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This dissertation focuses on the use of message logging for recovering from
process failures in distributed systems. Optimistic message logging protocols assume
that failures are rare. Based on this assumption, they try to reduce the failure-free
overhead. We have proved several fundamental results about optimistic logging
protocols.

We have designed a protocol that allows the user of a system to tune the
degree of optimism. This protocol provides a trade-off between failure-free over-
head and recovery efficiency. The special cases of this protocol include an existing
optimistic protocol and an existing pessimistic protocol.

We have also studied extensions of optimistic protocols to multi-threaded
environments. The natural extensions offer a trade-off between the false causality
and the failure-free overhead. We avoid this trade-off by treating threads as the unit

of recovery and processes as the unit of failure.



The protocols mentioned so far are independent of any particular applica-
tion characteristics. The fault-tolerance overhead can sometimes be reduced by
exploiting the specific characteristics of an application. We have demonstrated this
reduction in the context of optimistic computations. Specifically, we have developed

a new fault-tolerant optimistic simulation protocol.
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Chapter 1

Introduction

The increasing popularity of intra-nets has caused a shift from main-frames to clus-
ters of workstations. In fact, with the growth of the Internet and the World Wide
Web, it has become possible to coordinate machines that are scattered across the
globe. For example, the 56-bit DES encryption key [9] was broken by a coordinated
effort of thousands of computers spread across the U.S. and Canada [20].

The power of distributed computing, however, comes at a cost. Distributed
systems are vulnerable to many forms of failures. At times, the entire system may
become unusable due to a failure of even a single link or a single processor. Thus,
in order to fully exploit the power of distributed computing, the problem of fault-

tolerance needs to be addressed.

1.1 Fault-Tolerance Techniques

The concept of fault-tolerance is as old as the digital computer itself. In a semi-
nal report in 1946, Burks, Goldstine and von Neumann suggested the use of two
computers acting in parallel and checking each other’s result [15]. The term fault-

tolerance was formally introduced in 1967 by A. Avizienis [1]. In 1973, the concept



of recovery block was introduced by Randell and others [34]. By 1975, they extended
the recovery block concept to a set of cooperating processes. This is, to our knowl-
edge, the earliest work on fault-tolerant distributed systems. Since that first work,
a number of techniques have been developed.

When reducing down-time is of paramount importance, redundant hardware
is used to mask as many failures as possible. The ESS electronic telephone switching
system developed by AT&T is a prime example of such systems [62]. Both Tan-
dem and Stratus corporations have developed a number of products that include
redundant power supplies, backplane buses and dual paths to all system elements
including disks and I/O controllers. These techniques can reduce the number of
crashes due to hardware, but when a program does crash, some other means of
fault-tolerance is required.

There are two classes of techniques for providing fault-tolerance to distributed
applications. Techniques in the first class assume a specific programming model and
require application developers to use that particular model. Techniques in the sec-

ond class are general purpose and work for any message-passing application.

1.1.1 Programming Model Specific Techniques

Remote procedure call, transactions, distributed shared memory, distributed ob-
jects, etc. are examples of specific programming models for which fault-tolerance
techniques have been developed. Of these, we discuss transactions and distributed

objects.

Transactions

A large number of distributed applications use the transactional approach [30].
A transaction has following properties: atomicity, consistency, independence, and

durability. It is well suited for applications whose prime activities are maintaining



and updating a database. However, it is overly restrictive for applications that are
not so data-centric but are computation-centric and require cooperation among a
set of peer processes. The Independence part of transactions does not work well for
message-passing distributed applications because processes in these applications are

designed to be inter-dependent.

Distributed Object Systems

With the increasing popularity of distributed objects, many applications are being
written in CORBA, DCOM or Java RMI. A number of researchers have directed
their efforts towards providing fault-tolerance for these applications [14, 41, 49, 65].

Our focus in on developing general purpose techniques that can be used with

any message-passing application.

1.1.2 General Purpose Techniques

A number of generic methods have been developed for message-passing applica-
tions. These methods can be customized to implement programming model specific
techniques like fault-tolerant RPC. They can be divided in two categories: spatial

redundancy and temporal redundancy.

Spatial Redundancy

In addition to hardware, software can be replicated too. Multiple copies of a program
can be executed concurrently. If one of the replicas fail the remaining replicas can
continue execution without stopping the applications. This method is called active
replication. The Isis toolkit [16] provides active replication.

Replication techniques work well in client-server settings where servers are
replicated for high availability. In a general purpose distributed system, however,

these strategies require complex multi-way synchronization between the replicas of



senders and the replicas of receivers. The complexity involved and high resource
requirement make replication unattractive for general purpose, peer-to-peer dis-

tributed computing.

Temporal Redundancy

The algorithms developed in this dissertation are based on temporal redundancy
and therefore we describe this method in greater details. Compared to spatial
redundancy, this method requires fewer physical resources. This advantage comes
at the price of reduced availability upon the occurrence of a failure. Therefore, this
approach is suited for non-mission critical applications where low-cost fault-tolerance
is important.

In this approach, the state of each process is periodically recorded on stable
storage. The saved state is called a checkpoint. A technique that is used in conjunc-
tion with checkpointing is message logging. In message logging, the contents and
processing orders of the received messages are also saved in volatile and stable stor-
age. While data saved on volatile storage are lost in a process crash, data saved on
stable storage are assumed to remain unaffected. Upon recovery, a process restores
a checkpointed state and replays the messages logged on stable storage.

