prog for receiving
logging progress notification; (2) Receive failure ann

(according to Corollary 1); and (3) Log state. When a
message’s dependency vector contains K or less non-
NULL entries, it is sent.

Broadcast log prog: Pi informs other processes about
its logging progress by broadcasting its Log prog.
However, logging progress notification is in general less
frequent than the logging of states.

Log state: This routine is called to save volatile states
on stable storage.

4.3.6. Handling a logging notification

On receiving a logging progress notification, the
routine in Fig. 8 is called.

Receive log prog: Upon receiving a logging notifica-
tion, a process updates its Log prog. It also sets the
stable entries in its dependency vector to NULL. The
Log prog is periodically flushed to stable storage. As
: routines invoked periodically.

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181204
some part of the Log prog may get lost in a failure, a
process needs to collect the logging information from
other processes on restarting after a failure.

4.3.7. Handling a failure

We next describe the routines in Fig. 9. These routines
are executed in case of a failure.

Restart: On restarting after a failure, Pi restores its
last stable state and broadcasts the index of this state as
a failure announcement. We assume that the reliable
broadcast of a failure includes the execution of the
routine Receive failure ann by all processes. Pi starts a
new incarnation by incrementing its incarnation number
in the routine Start incarnation.

Receive failure ann: On receiving a failure announce-
ment, Pi updates its incarnation end table. As explained
in Section 4.2, this announcement also serves as a
logging progress notification. Pi also discards orphan
messages in Send buffer and Receive buffer by calling
Check orphan (in Fig. 7). If the current state of Pi has
become orphan due to this failure, then Pi rolls back by
calling Rollback.

Rollback: Before rolling back, Pi logs its volatile states
in stable storage. Clearly, an implementation will log
only the non-orphan states. The highest non-orphan
stable state is restored and the orphan states are
Fig. 8. K-optimistic logging protocol: rout

Fig. 9. K-optimistic logging protoc
discarded from stable storage. A new incarnation is
started. No rollback announcement is send to other
processes, which is a distinctive feature of our protocol.

Start incarnation: This routine increments the current
incarnation number, which is saved in stable storage as
the variable cur inc. This ensures that the current
incarnation number is not lost in a failure. This routine
also updates the dependency vector.

4.3.8. Adapting K

Note that there is nothing in the protocol to prevent a
change in the value of K : Therefore, the value of K can
be changed dynamically in response to changing system
characteristics. Also, different processes can have
different value of K : A process that is failing frequently
may choose to become completely pessimistic by setting
its K value to 0 while other processes in system may
continue to be optimistic. On the other hand, if the
stable storage manager becomes busy, a process may
choose to increases its K value.

4.3.9. Output commit

If a process needs to commit output to external world,
it maintains an Output buffer like the Send buffer. This
buffer is also updated whenever the Send buffer is
ine for receiving logging notification.

ol: routines involving failure.

ARTICLE IN PRESS

Fig. 10. K-optimistic protocol routines that use checkpointing.

Fig. 11. Modified K-optimistic logging protocol routines.

O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1205
updated. An output message is released when all entries
in message’s dependency vector become NULL. It is
interesting to note that an output can be viewed as a 0-
optimistic message, and that different values of K can in
fact be applied to different messages in the same system.
In our implementation described in Section 5, we do not
use the Output buffer. Instead, we attach a K value with
each message with 0 being assigned to output messages.
In practice, the concept of K-output commit may also

be useful. Although strict output commit may be
necessary for military or medical applications, most
service-providing applications can revoke an output, if
absolutely necessary, by escalating the recovery proce-
dure to a higher level which may involve human
intervention. Therefore, K-output commit can be useful
to provide a trade-off between the commit latency and
the degree of commitment.

4.3.10. Using checkpoints and message logs

A simplification that we have used to clarify the
correctness proof is that of replacing checkpointing and
message logging with the saving of entire states. In our
presentation, we save all states in volatile and stable
storage. This is useful only in the unlikely case of the
average state size being much smaller than the average
message size. Otherwise, an implementation should save
the received message instead of the states in volatile
memory. Periodically, the current state should be saved
on stable storage as a checkpoint. Any state can be
reconstructed by restoring the highest checkpoint prior
to that state and replaying the messages that have been
received between the checkpoint and the state. Instead
of a volatile State list, a volatile Message list is used. A
Stable message list is also used. Checkpoints are stored
in Stable state list. Instead of routine Log state,
two new routines are used. These routines are given in
Fig. 10. The old routines that are modified by this
implementation strategy are shown in Fig. 11.
So far, we have discussed the design of the K-

optimistic protocol. There are a number of implementa-
tion issues that have been avoided for clarity. We now
take a look at these issues.

4.4. Implementation notes

There are a number of policy decisions and optimiza-
tions that are available to a system designer.

4.4.1. Policy decisions

1. While broadcasting the logging progress information,
a process can choose to broadcast either its own
logging information only or the information about all
processes that it knows of. Similarly, at the time of
failure announcement, logging information about all
processes can be broadcast.
2. In general, logging progress need not be broadcast
reliably. For a given incarnation, logging progress is
monotonic. Therefore, future notification will supply
the missing information. However, if an implementa-
tion does not broadcast the information about
previous incarnations, then in the routine
Start incarnation, logging information of previous
incarnation needs to be broadcast reliably.

3. We maintain the dependency vector as a vector of n

entries. However, dependency vector can also be
viewed as a set of triplets of the form (process
number, incarnation number, sequence number).
Depending on the relative values of K and n; more
efficient form should be used.

4.4.2. Optimizations
1. In Fig. 11, in routine Restart, failure broadcast is
done after replaying the messages. An implementa-
tion will compute the index of the maximum
recoverable state and broadcast it before replaying
the messages.

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181206
2. In Fig. 11, routine Log message is called in the
routine Rollback to log all unlogged messages. An
implementation will log only non-orphan messages.

3. When a process sets its K value to 0, it needs to
reliably broadcast a logging progress notification.
After that it does not need to send a logging
notification as no other process will be commit
dependent on its future intervals. With this optimiza-
tion, our protocol behaves like the pessimistic
protocol in [15] for K equal to 0.

4.4.3. Other issues

In this paper, our focus is on the design of efficient
optimistic protocols. There are a number of implemen-
tation issues that are not addressed here. We next give a
partial list of these issues. These and many other issues
are discussed in detail in [8].

* Failure detection: In theory, it is impossible to
distinguish a failed process from a very slow
process [11]. In practice, many failure detectors
have been built that work well for practical situa-
tions [12]. Most of these detectors use a timeout
mechanism.

* Garbage collection: Some form of garbage collection
is required to reclaim the space used for checkpoints
and message logs [27].

* Stable storage: Logging protocols require some form
of stable storage that remains available across
failures. In a multi-processor environment local disk
can be used, because as other processors can access
the local disk even if one of the processors fails. In a
networking environment, the local disk may be
inaccessible when the corresponding processor fails.
Therefore, a network storage server is required. The
storage server itself can be made fault-tolerant by
using the techniques presented in [20].

* Network address: When a failed process is restarted, it
may have a different network address. Therefore,
location independent identifiers need to be used for
the purpose of inter-process communication.