The reconstructed state of the failed process may be inconsistent with the
states of the surviving process [17]. The goal of a recovery protocol is to bring the
system back to a consistent state after one or more processes fail. A consistent state
is one where the send of a message is recorded in the sender’s state if the receipt of
the message has been recorded in the receiver’s state. A more general definition of
the recovery problem is given in Section 2.2, where the system model is introduced.

Message logging based recovery is especially useful for distributed applica-
tions that frequently interact with the outside world [24]. It can be used either to

reduce the amount of work lost due to failures in long-running scientific applica-



tions [24], or to enable fast and localized recovery in continuously-running service-
providing applications [35].

Depending on when and where the received messages are logged, the message
logging schemes can be divided into three main categories: pessimistic, optimistic,
and causal [24]. In pessimistic logging, each message is logged on stable storage
before it is processed [33]. This ensures that all pre-failure states can be recreated
after a failure. Some pessimistic logging protocols reduce the overhead by delaying
the logging till the point where a message dependent on unlogged messages needs
to be sent [37, 39].

In optimistic logging, messages are logged in volatile storage which is pe-
riodically flushed to stable storage [61]. Thus, optimistic logging protocols incur
lower failure-free overhead compared to pessimistic logging protocols. On a failure,
however, messages in volatile log are lost. Therefore, the entire system has to roll
back to a consistent state that occurred prior to the lost messages. This implies
that failure recovery in optimistic protocols may be slower than that in pessimistic
protocols.

Causal logging protocols are based on the observations that a process may
log messages in the volatile log of another process and the time of logging can be
delayed until the point of actual dependency creation [5, 25]. These observations are
used to avoid rolling back non-failed states as in pessimistic logging while achieving

low failure-free overhead as in optimistic logging.

1.2 Motivation for Optimistic Protocols

In this dissertation, we focus on optimistic message logging protocols. These pro-
tocols have the advantage of low failure-free overhead. In addition, there are many

scenarios in which optimistic logging schemes are desirable.



. Non-crash failures: Traditional logging protocols are based on the assump-
tion that processes fail by simply crashing, without causing any other harm
such as sending incorrect messages. In practice, there is some latency be-
tween a fault-occurrence and the fault-detection. Optimistic protocols can
handle this problem, when possible, by identifying and rolling back the faulty
states [61].

. Software bugs: Traditional logging protocols assume that successive failures
of a process are independent. On restarting a failed process, the cause of
the last crash is not expected to lead to another crash. However, when a
software bug crashes a program, deterministically recreating the pre-failure
computation results in the same bug leading to the same crash. A way to avoid
this is to replay the last few messages in a different order, thereby potentially

bypassing the bug that caused the original crash [61, 67].

. Optimistic computations: Many applications employ techniques similar to
optimistic logging and require rollback capability. (e.g., optimistic distributed
simulation [36].) In such applications, the fault-tolerance overhead can be
reduced by employing the same dependency tracking mechanism for both the

application and the recovery system.

. Distributed debugging: If a program needs to be tested under different
message orderings, a technique similar to optimistic recovery can be used.
After the result for a particular message ordering is available, a failure can be

simulated and a different message ordering can be tried.

. Input message cancellation: Traditional recovery protocols assume that
messages from the environment are irrevocable. However, many new classes
of distributed applications are emerging that allow the environment to re-

voke input messages but still do not allow the environment to be modeled



as one of the application process. One example is an application based on
the integration of log based techniques with transaction processing. For such
applications, revoking of an input message can be modeled as a failure in an

optimistic system.

1.3 Dissertation Contributions

In this dissertation, we have developed both application-transparent and application-
specific recovery protocols. In the context of application-transparent protocols, we
have designed a K-optimistic protocol that offers a trade-off between failure-free
overhead and recovery efficiency and have extended this protocol to multi-threaded
systems. We have also developed a new distributed simulation scheme and have
integrated it with the recovery layer. This demonstrates how to reduce the cost of
fault-tolerance for optimistic computations. Next, we briefly discuss each of these
contributions. In later chapters, we discuss these contributions in detail and present

comparisons with related work.

1. Efficient recovery in optimistic protocols: Many traditional optimistic
protocols treat a failure and a rollback almost identically. We have established
that if transitive dependency tracking is employed, a process can correctly re-
cover by learning only about failures in the system and not all rollbacks. This
results in more efficient recovery. Other researchers have also used our result
to improve their protocols [68]. We have further shown that any protocol that
employs transitive dependency, need not track dependencies on stable states.
This result further reduces the failure-free overhead of optimistic logging pro-

tocols.

2. Bridging the gap between optimism and pessimism: Although pes-

simistic and optimistic protocols together provide a trade-off between failure-



free overhead and recovery efficiency, it is only a coarse-grained trade-off. The
application has either to tolerate the high overhead of pessimistic logging or
to accept the potentially inefficient recovery of optimistic logging. To address
this issue, we have introduced the concept of K-optimistic logging where K is

a tunable parameter.

The concept of K-optimism provides a fine-grained trade-off between recovery
time and logging overhead with traditional optimistic and pessimistic logging
being the two end-points of the spectrum. The parameter K can be dynam-
ically tuned to adjust to a changing environment. The trade-off provided is
probabilistic in nature. In the worst case, for any value of K, the recovery
time can be as bad as that for a completely optimistic protocol. This is not
surprising,x because in the worst case, pessimistic protocols can have as bad

a recovery time as optimistic protocols.

. Extending optimistic protocols to multi-threaded systems: Optimistic
logging protocols can be extended to multi-threaded processes in two natu-
ral ways: process-centric and thread-centric. These two approaches together
present a trade-off between false causality and dependency tracking overhead.
We avoid this trade-off by establishing that it is sufficient to track the de-
pendency of threads on processes. The main intuition is that processes fail
independently and are thus failure units and that threads may be rolled back
independently and are thus rollback units. Based on this result, our protocol

eliminates false causality while incurring low overhead.

. Efficient recovery for optimistic computations: In optimistic compu-
tations, a process avoids blocking until the outcome of an event by guessing
the outcome. If the guess turns out to be correct, the optimism pays off.
However, if the guess turns out to be wrong, all the computation that follows

the wrong guess needs to be undone. Optimistic recovery schemes rely on a



similar concept, and therefore can be conveniently integrated with optimistic
computations. We have demonstrated this integration in the context of dis-
tributed simulation. We have also developed an efficient optimistic simulation

protocol.

1.4 Dissertation Outline

Chapter 2 presents the system model that is used throughout the dissertation. In
this chapter, Lamport’s happened before relation is extended to failure-prone sys-
tems. A mechanism to track causal dependencies is presented and its properties are
discussed.

Application-transparent protocols are presented in Chapters 3 and 4. In
Chapter 3, a K-optimistic protocol that bridges the gap between optimism and pes-
simism is presented and proved correct. This chapter also presents an experimental
evaluation of the protocol. This protocol assumes that processes are single-threaded.
In Chapter 4, optimistic protocols are extended to multi-threaded systems. A de-
tailed discussion of process-centric and thread-centric approaches is presented and a
balanced protocol combining the advantages of both of these approaches is designed.

Chapter 5 illustrates how to reduce the recovery overhead by exploiting
application-specific knowledge. This chapter presents the details of an optimistic
simulation protocol and shows how to integrate this protocol with optimistic re-
covery protocols. Finally, Chapter 6 summarizes the dissertation contributions and

presents directions for future research.



Chapter 2

Theoretical Framework

In this chapter, we introduce the formal model of the system that is used throughout
the dissertation. We formally define what it means for a state to be dependent on
another state. This dependency relation is an extension of the Lamport’s happened

before relation [42] to failure prone computations.

2.1 Abstract Model

A process execution is a pair (S, <). S is a set of elementary entities called state
interval (si for short). There exists a boolean-valued function init that takes a si
as its input and returns true for exactly one of the members of S. The relation <

is an acyclic binary relation on S satisfying following conditions:
o Vs: |{u:init(s) Nu<s}| =0
o Vs: [{u: —init(s) Nu=<s}| =1

The relation < induces a tree on S. If u<s, u is a parent of s and s is a child
of u.
In an online execution, new elements can be added to S at any time with an

accompanying strengthening of the relation <.
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A si can have one of three labels: useful, lost and rolled_back. Every si starts
as useful. A newly added si becomes child of a useful si that has no useful child.
The label of only a useful, non-init si can be changed. When the label of a si is
changed, labels of all its useful children are also changed in the same way. This
change propagates recursively to all descendents.

Consider a system consisting of n processes Py, .., P,. Let the execution of
P; be (S;,<;). The system execution is a triplet (H, <,~»). The set H is defined as
H =U; S;. The acyclic binary relation < is defined on H as <= U; <;. The relation

~, another acyclic binary relation defined on H, satisfies the following conditions’:

o Vs: [{u:init(s) Nu~s} =0
o Vs: [{u: —init(s) Nu~s} =1

Let the relation — be the transitive closure of < U ~». Two system executions

are considered equivalent if their — relations, restricted to useful si, are same.

2.2 Physical Model and the Recovery Problem

We consider an application system consisting of n processes communicating only
through messages. The communication system used is unreliable in that it can
lose, delay or duplicate a message. The environment also uses messages to provide
inputs to and receive outputs from the application system. Each process has its own
volatile storage and also has access to stable storage [46]. The data saved on volatile
storage is lost in a process crash, while the data saved on stable storage remains
unaffected by a process crash.

The state of a process consists of values of all program variables and the

program counter. A state interval is a sequence of states between two consecutive

! As an aside we note that just like <, ~» also induces n disjoint trees on H.



message receipts by the application process. The execution within each interval is
assumed to be completely deterministic, i.e., actions performed between two message
receives are completely determined by the content of the first message received and
the state of the process at the time of the first receive. In Chapter 4 we relax this
assumption and consider effects of non-deterministic thread scheduling in multi-
threaded systems. For the purpose of recovery, we are interested in state intervals
only and not in states, and therefore for convenience, we use the term state instead
of state interval.

A state interval here corresponds to a state interval (s7) in the abstract model.
If in the abstract model, s < u, then the interval corresponding to s immediately
precedes the interval corresponding to u. If s ~» u then a message is send in the
interval corresponding to s and the receive of that message results in the interval
that corresponds to u. From now on, when there is no confusion, we use the term
‘state s’ instead of saying ‘state interval that corresponds to si s.’

Although an abstract process execution is a tree, a physical process execution
is a sequence of state intervals in real time. All n process executions together consti-
tute a system execution. Two physical system executions are considered equivalent
if their abstract counterparts are equivalent.

We assume perfect failure detection [19], i.e. each non-failed process even-
tually learns about all failures in the system and no process falsely assumes that a
non-failed process has failed. A process fails by simply crashing. In a crash failure,
a process stops executing and loses the data in its volatile storage. The process does
no other harm, such as sending incorrect message. Pre-failure states of a process
that cannot be recreated after a failure are called lost states. A lost state gets the
label lost in the abstract model.

The application system is controlled by an underlying recovery system. The

type of control may be of various forms, such as saving a checkpoint of the application



process, stopping an application process, adding control information to the state of
an application process, adding control information to a message, rolling back the
application to an earlier state, etc.