* Environment variables: If a failed process is restarted
on a processor different from the one used before the
failure then some inconsistency may arise due to
mismatch of the values of environment variables in
pre- and post-failure computation. In such scenario,
logging and resetting of environment variables is
required.

4.5. A detailed example

Fig. 12 shows an example of the protocol execution.
Dependency vectors are shown only for some states and
messages. To avoid cluttering the figure, some messages
causing state transitions are not shown. The K value for
P0 and P1 is 3 and that for P2 is 1.
In Fig. 12(a), P1 sends the message m1 to P0 in the
state interval s1: P0 processes this message, starts the
state interval s4 and sends a message m5 to P1 (m5 is
shown in Fig. 12(b) only). In the state interval s2; P2
sends the message m0 to P1: However, the recovery
layer delays the sending of m0 as it is dependent on two
non-stable intervals. The message is sent after P2 makes
its own interval (1,4) stable. P1 processes this message
and sends the message m2 to P0: It performs some more
computations and fails (shown by a cross). At the time
of failure, it has logged all the messages received till the
interval s1 and has not logged the message m0: During
this time, P0 acts on the messages m2 and starts the
interval s5:
The post-failure computation is shown in Fig. 12(b).

On restart, P1 restores its last checkpoint c1; replays the
logged messages and recreates the interval s1: It broad-
casts the failure announcement (3,6) to other processes
and increments its own incarnation number. P1 now
processes message m5 resulting in the interval s6: P1
sends message m4 to P0: During this time, P0 sends the
message m3 to P2: The recovery layer of P0 receives the
message m4 before it receives the failure announcement
from P1: Note that the message m4 is received by the
recovery layer in state s5; but it is not delivered to the
application. In the figure, arrows point to the state in
which a message is delivered and not the state in which
they are received. The second entry in dependency
vector of m4 is ð4; 7Þ; while the second entry in P0’s
dependency vector in state s5 is ð3; 7Þ: Therefore, P0
decides that m4 is inadmissible. Later, when P0 receives
the failure announcement in state s5, it inserts the entry
ð3; 6Þ in its iet½1 (see Fig. 9). Then the predicate
knows orphanðs5; s5Þ becomes true for j ¼ 1; t ¼ 3; and
x ¼ 6: Hence P0 rolls back. P0 restores the checkpoint
c0 and replays the logged messages, until, in state s4; it is
about to process the message m2 that made it orphan. It
discards m2 and increments its incarnation number. It
does not send out any rollback announcement. Now
message m4 is processed and interval s7 is started. On
receiving message m3; P2 detects that m3 is orphan and
discards it.

4.6. Variations of the basic protocol

The K-optimistic protocol presented in previous
sections is one of the possible applications of Theorem 3.
This theorem can be used to implement many different
policies. For example, Pi may be unwilling to roll back
due to a failure of Pj : This can be enforced by Pi by
blocking the delivery of any message that is commit
dependent on any interval of Pj till that interval
becomes stable. Interestingly, Pi may choose to become
commit dependent on Pk while avoiding commit
dependency on Pj; even though Pk may become commit
dependent on Pj : This is because, on receiving a message

ARTICLE IN PRESS

(a) (b)

P1

P2

c0

c1

m1

P0

(--)

(3,5)

(1,4)

m2
(2,2)

(3,7)

(1,1)

(--)

(3,5)

(--)

c2

fail

m3

(K:3)

(K:3)

(K:1)
s2

s3

s1

s4 s5

(2,2)

(3,6)

(1,1)

(2,4)

(3,6)

(1,2)

(2,5)

(3,7)

(1,2)

m2
m4

s6

s5

m0

s1

m5

(2,4)
(4,7)
(1,2)

s7
(3,5)
(4,7)
(1,2)

s3

s4

s2

m0

Fig. 12. K-optimistic recovery: (a) Pre-failure computation (b) Post-failure computation.

O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1207
from Pk; Pi can detect that Pk is passing an unstable
dependency on Pj: That message delivery can be blocked
by Pi till the dependency on Pj becomes stable.

4.6.1. Simulating a failure

As discussed in Section 1, there are many scenarios
like non-crash failures and software error recovery,
where recreating pre-failure states is undesirable. This
poses a problem for our protocol, because we are setting
stable entries to NULL under the assumption that they
can never be lost in a failure. But, now we need to
simulate the loss of stable intervals. To do this, we add
one more bit (initially 0) to each entry in the dependency
vector. Instead of setting an entry to NULL, we simply
set the corresponding bit to 1. Lexicographic compar-
ison operation still remains the same. Incarnation
numbers and state indices are compared to determine
the maximum of two entries. Everything else in the
protocol remains the same except that for the purpose of
orphan detection, all entries including the stable ones
need to be inspected. For example, suppose the second
entry of P1 dependency vector is (2,6,0). It corresponds
to entry (2,6) in the old notation. Now P1 receives the
logging notification (2,8) from P2: Instead of setting
(2,6,0) to NULL, it is changed to (2,6,1). Later on, if P2
were to simulate a failure and send the announcement
(2,4), P1 will know that it is an orphan by comparing
(2,4) to the entry (2,6,1) in its dependency vector.
There is a clear limitation of this approach. It does

not work when an entry from a lower incarnation is
overwritten by an entry from a higher incarnation. This
means that failures can be simulated only within the
current incarnation.
An alternative approach to failure simulation is that

in addition to logging on stable storage, an application
may also need to satisfy some other conditions before it
can declare an interval stable. For example, with latent
errors, an interval becomes stable only after the
maximum error detection latency period.
5. Experimental results

So far we have mainly discussed the theoretical issues
related to K-optimistic logging. This section presents the
experimental results of a prototype implementation.
To our knowledge, there is no general answer to the

question: What value of K should one use? It depends
entirely on the application characteristics and the
application. Some of the factors that play a crucial role
are: communication pattern, message size distribution,
message arrival rate, network bandwidth, stable storage
server load, and failure probability. Given the wide
range of these parameters, it is not possible to come up
with a table showing the failure-free overhead and the
recovery time for combinations of particular values of
these parameters. Instead, we recommend that a
prototype of the application be run with different values
of K and be tested for different failure scenarios. Based
on the observed behavior and the application require-
ments regarding maximum down time and failure-free
overhead, appropriate value of K can be chosen. In the
following sections, we discuss some particular applica-
tions and present the failure-free overhead and recovery
time for the single failure case.

5.1. Architecture

We have implemented a prototype of the K-optimistic
protocol. Our architecture is shown in Fig. 13. An
application is compiled with a recovery library that
consists of a logging server, a checkpointing server and a
recovery manager. Solid arrows show the flow of
application messages while the dashed arrows show the
messages required for the fault-tolerance. Application
should periodically send an I-am-alive message to the
failure detector. As per the diagram, recovery manager
and application belong to the same process. Therefore,
on detecting many consecutive missing I-am-alive
message, the failure detector will start a new recovery

ARTICLE IN PRESS

to other
Recovery
Managers

Application

Message
Logging Checkpointing

Recovery
Manager

Failure
Detector

Stable
Storage

to other
application
processes

Recovery
Layer

Fig. 13. Recovery layer architecture.

O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181208
manager which will load the latest checkpoint and
pass the control to the application. Since our focus
is on the message logging part, we have not imple-
mented the checkpointing server and the failure detector.
We simulate them appropriately, as explained in the
Section 5.5.

5.2. Message logging policy

In traditional optimistic schemes, the volatile log is
periodically flushed to stable storage. However logging
at fixed interval does not work well for the K-optimistic
scheme. This is because for the lower values of K ; the
logging needs to take place more often to give
acceptable performance. For example, consider the case
of K being 0. If messages are logged at a fixed interval of
say 300 ms; then no process can send out messages
faster than once in 300 ms:
The application progress is affected in a non-linear

fashion with the varying logging frequency. Higher
logging frequency may result in non-optimal use of the
file server. Also, the application and the logging server
may compete for the processor cycles and the network
bandwidth. On the other hand, lower logging frequency
may result in messages being held in Send buffer for a
long time. This implies that for a given value of K; one
needs to experiment with different values of logging
frequency to select the optimal value. However, this
method of determining logging frequency does not work
in presence of different message sizes, changing message
arrival rates and varying system load.
To solve this problem, we have designed a novel

message logging policy. Our policy asynchronously logs
the very first message, right after it is received. After
that, whenever a notification from the file server is
received that the previous logging completed success-
fully, all the received messages since the previous logging
are submitted to the file server for asynchronous
logging. This policy automatically adapts to the chan-
ging system load. For a lightly loaded system, messages
will be logged frequently. As the system load increases,
logging frequency decreases correspondingly.
For K value of n; above logging policy is similar in

spirit to the logging policy used in traditional optimistic
protocols. Even for K value of 0, this policy works like
the pessimistic protocol in [15]. In that protocol, the
logging overhead is reduced by delaying the logging till
the point where a message dependent on unlogged
messages needs to be sent.
A related issue is that of logging progress notification

frequency. It offers trade-offs similar to those discussed
for the logging frequency. However, as the size of the
logging notification message is much smaller than a
typical application message (8 to 8n bytes, depending on
the implementation), frequent notification results in
negligible overhead compared to frequent logging. We
also piggyback the logging progress information about
the highest known incarnation of each process on every
outgoing message. We found that this adds very little to
the message processing overhead but helps in fast
logging notification.
We have chosen a period of 500 ms for the logging

notification, except when K equals n; for which
notification period is 1 second. In the latter case, logging
notification is needed only for the output commit and
not for the progress of the computation.

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1209
5.3. Test scripts

In our experiments, each process receives a message,
sleeps for a while, sends a message and then blocks for
the next message receive. In the beginning, an initiator
process sends a message to all other processes. For a
given experiment, the message size is fixed but compute
time is chosen uniformly from a range. Compute time is
the time between the processing of a message and the
send of next message. It is inversely related to message
frequency.

5.4. Application parameters

We vary following parameters in our tests: message
size, compute time and communication pattern. We
consider these parameters because they are the main
determinant of the trade-off provided by the K-
optimistic protocol. The trade-off depends on two
factors: how fast messages can be logged and how fast
messages need to be logged. How fast messages can be
logged depends on the message size. How fast the
messages need to be logged depends on the message
frequency. We later show that communication pattern
also determines how fast messages can be logged.

5.4.1. Communication pattern

We have tested our protocol for two different
communication patterns. In test Random, the receiver
of a message is chosen randomly by the sender, whereas
in test Neighbor, processes are arranged in a ring and
they alternately send messages to their left and right
neighbors only. Tests Random and Neighbor were
chosen because they are representatives of the many
different applications studied in the literature [10,23].
They represent two extreme communication patterns for
distributed applications and if our protocol works well
for these extremes, then it should work well for the
patterns in between the extremes.
In Random, each process receives messages from all

other processes. Therefore, if a single process were to
fail, other processes will not slow down much as they
will still be able to communicate with each other. On the
other hand, in Neighbor, failure of a single process
changes the topology from a ring to a doubly-linked list.
The neighbors of the failed process are expected to slow
down as their message intake is reduced by half. As a
result, other neighbors of these neighbors will also slow
down and so on, resulting in a slowdown of the entire
application. In Neighbor, all processes receive equal
number of messages and so they block and compute for
approximately equal periods. On the other hand, in
Random, some processes receive a little more messages
than average while others receive a little less. This
implies that some process may be blocked waiting for a
message to process while some other process may always
have a message to process when it needs one.

5.4.2. Message size and compute time

We have selected specific message sizes and compute
time to illustrate a wide range of applications. If the
message logging time for most messages is less than the
minimum computation time, then most of the messages
will be logged before the application finishes processing
them. As a result, very few messages will get lost in a
failure and the recovery time will be dominated by the
checkpoint restoration and the message replay time for
the failed process. Therefore, the recovery time for
different values of K should be similar. Also, during
failure-free computation, very few messages should be
held in the send buffer. Therefore, the overhead for
different values of K should be similar and little. This
overhead can be made arbitrarily small by selecting very
high compute times. If the message logging time for
most messages is more than the maximum compute
time, then the overhead for lower values of K can be
arbitrarily large depending on the actual values of
logging and computation time.
For message size of 1K, compute time of 80–100 ms is

more than the average logging time for both the tests.
For message size of 10K, compute time of 80–100 ms is
less than the average logging time for both the tests. For
message size of 4K, compute time of 50–70 ms is less
than the average logging time for Random and more
than the average logging time for Neighbor.

5.5. Performance evaluation

5.5.1. Performance metrics

We measure the failure-free overhead by running the
test with and without K-optimistic logging for different
values of K :We measure recovery time as the difference
in the average values of execution time without any
failure and the execution time with a single failure. This
definition implies that the recovery time may be similar
for different values of K ; even though the number of
processes rolling back are different. This is because
processes may roll back concurrently. Also, when one
process rolls back, other processes may block. There-
fore, the recovery time may change little if the blocked
processes were to actually roll back a little.

5.5.2. Experimental settings

We use a network of IBM-250/25T workstations
connected by a 10 Mb=s Ethernet. Each workstation
runs AIX 4.1.5 and is equipped with a 66-MHz
PowerPC 601 processor, 32 KB of data cache and
256 MB of memory. A highly available NFS is used for
stable storage.

ARTICLE IN PRESS

0 2 4 6 8

Degree of optimism

0

10

20

30

40

50

60

70

F
ai

lu
re

-f
re

e
 o

ve
rh

ea
d

(%
) 1:1024,80-100

2:4096,50-70
3:10240,80-100

0 2 4 6 8

Degree of optimism

0

1

2

3

4

5

6

7

R
ec

ov
er

y
 t

im
e

(s
ec

.)

(a)

(b)

Fig. 14. Performance results for application Neighbor. Legend consists

of the experiment number, the message size in bytes and the compute

time range in milliseconds.

O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181210
5.5.3. Measurement methodology

All measurements are made with applications dis-
tributed across 4 machines with 2 processes per
machines. All tests involved 20 trials. All results
presented here are averages of middle 10 values for
each test. The duration of a trial for the case of no
message logging ranged from 24 to 40 s for different
combinations of test parameters. Standard deviations
for most measurements are under 1% of the average.
The occurrence of a failure is simulated after a process

has processed 30 messages since a designated check-
point. The latency of failure detection is heavily
dependent on the implementation of the failure detector
and the application environment. Since we consider only
the single failure case, we have chosen to ignore this
latency in comparing the recovery time for different
values of K : Since the checkpoint size in our tests is very
small, we simulate the cost of restoring a large
checkpoint and reading the message log by blocking
the application for 2 s while recovering from a failure.
The value of 2 s was chosen based on the values
reported in [23].