If an application state is rolled back by the recovery system then that state
is called rolled_back.

The recovery problem is to specify the behavior of a recovery system that
controls the application system to ensure that despite crash failures, the system
execution remains equivalent to a possible crash-free execution of the stand-alone
application system.

From here on, when there is no confusion, instead of saying ‘the system does
something for the corresponding process’, we will say ‘a process does something’.

We next give a general description of optimistic protocols in this model.

2.2.1 Optimistic Recovery

Optimistic recovery is a special class of log-based rollback recovery, where the re-
covery system employs checkpointing and message logging to control the applica-
tion [24]. In optimistic recovery, received messages are logged in volatile storage.
The volatile log is periodically written to stable storage in an asynchronous fash-
ion. By asynchronous, we mean that a process does not stop executing while its
volatile log is being written to stable storage. Each process, either independently or
in coordination with other processes, takes periodic checkpoints [24].

After a crash, a process is restarted by restoring its last checkpoint and
replaying logged messages that were received after the restored checkpoint. Since
some messages might not have been logged at the time of the failure, some pre-
failure states, called lost states, cannot be recreated. States in other processes that
causally depend on lost states are called orphan. Causal dependency corresponds to

the — relation in the abstract model. A message sent by a lost or orphan state is



called an orphan message. If the current state of a process is orphan then the process
itself is called orphan. All orphan states are rolled back. All orphan messages are
also discarded. Each restart or rollback starts a new incarnation of the process. A
failure or a rollback does not start a new interval. It simply restores an old interval.
Traditional optimistic protocols treat rollback of a failed process as if the
process has failed and restarted. We note the distinction between a restart and a
rollback. A failed process restarts whereas a rollback is done by a non-failed process.
Information stored in volatile memory before a failure is not available at restart. In
a rollback, no information is lost. Unlike in traditional protocols, in our protocols,
a process informs other processes about its failures only and not about rollbacks.
In all optimistic protocols (or all log-based recovery protocols), the recovered
state could have happened in a failure-free execution of the application, with rela-
tively slower processor speed and relatively increased network delays. Therefore, in

an asynchronous system, optimistic protocols solve the recovery problem.

Output Commit

Distributed applications often need to interact with “the outside world.” Examples
include setting hardware switches, performing database updates, printing computa-
tion results, displaying execution progress, etc. Since the outside world in general
does not have the capability of rolling back its state, the applications must guaran-
tee that any output sent to the outside world will never need to be revoked. This is
called the output commat problem.

In optimistic recovery, an output can be committed when the state intervals
that the output depends on have all become stable [61]. An interval is said to
be stable if it can be recreated from the information saved on stable storage. To
determine when output can be committed, each process periodically broadcasts a

logging progress notification to let other processes know which of its state intervals

14



have become stable. Such information is accumulated at each process to allow

output commit.
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Figure 2.1: Example: Optimistic Recovery in Action

An example of an optimistic recovery system is shown in Figure 2.1. Solid
horizontal lines show the useful computation, and dashed horizontal lines show the
computation that is either lost in a failure or rolled back by the recovery protocol.
In the figure, ¢l and ¢2, shown by squares, are checkpoints of processes P1 and
P2 respectively. State intervals are numbered from s0 to s7 and they extend from
one message receive to the next. The numbers shown in rectangular boxes will be
explained later in this chapter.

In Figure 2.1(a), process P1 takes a checkpoint cl, acts on some messages
(not shown in the figure) and starts the interval sO. P1 logs to stable storage
all messages that have been received so far. It starts interval s2 by processing the
message m0. In interval s2, message m2 is sent to P2. P1 then fails without logging

the message m0 to stable storage or receiving the message ml. It loses its volatile

15



memory, which includes the knowledge about processing the message m0. During
this time, P2 acts on the message m2.

Figure 2.1(b) shows the post-failure computation. On restarting after the
failure, P1 restores its last checkpoint cl, replays all the logged messages and restores
the interval s1. It then broadcasts a failure announcement (not shown in Figure 2.1).
It continues its execution and starts interval s6 by processing m1l. P2 receives the
failure announcement in interval s5 and realizes that it is dependent on a lost state.
It rolls back, restores its last checkpoint ¢2, and replays the logged messages until
it is about to process m2, the message that made it dependent on a lost state. It
discards m2 and continues its execution by processing m3. The message m2 is not
regenerated in post-failure computation. PO remains unaffected by the failure of

P1.

Notations

We next define notations that are used throughout the dissertation.

e ¢, 7,k refer to process identification numbers.

t refers to the incarnation number of a process.
e s, u,v,w,z refer to a state (or a state interval).
e P; refers to the ¢’th process.

e P;; refers to incarnation ¢ of F;.

e s.p denotes the identification number of the process to which s belongs, that

is, s p=1i=s€S;.

e 1,y refer to state sequence numbers.

(t,z); refers to the z’th state of the ¢’th incarnation of process P;.

16



e m refers to a message.

o c refers to a dependency vector (defined in Section 2.2.3).

2.2.2 Causal Dependency Between States

In the previous section, we talked about one state being dependent on another. The
application state resulting from a message delivery depends on (is determined by)
the content of the message delivered and therefore depends on the state sending the
message. This dependency relation is transitive. It corresponds to the — relation
defined in the abstract model. Lamport defined the happened before relation [42]
for a failure-free computation. Our dependency relation is an adaptation of the
happened before relation to a failure-prone systems. The physical meaning of the
abstract relation — is as follows. In a failure-prone system, happened before (—) is

the transitive closure of the relation defined by the following two conditions:

e u — v, if the processing of an application message in state u results in state

v, (for example, s1 — s6 in Figure 2.1(b)),

e u — v, if the processing of an application message sent from u starts v (for

example, s2 — s5 in Figure 2.1(a)).