5.5.4. Results

The results of our experiments are shown in
Figs. 14 and 15. Part (a) of the figures shows the
failure-free overhead in percentage terms for various
values of K : Part (b) shows the recovery time in seconds
for the corresponding values of K : First entry in the
legends is an experiment number that we use to discuss
the results. Next two entries show the message size in
bytes and the range in millisecond from which computa-
tion time for each message is uniformly chosen.
The failure-free overhead for traditional optimistic

ðK ¼ 8Þ and pessimistic ðK ¼ 0Þ logging ranges from
6% to 14% and 8% to 66% respectively. These ranges
are completely arbitrary and they can be much larger or
smaller, depending on the application characteristics.
For example, in [29], overhead of 3% is reported for
completely pessimistic logging with a compute time of
2 s: The recovery time measurement should be used for
illustration only, and not as the absolute values since we
simulate the failure.

5.5.5. Discussion

Both failure-free overhead and recovery time graphs
for experiment 4 are almost flat. This is to be expected,
since in this experiment, almost all messages are logged
before the application finishes processing them. Same
logging pattern implies same failure-free overhead. Since
no messages are lost in a failure, recovery time is also
same for different values of K : In general, whenever
compute time is much more than the average message
logging time, we should expect the failure-free overhead
and the recovery time graphs to be flat.
All other parameters being equal, the failure-free
overhead for Neighbor is always more than that for
Random. In Neighbor, all processes block and compute
for similar period of time. Therefore, there are times
when no process is trying to log messages while at other
times, many processes try to log messages concurrently.
Compared to this, access to stable storage is more
uniformly distributed over time for Random. Another
reason is that in Neighbor, if one process is waiting for
the current logging to finish to release its messages from
the send buffer, then its neighbors also slow down.
However, in Random, neighbors can receive messages
from any other processes and can make progress.
We also note that the recovery time for Neighbor is

always more than the recovery time for Random. This is
because while a process is recovering, its neighbors
receive messages only from their other neighbor, while
in Random, they receive messages from many other
processes.

ARTICLE IN PRESS

0 2 4 6 8

Degree of optimism

0

10

20

30

40

50

60

70
F

ai
lu

re
-f

re
e

 o
ve

rh
ea

d
(%

) 4:1024,80-100
5:4096,50-70
6:10240,80-100

0 2 4 6 8

Degree of optimism

0

1

2

3

4

5

6

7

R
ec

ov
er

y
 t

im
e

(s
ec

.)

(a)

(b)

Fig. 15. Performance results for application Random. Legend consists

of the experiment number, the message size in bytes and the compute

time range in milliseconds.

O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1211
For lower values of K ; the time to restore the
checkpoint and replay the message logs is always greater
than the recovery time, which is defined as the difference
in the running time of a failure-free run and a single-
failure run. This is because while a process is recovering,
other processes are making progress. Also, other
processes are sending messages to the recovering
process. Therefore, when the failed process finishes its
replay, it will have many more messages to process
without blocking for the want of a message to process.
Another interesting trend is that for the lower values

of K and the same value of compute time, computation
with smaller message size takes longer to recover. This is
contrary to what one would expect if one were to define
recovery time as the time to restore the checkpoint plus
the time to replay the message logs. We explain this with
reference to the experiments 1 and 3. But before that, let
us understand the effect of a failure on an application
completion time.
In general, processes compute most of the time and

when they have no messages to process, they remain
idle. When a failed process is recovering, it is also
receiving messages from other processes. After the end
of the replay, the failed process acts on these received
messages and does not remain idle for quite some time.
In this period, other processes receive message from the
failed process at a rate faster than normal. As a result,
overall computation proceeds at a rate faster than
normal. More time a computation takes to finish in a
failure-free run, less is the increase in completion time
caused by a failure because the computation has more
time to adjust to the disturbance caused by a failure.
Since messages of size 1K are logged faster than

messages of size 10K, in the absence of any failure,
experiment 1 takes less time to complete than experi-
ment 3. Experiment 1 takes 37 s whereas experiment 3
takes 49 s: A failed process takes almost same time ð5 sÞ
to restore a checkpoint and replay messages in both
experiments. Compared to experiment 1, experiment 3
has more time to adjust to the disturbance caused by this
blocking. Therefore, the extra time taken to finish is
more in experiment 1.
For higher values of K and same compute time,

recovery time is lower for experiments with lower
message sizes. This is expected because for lower
message sizes, fewer messages are lost in a failure and
as a result, fewer processes roll back compared to higher
message sizes.
The failure-free overhead varies with varying message

sizes in an intuitive manner. For Random, the failure-
free overhead does not increase much as the K changes
from 8 to 4. This is probably because most messages are
dependent on at most 4 non-stable intervals. Therefore,
for K value of 4–8, most messages are never held in the
send buffer, resulting in similar failure-free overhead.
However, logging progress in Neighbor is slow com-
pared to Random for the reasons discussed earlier.
Therefore, for experiments 2 and 3, failure-free overhead
changes as K changes from 8 to 4. For experiment 1,
small message size results in little change of failure-free
overhead for higher values of K :
Finally, note that the configurations that give similar

failure-free performance (5,6) give different recovery
characteristics.

5.6. Selecting K

At the beginning of this section, we proposed that to
select the appropriate value of K for a given application,
a prototype of the application should be run with
different values of K and failure-free overhead and
recovery time graphs should be obtained. After that, K

can be chosen based on the constraints on the failure-
free overhead or recovery time. For example, let us
consider the results of the experiment 2, shown in
Fig. 14. If the system designer wants to minimize the
recovery time while keeping failure-free overhead under

ARTICLE IN PRESS

0 2 4 6 8

Degree of optimism

0

2

4

6
F

.5

.25

Fig. 16. Selecting a K value for a given a: Numbers in the legend
represent the a values.

O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181212
20% then he can choose K equal to 6. On the other hand
if the goal is to have the maximum recovery time of 4 s
while minimizing the failure-free overhead then K value
of 2 can be used.
Another approach is to minimize an objective

function of the failure-free overhead and recovery time.
For example, let the objective function F be

FðO;RÞ ¼ aO þ ð1� aÞR:

Arguments O and R represent the failure-free over-
head and the recovery time in some normalized form
and a is a parameter to be chosen by the system
designer. As a changes from 0 to 1, we should expect the
optimum K value to change from 0 to n: In Fig. 16, we
plot the function F for two different values of a:
Argument O is obtained by dividing the failure-free
overhead for experiment 2 by 10% and argument R is
taken as recovery time. As both curves have a unique
minimum, we select the K value of 4 for a equal to 0.5
and K value of 2 for a equal to 0.25.
6. Conclusion

We have proved two fundamental results. First, with
transitive dependency tracking, only the failures and not
all rollbacks need to be announced. Second, only the
dependencies on non-stable intervals need to be tracked.
Based on these results, we have introduced the concept
of K-optimistic logging that allows a system to explicitly
fine-tune the trade-off between failure-free overhead and
recovery efficiency. In such a system, given any message,
the number of processes whose failures can revoke the
message is bounded by K ; and therefore K indicates the
maximum amount of risk that can be placed on each
message or equivalently the degree of optimism in the
system. Traditional pessimistic logging and optimistic
logging then become the two extremes in the spectrum
spanned by K-optimistic logging.
Appendix A. Properties of the protocol

In this section, we prove our protocol correct and
discuss its properties. All the lemmas and invariants
presented before Theorem A.1 are used for the correctness
proof in the Theorem A.1. Theorem A.2 shows that our
protocol does not indefinitely postpone the sending of a
message. Theorem A.3 establishes the meaning of K ; i.e.,
given any message m released by its sender, the number of
processes whose failure can revoke m is at most K :
In Fig. 4, the function get state returns a state interval

of a given process corresponding to a given entity. This
function is well defined only if the entries corresponding
to the states of a process are unique. The following
observation shows that the function get state is indeed
well defined.

Observation A.1. Different states of the same process

have different entries.

Proof. Whenever a new state is started in the routine
Process message; sequence number is incremented. In

Start incarnation; incarnation number is incremented.
Storing cur inc on stable storage prevents the loss of
incarnation information in a failure. A failure before the
completion of the routine Start incarnation will result in
the restoration of the same state. Therefore, reuse of the
incarnation number does not matter. &

The converse of this lemma is not true. A state can
have more than one entry. This happens to a state
restored after a failure or rollback when the state’s
incarnation number is incremented.
The following lemma shows that stability is mono-

tonic with respect to the happened before relation within
the same process.

Lemma A.1. ðs
%
-w4s:p ¼ w:p4stableðwÞÞ) stableðsÞ:

Proof. First note that whenever an interval is started, it
is added to the State list: Also note that either State list

is empty or all the states in it belong to the same
incarnation and are consecutive. This is because routine
Log state is called in the routine Rollback. Lemma is
trivially true when s is same as w: Now we prove the
lemma by induction on the number of states between
distinct s and w:

Base Case (0 states): If s is not made stable in the call
to Log state that made w stable, then s must have been
made stable in an previous call to Log state:

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1213
Induction Step: Let s-w: Let u be the state
immediately preceding w: Now stableðw) implies
stableðu) by induction hypothesis. Also, stableðuÞ implies
stableðsÞ by induction hypothesis. Hence the result. &

The following lemma shows that the predicate
knows stable correctly detects a stable state.

Lemma A.2. knows stableðs; e; jÞ)stableðget stateð j; eÞÞ:

Proof. A state enters its entry into its Log prog in the
routine Log state: It does so, only after adding the
current state to the stable state list. Therefore, lemma is
true when s:p is equal to j: Now we consider the case
when s:p is different from j:

knows stableðs; e; jÞ
) f definition of knows stable g

seq numðs:Log prog½ j; e:incÞXe:seq

) f Definition of seq num g
(x : ðe:inc; xÞAs:Log prog½ j 4 xXe:seq

) {e belongs to s:Log prog½ j implies that Pj has
broadcast it. g

(w : w:p ¼ j 4 w:c½ j ¼ ðe:inc; xÞ 4 stableðwÞ
) f Definition of get state g

(w : stableðwÞ 4 w:p ¼ j 4 get stateð j; eÞ:c½ j:inc ¼
w:c½ j:inc 4 get stateð j; eÞ:c½ j:seqpw:c½ j:seq

) f Lemma A.1 g
stableðget stateð j; eÞÞ &
The following lemma proves a similar result in the
other direction. Before we continue, we need one more
predicate definition. A set or an entry satisfies the
predicate broadcast if it has been broadcast by some
state.

Lemma A.3. stableðget stateð j; eÞÞ)8i : (sAPi : knows

stableðs; e; jÞ:

Proof. Let w be the state returned by get stateð j; eÞ: Let
u be the first state of Pj after w in which Log state is
called. We next prove that w and u have the same
incarnation number. A new incarnation is started only
due to a failure or a rollback. By our choice of u; a
failure before u means that w is not stable. A rollback
before u means that u is not the first state after w in
which Log state is called as Log state is called in
Rollback. Therefore, u and w have same incarnation
number. Now,

stableðwÞ
) f Above argument, Log state is atomic g

u:c½ j:inc ¼ e:inc 4 u:c½ j:seqXe:seq4u:c½ jA
u:Log prog½ j

) f Future insertions maintain the following property g
8v : v:p ¼ j 4 u-v : ½(x : ðe:inc;xÞAv:Log prog½ j4
%

xXe:seq]
) f Broadcast log prog is called eventually. g

(Log prog : broadcastðLog progÞ : ½(x : ðe:inc; xÞA
Log prog½ j4xXe:seq

) f Receive log prog is called eventually g
8i : (sAPi : (x : ðe:inc; xÞAs:Log prog½ j4xXe:seq

) f Definition of seq num g
8i : (sAPi : seq numðs:Log prog½ j; e:incÞXe:seq

) f Definition of knows stable g
8i : (sAPi : knows stableðs; e; jÞ &

The following invariant is at the heart of our protocol.
It ensures that dependencies on unstable states are never
set to NULL. Therefore when an unstable state is lost in
a failure, this invariant helps in the detection of orphan
states.

Invariant A.1. 8s; u :ðs
%
-u 4 :stableðsÞÞ)ððu:c½s:p:inc¼

s:c½s:p:incÞ4 ðu:c½s:p:seqXs:c½s:p:seqÞÞ:

Proof. Invariant holds trivially if s is same as u:
Therefore, we consider s; such that s happened before
u: We show that the above invariant holds initially. We
also show that the invariant holds after the execution of
a routine, if it holds before the routine is called. It is
sufficient to consider the routines that create a new
interval or modify the dependency vector.

Initialize: Invariant is trivially true, because for any
initial state u and any state s; sQu:

Process message: Let the message m be sent by an
interval w: Let interval v process m and start interval u:
Incrementing the sequence number in the second
operation in the routine leaves the invariant unaffected.
Therefore, it is sufficient to show that the invariant
holds after the max operation.
In general, dependency vector of w and m can be

different as some entries in the dependency vector of m

might be set to NULL in the routine Check send buffer.
Happened before relation is defined between w and u;
whereas dependency vector of u is updated by taking
maximum of dependency vectors of v and m: In order to
reason about happened before relation, sometimes we
would like to use the dependency vector of w instead of
dependency vector of m: The following claim shows that
dependency vectors of m and w agree on the dependen-
cies on the non-stable intervals.
Claim A.1. s-w4:stableðsÞ) m:c½s:p ¼ w:c½s:p:

%

Proof. s
%
-w4:stableðsÞ

) f Invariant holds before this routine is called g
ðw:c½s:p:inc ¼ s:c½s:p:incÞ4ðw:c½s:p:seqXs:c½s:p:seqÞ

) f Definitions of get state and happened before g
s - get stateðs:p;w:c½s:pÞ
%

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181214
) f:stableðsÞ; Lemma A.1 g
:stableðget stateðs:p;w:c½s:pÞÞ

) f Lemma A.2 g
8r: :knows stableðr; s:p;w:c½s:pÞ

) f First if condition in Check send buffer is not
satisfied g

m:c½s:p ¼ w:c½s:p f End of Claim g
Now, s-u

) fBy definition of happened beforeg
s
%
-v3s

%
-w ... (I)

We consider the following three cases separately:
(1) v:c½s:p:inc ¼ m:c½s:p:inc

(2) v:c½s:p:inc4m:c½s:p:inc

(3) v:c½s:p:incom:c½s:p:inc
Case 1: v:c½s:p:inc ¼ m:c½s:p:inc: From (I), there are
two subcases to consider: 1(a) s

%
-v; 1(b) s

%
-w:

Subcase 1(a): s
%
-v4:stableðsÞ

) f Invariant holds before this routine is called. g
ðv:c½s:p:inc ¼ s:c½s:p:incÞ4ðv:c½s:p:seqXs:c½s:p:seqÞ

) f u:c½s:p ¼ maxðv:c½s:p;m:c½s:pÞ; case 1 g
ðu:c½s:p:inc ¼ s:c½s:p:incÞ4ðu:c½s:p:seqXs:c½s:p:seqÞ

Subcase 1(b): By Claim A.1, m:c½s:p is equal to
w:c½w:p: The rest of the proof is similar to the
subcase 1(a).