We say that u is transitively dependent or simply dependent on s if s hap-
pened before u. By s = u, we mean s — uw or s = u. By s 4 u we mean s did not
happen before u. For example, in Figure 2.1(b), s2 /4 s6.

Only application messages contribute to the happened before relation. The
recovery protocol might also send some messages. These messages do not contribute
to the happened before relation.

Earlier we mentioned that a state dependent on a lost sate is called orphan.

We can now formally define orphan as:
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Definition 1 orphan(s) = Ju : lost(u) N u—s

To detect orphans, we need a mechanism to track dependencies between

states.

2.2.3 Dependency Tracking Mechanism

We use dependency vectors to track transitive dependencies between states in a
failure-prone system. Although dependency vectors have been used before [61],
their properties have not been discussed.

A dependency vector has n entries, where n is the number of processes in the
system. Each entry contains an ¢ncarnation number and a state sequence number
(or simply sequence number). Let us consider the dependency vector of a process
P;. The incarnation number in the #’th entry of P;’s dependency vector (its own
incarnation number) is equal to the number of times P; has failed or rolled back. The
incarnation number in the j’th entry is equal to the highest incarnation number of
P; on which P; depends. Let entry e correspond to a tuple (incarnation ¢, sequence
number seq). Then, e; < ex = (t; < t2) V [(t1 = t2) A (seq1 < seq2)].

A process sends its dependency vector along with every outgoing message.
Before delivering a message to the application, a process updates its dependency vec-
tor with the message’s dependency vector by taking the componentwise maximum
of all entries. The process then increments its own sequence number.

To start a new incarnation, a process increments its incarnation number (it
leaves the sequence number unchanged). A new incarnation is always started after
a rollback or a failure.

The dependency tracking mechanism is given in Figure 2.2. An example of
the mechanism is shown in Figure 2.1. The dependency vector of each state is shown
in a rectangular box near it. The row ¢ of the dependency vector corresponds to F;

(P; is shown as Pi in Figure 2.1.) .



Process P, :

type entry = (int inc, int seq) // incarnation, sequence number
var ¢ : array[n] of entry // n : number of processes in system
Initialize :

Vj:cfj] :==(0,0);

cfi] == (1.1) ;
Send_message :
send (data, c) ;
Process_message (m) :
// P; receives the dependency vector ‘m.c’ with incoming message
v j: c[j] := max(c[j],m.c[j]) ;
cli].seq := c[i].seq + 1 ;
Start_incarnation :
// A new incarnation is started after a failure or a rollback

c[i].inc := c[i].inc + 1;

Figure 2.2: Dependency vector algorithm




Properties of Dependency Vectors

Dependency vectors have properties similar to Mattern’s vector clocks [48]. They
can be used to detect transitive dependencies between useful states (states which
are neither lost nor orphan).

We define an ordering between two dependency vectors cl and ¢2 as follows.
cl < 2= (Vi:elli] <c2[i]) A (35 ellj] < e2[jf])

Let s.c denote the dependency vector of Py, in state s. The following lemma

gives a necessary condition for the /4 relation between two useful states.

Lemma 1 Let s and u be distinct useful states (neither lost nor orphan). Then,

s 4 u = u.cl[s.p] < s.c[s.p]

Proof: Let s.p = u.p. Since s and u are distinct useful states, it follows that u — s.
During processing of a message, Ps p, takes the maximum of dependency vectors and
then increments the sequence number of its own component. On restart after a
failure or a rollback, P;, increments its incarnation number. Since for each state
transition along the path from u to s, the local dependency vector is incremented,
u.c[s.p] < s.c[s.p].

Let s.p # up . As s /# u, P,, could not have seen s.c[s.p], the local
dependency vector of P, ,. Hence u.c[s.p] < s.c[s.p]. m

As shown in the next theorem, the above condition is also sufficient for the
+# relation. The next theorem shows that, despite failures, dependency vectors keep

track of causality for useful states.

Theorem 1 Let s and u be useful states in a distributed computation. Then, s — u

iff s.c < wu.c

Proof: If s = u, then the theorem is trivially true. Let s — u. Since both s and u are

useful, there is a message path from s to u such that none of the intermediate states
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are either lost or orphan. Due to monotonicity of dependency vectors along each
link in the path, Vj : s.c[j] < u.c[j]. Since u /4 s, from Lemma 1, s.c[u.p] < u.c[u.p].
Hence, s.c < u.c.

The converse follows from Lemma 1. m

Dependency vectors do not detect the causality for either lost or orphan
states. To detect causality for lost or orphan states, we use an incarnation end

table, as explained in Section 3.3.

2.3 Related Work

The model described here is similar to but more general than the one given in the
original optimistic work by Strom and Yemini [61]. They assumed reliable message
delivery and therefore they considered a global state to be consistent if all the sent
messages have been received. We assume that messages can be lost.

Johnson and Zwaenepoel established that the set of recoverable states form a
lattice [40]. This result implies that after any failure in an optimistic system, there
exists a maximum recoverable state with respect to that failure. They however used
direct dependency tracking instead of transitive dependency tracking. They also
used a centralized protocol to compute the maximum recoverable state.