Case 2: v:c½s:p:inc4m:c½s:p:inc: From (I), there are
two subcases to consider: 2(a) s

%
-v; 2(b) s

%
-w:

Subcase 2(a): It is similar to subcase 1(a).
Subcase 2(b): s

%
-w4:stableðsÞ

) f Invariant holds before this routine is called g
ðw:c½s:p:inc ¼ s:c½s:p:incÞ4ðw:c½s:p:seqXs:c½s:p:seqÞ

) f Claim A.1: m:c½s:p ¼ w:c½s:pg
ðm:c½s:p:inc ¼ s:c½s:p:incÞ4ðm:c½s:p:seqX

s:c½s:p:seqÞ
) f admissibleðm; vÞ; case 2 g

ðm:c½s:p:inc ¼ s:c½s:p:incÞ4ðm:c½s:p:seqX

s:c½s:p:seqÞ
4 knows stableðv;m:c½s:p; s:pÞ

) f Definition of knows stable g
knows stableðv; s:c½s:p; s:pÞ

) f Lemma A.2 g
stableðsÞ

Case 3: v:c½s:p:incom:c½s:p:inc . Proof is similar to
that of case 2.
This concludes the proof for the routine Process mes-

rn.5pt}message:
Start incarnation: Let u be the state in which this

routine is called. This routine is called inside routines
Restart and Rollback only. Therefore, u is stable. We
consider the following two cases: (1) s:p ¼ u:p; (2)
s:pau:p:
Case 1: s:p ¼ u:p
s-u) s
%
-u

) f u is stable, stability is monotonic g
stableðsÞ
Case 2: s:pau:p

s-u

) f Antecedent: :stableðsÞ g
s-u4:stableðsÞ

) f Invariant holds before this routine, s:pau:p; only
u:c½u:p is modified in this routine g

ðu:c½s:p:inc ¼ s:c½s:p:incÞ4ðu:c½s:p:seqXs:c½s:p:seqÞ

Receive log prog: Let u be the interval calling this
routine. Modification of dependency vector of u can
cause violations of invariant involving two kinds of
states: (1) s-u; (2) u-s: As u:pth entry is not modified
in this routine, so it is sufficient to consider the first case.
We need to consider state s only if the s:pth entry is
modified in this routine.
Now, s:pth entry is modified.
) f Test in the if condition g
knows stableðu; u:c½s:p; s:pÞ

) f Antecedent, invariant holds before this routine is
called g

ðu:c½s:p:inc ¼ s:c½s:p:incÞ4ðu:c½s:p:seqXs:c½s:p:seqÞ
4 knows stableðu; u:c½s:p; s:pÞ

) f Definition of knows stable g
knows stableðu; s:c½s:p; s:pÞ

) f Lemma A.2 g
stableðsÞ &

The following invariant shows that a process never
sets its own entry to NULL, as its own entry is needed to
start its next interval.

Invariant A.2. 8s : s:c½s:paNULL:

Proof. Process Ps:p starts with a non-NULL c½s:p: It
updates it by taking maximum with another entry or by
incrementing it. Hence the result. &

The following invariant ensures that our dependency
tracking mechanism does not introduce any false
dependencies.
Invariant A.3. s
%
Qu) ððs:c½s:p:incau:c½s:p:incÞ3ðs:c

½s:p:seq4u:c½s:p:seqÞÞ:

Proof. If distinct s and u belong to the same incarnation
of a process and s did not happen before u then u
happened before s: Now within the same incarnation,

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1215
sequence number is only increased. Hence the invariant
holds in this case. Therefore, we assume that s and u

belong to different processes.
We show that the above invariant holds initially. We

also show that the invariant holds after the execution of
a routine, if it holds before the routine is called. It is
sufficient to consider the routines that create a new
interval or modify the dependency vector.

Initialize: Let u be the initial interval.
) f Assumption: s:pau:p g
u:c½s:p ¼ NULL

) f Invariant A.2 g
u:c½s:p:incas:c½s:p:inc
Process message: Let the message m be sent by an
interval w: Let interval v process m and start interval u:
Incrementing the sequence number in the second
operation in the routine leaves the invariant unaffected
as s:p is not equal to u:p: Therefore, it is sufficient to
show that the invariant holds after the max operation.
Now, u:c½s:p ¼ maxðv:c½s:p;m:c½s:pÞ
) f Definition of max g
u:c½s:p ¼ v:c½s:p3u:c½s:p ¼ m:c½s:p
We consider the following two cases: 1) u:c½s:p ¼
v:c½s:p; 2) u:c½s:p ¼ m:c½s:p

Case 1: u:c½s:p ¼ v:c½s:p:
Now, sQu

) f Definition of happened before g
sQv

) f Invariant holds before this routine is called g
ðs:c½s:p:incav:c½s:p:incÞ3ðs:c½s:p:seq4v:c½s:p:seqÞ

) { Case 1 }
ðs:c½s:p:incau:c½s:p:incÞ3ðs:c½s:p:seq4u:c½s:p:seqÞ

Case 2: u:c½s:p ¼ m:c½s:p: If m:c½s:p is NULL then
u:c½s:p is NULL. This implies that v:c½s:p is also NULL
and the case 1 applies. Therefore, we consider the case
when m:c½s:p is not NULL. This implies that m:c½s:p is
same as w:c½s:p: Rest of the proof is similar to the
case 1.