Smith, Johnson and Tygar explicitly distinguished between application com-
putation and the recovery system computation [59]. In their model causality is
separately identified for each level of computation. They used a tree diagram sim-
ilar to the one used in this dissertation. They used a time-tree to track complete
causality. Unlike dependency vectors, which can track causality only between useful
states, time-trees can track causality between any two states. However, the time-
tree mechanism results in much higher overhead and therefore we do not use that
mechanism.

Alvisi and Marzullo gave the first formal specification of the necessary and
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sufficient condition for the eventually no-orphan property satisfied by the message
logging protocols [7]. Based on that specification, they derived a causal logging

protocol.



Chapter 3

Transparent Recovery for

Single-Threaded Processes

In this chapter, we describe an optimistic recovery scheme that is independent of any
particular application. The scheme assumes that all application processes are single-
threaded. Next chapter discusses the issue of multi-threading. Application-specific
techniques are discussed in Chapter 5.

We first prove several fundamental properties about optimistic recovery. Us-
ing these properties, we design a K-optimistic protocol that bridges the gap between
optimism and pessimism. This protocol provides a trade-off between recovery time
and failure-free overhead. For K equal to n, the protocol reduces to the optimistic
protocol presented in [21], while for K equal to 0, it reduces to the pessimistic

protocol presented in [37].

3.1 Motivation

Traditional pessimistic logging and optimistic logging provide a coarse-grain trade-

off between failure-free overhead and recovery efficiency: the application has to



either tolerate the high overhead of pessimistic logging or accept the potentially in-
efficient recovery of optimistic logging. For long-running scientific applications, the
primary performance measure is the total execution time. For these applications,
minimizing failure-free overhead is more important than improving recovery effi-
ciency because failures are rare events. Hence, optimistic logging is a better choice.
In contrast, for continuously-running service-providing applications, the primary
performance measure is the service quality. Systems running such applications are
often designed with extra capacity which can absorb reasonable overhead without
causing noticeable service degradation. On the other hand, improving recovery effi-
ciency to reduce service down time can greatly improve service quality. As a result,
many commercial service-providing applications have chosen pessimistic logging [35].

The above coarse-grain trade-off, however, may not provide optimal per-
formance when the typical scenarios are no longer valid. For example, although
hardware failures are rare, programs can also fail or exit due to transient soft-
ware or protocol errors such as triggered boundary conditions, temporary resource
unavailability, and by-passable deadlocks. If an application suffers from these addi-
tional failures in a particular execution environment, slow recovery due to optimistic
logging may not be acceptable. Similarly, for a service-providing application, the
initial design may be able to absorb higher run-time overhead incurred by message
logging. However, as more service features are introduced in later releases, they
consume more and more computation power and the system may no longer have the
luxury to perform pessimistic logging.

These observations motivate the concept of K-optimistic protocol where K is
the degree of optimism that can be tuned to provide a fine-grain trade-off. The basic
idea is to ask each message sender to control the maximum amount of risk placed
on each message. A sender can release a message only after it can guarantee that

failures of at most K processes can possibly revoke the message (see Theorem 6).
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This protocol provides a trade-off between recovery time and logging over-
head, with traditional optimistic and pessimistic protocols being two extremes. As
the value of K moves from n to 0, the recovery time goes down with a corresponding
increase in the logging overhead. The parameter K can be dynamically changed to
adjust to a changing environment.

The trade-off provided is probabilistic in nature. In the worst case, for any
value of K, the recovery time can be as bad as that for a completely optimistic
protocol. This is not surprising because in the worst case, pessimistic protocols can

have as bad a recovery time as optimistic protocols.

3.2 Theoretical Basis

In Chapter 2.2, we presented the distinction between restart due to a process’s
own failure and rollback due to some other process’s failure. Traditional optimistic
recovery protocols [59, 61] blur this distinction and refer to lost states as rolled
back states. In order to relate our results to those in the literature, we use the
following terminology. A state satisfies predicate rolled_back if it has been either
lost in a failure or explicitly rolled back by the recovery protocol. In traditional
protocols, any state dependent on a rolled back state is called an orphan. The

following predicate formally defines an orphan state for these protocols.
Definition 2 orphan(s) = Ju : rolled_back(u) N u—s

We have presented above definition only for an understanding of traditional
protocols and for proof of theorems in this section. In rest of the dissertation, we
use the orphan definition given in Section 2.2.2. For emphasis, we reproduce that

definition here:

Definition 1 orphan(s) = Ju : lost(u) N u—s



For orphan detection, traditional optimistic protocols usually require every
non-failed rolled back process to behave as if it itself has failed [59, 61]. After each
rollback, a process starts a new incarnation and announces the rollback. We observe
that announcing failures is sufficient for orphan detection. We give a proof of this

observation in the following theorem.

Theorem 2 With transitive dependency tracking, announcing only failures (instead

of all rollbacks) is sufficient for orphan detection.

Proof. Let a state interval v be orphan because of rollback of another interval
u. Interval u rolled back either because P, failed or because a rollback of another
interval z made u orphan. By repeatedly applying this observation, we find an
interval w whose rollback due to P, ,’s failure caused v to become orphan. Because
of transitive dependency tracking, P, , can detect that v depends on w. Therefore,
P, will detect that v is orphan when it receives the failure announcement from
Pyp m

The above observation was first used in [21] and later used in [58]. We
carry this observation even further in Theorem 3, by proving that any dependencies
on stable intervals can be omitted without affecting the correctness of a recovery
protocol which tracks transitive dependencies. A state interval is said to be stable,
if it can be reconstructed from the information saved in stable storage.

We say that v is commit dependent on w if v is transitively dependent on w
and w is not stable. A system is said to employ commit dependency tracking if it
can detect the commit dependency between any two state intervals. The following
theorem suggests a way to reduce dependency tracking for recovery purposes. It
states that if all state intervals of P;, on which P; is dependent, are stable then P;

does not need to track its dependency on P;.

Theorem 3 Commit dependency tracking and failure announcements are sufficient

for orphan detection.



Proof. Once a state interval becomes stable, it cannot be lost in a failure. It can
always be reconstructed by restarting from its previous checkpoint and replaying
the logged messages. Following the proof in Theorem 2, an orphan interval v must
transitively depend on an interval w that is lost in P, j’s failure. This implies that
w had not become stable when the P, ,’s failure occurred. By definition of commit
dependency tracking, P, , can detect that v transitively depends on w. Therefore,
on receiving the failure announcement from P, ,, P, , will detect v to be orphan. m

A process can explicitly inform other processes of new stable state intervals
by periodically sending logging progress notifications. Such information can also be
obtained in a less obvious way. A failure announcement containing index (t,z');
indicates that all states of incarnation ¢ of P; with sequence number greater than x’
have been lost in a failure. Since the state with sequence number z’ has been restored
after a failure, the announcement also serves as a logging progress notification that

interval (¢,z'); has become stable. Corollary 1 summarizes this result.

Corollary 1 Upon receiving a failure announcement containing index (t,z');, a pro-

cess can omit the dependency entry (t,x); if v < z'.

Corollary 1 is implicitly used by Strom and Yemini [61] to allow tracking
dependency on only one incarnation of each process so that the size of dependency
vector always remains n: when process P; receives a message m carrying a depen-
dency entry (t,x); before it receives the rollback announcement for P;’s incarnation
(t — 1), P;j should delay the delivery of m until that rollback announcement arrives.
This in fact implicitly applies Corollary 1.

We can further apply corollary 1 to eliminate unnecessary delays in message
delivery. Suppose P; has a dependency on (t — 2,z); when it receives message m
carrying a dependency on (t,z + 10);. According to Theorem 3, P; only needs to
be informed that interval (¢ — 2,z); has become stable. It does not need to be

informed anything about incarnation (¢t — 1) before it can acquire the dependency
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on (t,z 4+ 10); and overwrite (¢t — 2,z);. P; can obtain that information when it
receives either a logging progress notification or a failure announcement from P;. A
more interesting and useful special case is when P; does not have any dependency
entry for P; at all and so the delay is altogether eliminated.

Based on these results, we have developed an efficient optimistic protocol,

which is described next.

3.3 The Protocol

Process P, :
type entry: (inc int, seq int) // incarnation, sequence number
var K- int; // the degree of optimism
c: array[n] of entry; // transitive dependency vector
State._list : list of state; // list of non-stable states
Receive_buffer :  buffer; // keeps received messages
Send_buffer : buffer; // messages to be sent
log_prog : array[n] of set of entry; // logging progress information

// The following data structures are stored in stable storage

cur_inc : int ; // current incarnation number
iet : array[n] of set of entry; // incarnation end table
Stable_state_list : list of state; // states saved on stable storage

Figure 3.1: Variables maintained by a process



3.3.1 Data Structures

The variables maintained by a process in this protocol are shown in Figure 3.1. The
integer K is the degree of optimism. Dependency tracking is done by the dependency
vector c. In log_prog, logging progress information is maintained by keeping an entry
for the highest known stable interval of each known incarnation of each process. The
received failure announcements are stored in an incarnation end table (iet). Variable
cur_inc stores the current incarnation number in stable storage. This avoids the loss
of incarnation number information in a failure. A simplification that we use to
clarify the correctness proof is that of replacing checkpointing and message logging
with saving of entire states. Our implementation indeed uses checkpointing and

message logging. We discuss this point in detail in Section 3.3.10.

3.3.2 Auxiliary Functions and Predicates

Figure 3.2 shows predicates and functions used in the protocol. We next explain

each of them.

o knows_orphan: If a state s knows that a state u is orphan then the predicate
knows_orphan(s,u) is true. This is the case, when the iet of s shows u to be

dependent on a lost state.
e stable: If s belongs to Stable_state_list of P; p,, then stable(s) is said to be true.

e seq_num: This function takes a set of entries and an incarnation number and
returns the sequence number associated with the given incarnation number in

the set.

e knows_stable: A state u is said to correspond to entry e if u.c[u.p] is equal to
e. If a state s knows that P;’s state corresponding to entry e is stable then

predicate knows_stable(s, e, j) is true.



e admissible: The predicate admissible(m,s) is true if a message m can be
processed in a state s. The message can be processed if no dependency on any

unstable interval will be overwritten in taking maximum of m.c and s.c.

e get_state: This function takes a process id and an entry and returns the state

interval of the given process that corresponds to that entry.

e Insert: This function inserts an entry (¢,x) in a set se. If an entry (¢,y) for
incarnation t already exists in se, then that entry is replaced by (¢, maz(z,y)).
This ensures that the set se contains the latest information about incarnation

t.

e NULL: A NULL entry is defined to be lexicographically smaller than any
non-NULL entry.

In the protocol, unspecified state variable s stands for the current state unless
otherwise stated. In a predicate, if a message m is used instead of a state u then

u.c in predicate definition is replaced by m.c.

3.3.3 Initialization

We next describe the actions taken by a process P; upon the occurrence of different
events. The initialization routine is given in Figure 3.3.