Start incarnation: let u be the state in which this
routine is called.
Now, sQu

) f Invariant holds before this routine is called g
ðs:c½s:p:incau:c½s:p:incÞ3ðs:c½s:p:seq4u:c½s:p:seqÞ

) f Assumption s:pau:p; only u:c½u:p is modified in
this routine g

ðs:c½s:p:incau:c½s:p:incÞ3ðs:c½s:p:seq4u:c½s:p:seqÞ

Receive log prog: Let u be the interval calling this
routine. Modification of dependency vector of u can
cause violations of invariant involving two kinds of
states: (1) sQu; (2) uQs: As u:pth entry is not modified
in this routine, so it is sufficient to consider the first case.
We need to consider state s only if the s:pth entry is set
to NULL in this routine. By Invariant A.2, s:c½s:p is
non-NULL. Hence the result follows. &

The following lemma shows that the predicate
knows orphan correctly detects an orphan state.
Lemma A.4. knows orphanðs; uÞ) orphanðuÞ:

Proof. knows orphanðs; uÞ
) f Definition of knows orphang
(j : (ðt;xÞAs:iet½ j : ðt ¼ u:c½ j:incÞ4ðxou:c½ j:seqÞ

Let w be the minimum state lost in the failure of Pj

that resulted in the failure announcement entry ðt; xÞ:
Now w:p is same as j:
Then, w:c½w:p ¼ ðt; x þ 1Þ
) f Definition of knows orphanðs; uÞg
w:c½w:p:inc ¼ u:c½w:p:inc 4 w:c½w:p:
seqpu:c½w:p:seq

) f Invariant A.3 g
:ðw

%
QuÞ

) f w is a lost state g
w

%
-u4rolled backðwÞ

) { Definition of orphan }
orphanðuÞ &
The following lemma proves a similar result in the
other direction.
Lemma A.5. orphanðuÞ)8i :(wAPi :knows orphanðw; uÞ:
Proof. Let v be lost in a failure and s be the state
restored after that failure. Then we prove that s and v

have the same incarnation number before the routine
Start incarnation is called by s: If s and v have different
incarnation number then the routine, Start incarnation

must have been called by an intermediate state. Since s is
the first state to call Restart, after loss of v; the routine
Rollback must have been called in some intermediate
state. As Log state is called in Rollback, so all unlogged
states including v are made stable. Then v cannot be lost
in a failure. Therefore, s and v have the same incarnation
number.
Now, orphanðuÞ

) f Definition of orphan g
(v : lostðvÞ4v-u
%

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181216
) f Above argument, Restart is atomic, idempotent. g
(v; s : lostðvÞ4v

%
-u4broadcastðs:c½v:pÞ4s:c½v:p:

inc ¼ v:c½v:p:inc4v:c½v:p:seq4s:c½v:p:seq

) f Reliable broadcast includes the execution of
Receive failure ann. g

8i : (wAPi : (eAw:iet½v:p4e:inc ¼ v:c½v:p:inc4v:
c½v:p:seq4e:seq

) { Invariant A.1, not stable vg
8i : (wAPi : (eAw:iet½v:p4e:inc ¼ u:c½v:p:inc4u:

c½v:p:seq4e:seq

) f Definition of knows orphan g
8i : (wAPi : knows orphanðw; uÞ &

Two executions of a process are considered equivalent
if their stable states and the sets of messages sent to
other processes are same.

Lemma A.6. Given an arbitrary execution of a process

and an arbitrary point of failure, there exists an equivalent

execution in which the failure occurs just before the

routine Log state is called.

Proof. A failure during execution of any routine that
modifies volatile storage only is same as the failure
before the execution of that routine.
Using the techniques in [20], all routines that modify

stable storage can be made atomic. These routines are
idempotent as well. A repeated execution of any routine
in Fig. 9 has the same effect as that of executing it only
once, provided no new failure announcements
are received during the repeated execution. If new
failure announcements are received then repeated
execution is equivalent to an execution in which all
failure announcements are received before executing
the routine under consideration. This follows from
the fact that the set of the stable states is totally
ordered and execution of the routine Receive failure ann

has either no effect or causes one of the stable states to
be restored. So repeated execution of a number of
failure announcements is same as executing them once in
an arbitrary order. Therefore, any failure is equivalent
to a failure just before the routine Log state is
called. &

The following theorem proves the correctness of our
protocol.

Theorem A.1. The protocol rolls back all orphan states

and orphan states only.

Proof. As per Lemma A.6, any failure is equivalent to a
failure before executing the routine Log state. There-

fore, the only effect of a failure is that unlogged states
are lost.
We show below that all orphan states are rolled back
when failure announcement arrives. Also all orphan
messages are discarded whether they arrive before
failure announcement or after. Therefore, no state
becomes orphan with respect to a failure after the
arrival of the corresponding announcement.
In routine Restart, an announcement is made about

the entry of the last stable interval of the last
incarnation. On receiving this announcement, all pro-
cesses roll back all states that satisfy the predicate
knows orphan: By Lemma A.5, all orphan states satisfy
this predicate. Further, by Lemma A.4, only orphan
states satisfy this predicate. This ensures that the
resulting system state is consistent. This point requires
some elaboration. Let interval s be lost in a failure. One
can imagine a protocol which rolls back a state u that is
not dependent on s: A protocol that rolls back all states
dependent on a lost state s can be wrong in the following
way. It may not roll back a state w that is dependent on
u: As it rolled back u; resulting system state will not be
consistent.
As proved below, all messages that are orphan

with respect to this failure are discarded. A message
is orphan if its sending interval is orphan. A sending
interval’s dependency vector is attached with the
message. As lost states are not stable, their entry
in message’s dependency vector is not set to NULL in
the routine Check send buffer. Hence by using the
Invariant A.1, all orphan messages that have
been received before the corresponding failure an-
nouncement are discarded when that failure announce-
ment is received.
We assume that reliable delivery of failure announce-

ment includes the atomic execution of the routine
Receive failure ann. This means that received failure
announcements are not lost afterwards. So all messages
that are orphan w.r.t. this failure and that arrive after
the failure announcement will be discarded upon their
arrival in the routine Receive message.
This completes the proof obligations stated earlier.&

The following theorem shows that our protocol does
not indefinitely postpone the sending of a message.
Theorem A.2. Each message in Send buffer is either lost

in a failure, or discarded as an orphan, or eventually

sent.
Proof. Consider a message m that is not lost in
a failure and is not discarded as an orphan and is
present in the Send buffer of Pi: Let w be the
maximum state of a process Pj on which m is dependent.
If w is lost in failure then by Lemma A.5, Pi will
detect that m is orphan and will discard it. Else w

will eventually become stable and by Lemma A.3, Pi

will eventually set m:c½ j to NULL. As our choice

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–1218 1217
of j was arbitrary, so the number of non-NULL
entries in the dependency vector of m will become at
most K and m will be sent. &

The following theorem shows the meaning of K :

Theorem A.3. Given any message m released by its

sender, the number of processes that can make the

message orphan on their failure is at most K.

Proof. In Check send buffer the jth entry of the
dependency vector of a message m is set to NULL

when the corresponding interval in Pj becomes stable.
As per proof of Theorem 3, a failure of Pj cannot cause
m to become an orphan. Since m is released when the
number of non-NULL entries become at most K ; the
result follows. &
References

[1] L. Alvisi, Understanding the message logging paradigm for

masking process crashes, Ph.D. Thesis, Department of Computer

Science, Cornell University, January 1996.

[2] L. Alvisi, B. Hoppe, K. Marzullo, Nonblocking and orphan-free

message logging protocols, Proceedings of the 23rd Fault-

Tolerant Computing Symposium, 1993, pp. 145–154.

[3] M. Ahamad, L. Lin, Using checkpoints to localize the effects of

faults in distributed systems, Proceedings of the Eighth Sympo-

sium on Reliable Distributed Systems, 1989, pp. 66–75.

[4] A. Borg, W. Blau, W. Graetsch, F. Herrmann, W. Oberle, Fault

tolerance under UNIX, ACM Trans. Comput. Systems 7 (1)

(February 1989) 1–24.

[5] K.M. Chandy, L. Lamport, Distributed snapshots: determining

global states of distributed systems, ACM Trans. Comput.

Systems 3 (1) (February 1985) 63–75.

[6] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable

distributed systems, J. ACM 43 (2) (March 1996) 225–267.

[7] O.P. Damani, V.K. Garg, How to recover efficiently and

asynchronously when optimism fails, Proceedings of the IEEE

International Conference on Distributed Computer Systems,

1996, pp. 108–115.

[8] E.N. Elnozahy, L. Alvisi, Y.M. Wang, D.B. Johnson, A survey of

rollback-recovery protocols in message-passing systems, ACM

Comput. Surveys 34 (3) (September 2002) 375–408.

[9] E.N. Elnozahy, W. Zwaenepoel, Manetho: transparent

rollback recovery with low overhead, limited rollback

and fast output commit, IEEE Trans. Comput. 41 (5)

(May 1992) 526–531.

[10] E.N. Elnozahy, W. Zwaenepoel, On the use and implementation

of message logging, in: Proceedings of the 24th IEEE Fault-

Tolerant Computing Symposium, 1994, pp. 298–307.

[11] M.J. Fischer, N. Lynch, M.S. Paterson, Impossibility of

distributed consensus with one faulty process, J. ACM 32 (2)

(April 1985) 374–382.

[12] Y. Huang, C. Kintala, Software implemented fault-tolerance:

technologies and experience, Proceedings of the IEEE Fault-

Tolerant Computing Symposium, 1992, pp. 2–9.

[13] Y. Huang, Y.M. Wang, Why optimistic message logging has

not been used in telecommunications systems, Proceedings of

the IEEE Fault-Tolerant Computing Symposium, June 1995,

pp. 459–463.

[14] D.R. Jefferson, Virtual time, ACM Trans. Programming Lan-

guages Systems 7 (3) (1985) 404–425.
[15] P. Jalote, Fault tolerant processes, Distributed Comput. 3 (4)

(1989) 187–195.

[16] D.B. Johnson, Efficient transparent optimistic rollback recovery

for distributed application programs, Proceedings of the 12th

IEEE Symposium on Reliable Distributed Systems, 1993,

pp. 86–95.

[17] D.B. Johnson, W. Zwaenpeoel, Recovery in distributed systems

using optimistic message logging and checkpointing, J. Algo-

rithms 11 (September 1990) 462–491.

[18] L. Lamport, Time, clocks, and the ordering of events in a

distributed system, Commun. ACM 21 (7) (1978) 558–565.

[19] A. Lowry, J.R. Russell, A.P. Goldberg, Optimistic failure

recovery for very large networks, Proceedings of the IEEE

Symposium on Reliable Distributed Systems, 1991, pp. 66–75.

[20] B.W. Lampson, H.E. Sturgis, Crash recovery in a distributed data

storage system, Unpublished Technical Report, Xerox Palo Alto

Research Center, April 1979. http://research.microsoft.com/users/

blampson/Publications.html.

[21] F. Mattern, Virtual time and global states of distributed systems.

Parallel and Distributed Algorithms: Proceedings of the Interna-

tional Workshop on Parallel and Distributed Algorithms, Else-

vier, Amsterdam, 1989, pp. 215–226.

[22] S.L. Peterson, P. Kearns, Rollback based on vector time,

Proceedings of the 12th IEEE Symposium on Reliable Distributed

Systems, 1993, pp. 68–77.

[23] S. Rao, L. Alvisi, H. Vin, The cost of recovery in message logging

protocols, Tech. Rep. No. TR-98-02, Department of Computer

Sciences, University of Texas at Austin, 1998.

[24] S.W. Smith, D.B. Johnson, Minimizing timestamp size for

completely asynchronous optimistic recovery with minimal

rollbacks, Proceedings of the 15th Symposium on Reliable

Distributed Systems, 1996, pp. 66–75.

[25] S.W. Smith, D.B. Johnson, J.D. Tygar, Completely asynchronous

optimistic recovery with minimal rollbacks, Proceedings of the

25th International Symposium on Fault-Tolerant Computing,

1995, pp. 361–370.

[26] A.P. Sistla, J.L. Welch, Efficient distributed recovery

using message logging, Proceedings of the Eighth ACM

Symposium on Principles of Distributed Computing, 1989,

pp. 223–238.

[27] R.E. Strom, S. Yemini, Optimistic recovery in distributed systems,

ACM Trans. Comput. Systems (August 1985) 204–226.

[28] Y.M. Wang, W.K. Fuchs, Lazy checkpoint coordination

for bounding rollback propagation, Proceedings of the

IEEE Symposium on Reliable Distributed Systems, 1993,

pp. 78–85.

[29] Y.M. Wang, Y. Huang, W.K. Fuchs, C. Kintala, G. Suri,

Progressive retry for software failure recovery in message-passing

applications, IEEE Trans. Comput. 46 (10) (October 1997)

1137–1141.
Om P. Damani received the B. Tech. degree

from the Department of Computer Science and

Engineering at Indian Institute of Technology

Kanpur in 1994. His graduate research was in

the area of distributed systems, and fault-

tolerance. He received the Ph.D. degree from

the Department of Computer Sciences at

University of Texas at Austin in 1999. From

1999 to 2003, he was with Akamai Technolo-

gies, working in the area of scalable server

clusters, and fault-tolerance. He joined the
distributed messaging group at IBMTJWatson Research Center in 2003.

Vijay K. Garg received his Bachelor of Technology degree in computer

science from the Indian Institute of Technology, Kanpur in 1984 and

*http://research.microsoft.com/users/blampson/Publications.html
*http://research.microsoft.com/users/blampson/Publications.html

ARTICLE IN PRESS
O.P. Damani et al. / J. Parallel Distrib. Comput. 63 (2003) 1193–12181218
the M.S. and Ph.D. degree in electrical engineering and computer

science from the University of California at Berkeley in 1985 and 1988,

respectively. He is currently a professor in the Department of Electrical

and Computer Engineering and the director of the Parallel and

Distributed Systems Laboratory at the University of Texas, Austin.
His research interests are in the areas of distributed systems and

discrete event systems. He is the author of the books, Elements of

Distributed Computing (Wiley & Sons, 2002), Principles of Distributed

Systems (Kluwer, 1996) and a co-author of the book, Modeling and

Control of Logical Discrete Event Systems (Kluwer, 1995).

	Distributed recovery with K-optimistic logging
	Introduction
	Related work
	Theoretical framework
	Abstract model
	Physical model and the recovery problem
	Optimistic recovery
	Output commit

	Causal dependency between states
	Dependency tracking mechanism
	Properties of dependency vectors

	K-optimistic protocol
	Motivation
	Theoretical basis
	The protocol
	Data structures
	Auxiliary functions and predicates
	Initialization
	Message manipulation
	Routines executed periodically
	Handling a logging notification
	Handling a failure
	Adapting K
	Output commit
	Using checkpoints and message logs

	Implementation notes
	Policy decisions
	Optimizations
	Other issues

	A detailed example
	Variations of the basic protocol
	Simulating a failure

	Experimental results
	Architecture
	Message logging policy
	Test scripts
	Application parameters
	Communication pattern
	Message size and compute time

	Performance evaluation
	Performance metrics
	Experimental settings
	Measurement methodology
	Results
	Discussion

	Selecting K

	Conclusion
	Properties of the protocol
	References