Initialize: Upon starting the execution, a process has no dependency on
any other process. Therefore, P; sets all dependency vector entries, except its own,
to NULL. Since each process execution can be considered as starting with an initial
checkpoint, the first state interval is always stable. Therefore, P; updates its log_prog
accordingly. We show the initial state being added to the State_list. In practice,

this is not done as the program itself serves as the initial state.



knows_orphan(s,u) = Jj: 3 (t,x) € s.iet[j]: (t = u.c[j].inc) A (x < u.c[j].seq)

stable(s) = s € Stable_state_list

seq_num(se, t): return x where (t,x) € se

knows_stable(s,e,j) = seq_num(s.log_prog][j], e.inc) > e.seq

admissible(m,s) = Vj: [s.c[j].inc # m.c[j].inc =

knows_stable(s, min(s.c[j], m.c[j]), j)]

get_state(j,e): return s where s.p = j A s.c[j] = e

Insert(se, (t,x)): if T y: (t,y) € se then se := (se - {(t,y)}) U {(t,max(x,y))}

else se := se U {(t,x)} ;

e = NULL = (e.inc = NULL A e.seq = NULL)

x = NULL = (Vy # NULL: x < y)

Figure 3.2: Predicates and functions used in the protocol




Initialize :
Vj : [j] := NULL;
cfi] == (1,1);
Vj : iet[j] := log_prog[j] := {} ; // empty set
Insert(log_prog][i],(1,1)); cur_inc :=1;

State_list := {s} ; Stable_state_list := {} ;

Figure 3.3: K-optimistic protocol: Initialization routine

3.3.4 Message Manipulation

Routines that manipulate messages are given in Figure 3.4.

Send_message: To send a message, the current dependency vector is at-
tached to the message and the message is added to Send_buffer. The message is held
in Send_buffer if the number of non-NULL entries in its dependency vector is greater
than K. Messages held in Send_buffer are sent in the routine Check_send_buffer (in
Figure 3.5).

Receive_message: A received message is discarded if it is known to be
orphan. Otherwise, it is added to Receive_buffer.

Process_message: When the application needs to process a message, any
of the admissible messages among the received ones is selected. A message is admis-
sible, if its delivery does not result in the overwriting of any non-stable entry in the
dependency vector. In other words, if delivering a message to the application would
cause P; to depend on two incarnations of any process, P; waits for the interval with
the smaller incarnation number to become stable. This information may arrive in

the form of a logging progress notification or a failure announcement. Such situation



Send_message(data) :
Send_buffer := Send_buffer U {(data, c)} ;
Check_send_buffer ;

Receive_message(m) :
if —knows_orphan(s,m) then

Receive_buffer := Receive_buffer U {m} ;

Process_message(m) :
if admissible(m) then
¢ := max(c,m.c) ; c[i].seq := c[i].seq + 1 ;
// Application acts on the message

State_list := State_list U {s} ;

Figure 3.4: K-optimistic protocol: Routines that manipulate messages

may arise only for a small time interval after a failure and failure are expected to be

rare, hence such blocking will rarely occur. After application processes a message,

the current state is included in volatile log.

3.3.5 Routines Executed Periodically

We now describe the routines in Figure 3.5. These routines are executed periodically.

Check_orphan: This routine is called to discard orphan messages from the

receive and the send buffers.

Check_send_buffer: This routine updates the dependency vectors of mes-
sages in Send_buffer. It is invoked by the events that can announce new stable

state intervals, including: (1) Receive_log_prog for receiving logging progress notifi-
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Check_orphan :
// Discard orphan messages from the receive and the send buffer.
Send_buffer := { m € Send_buffer | —knows_orphan(s,m)} ;

Receive_buffer := { m € Receive_buffer | —knows_orphan( s,m)} ;

Check_send_buffer :
// Check and send messages held in Send_buffer, if possible
¥V m € Send_buffer: V j: if knows_stable(s,m.c[j],j) then m.c[j] := NULL ;
vV m € Send_buffer:

if Number of non-NULL entries in m.c is at most K then send m ;

Broadcast_log_prog :
Broadcast(log_prog) ;

Log_state :
Stable_state_list := Stable_state_list U State_list ;
State_list := {} ;
Insert(log_prog[i],c[i]) ;
Check_send_buffer ;

Figure 3.5: K-optimistic logging protocol: Routines invoked periodically.
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cation; (2) Receive_failure_ann (according to Corollary 1); and (3) Log_state. When
a message’s dependency vector contains K or less non-NULL entries, it is sent.

Broadcast_log_prog: P; informs other processes about its logging progress
by broadcasting its log_prog. However, logging progress notification is in general less
frequent than the logging of states.

Log_state: This routine is called to save volatile states on stable storage.

Receive_log_prog(mlog_prog) :
Vjt: (t,x) € mlog_proglj] : Insert(log_prog[j].(t,x)) ;
V j # it if knows_stable(s,c[j],j) then c[j] := NULL ;
// i'th entry is not set to NULL as it will be needed to start the next interval

Check_send_buffer ;

Figure 3.6: K-optimistic logging protocol: Routine for receiving logging notification.

3.3.6 Handling a Logging Notification

On receiving a logging progress notification, the routine in Figure 3.6 is called.
Receive_log_prog: Upon receiving a logging notification, a process updates
its log_prog. It also sets the stable entries in its dependency vector to NULL. The
log_prog is periodically flushed to stable storage. As some part of the log_prog may
get lost in a failure, a process needs to collect the logging information from other

processes on restarting after a failure.



Restart : // after failure
s := head(Stable_state_list) ;
Insert(iet[i], c[i]) ;
Broadcast_failure(c[i]) ;

Start_incarnation ;

Receive_failure_ann (t,x,j) : // called by state s on receiving (t,x) from P; :
Insert(iet[j],(t,x)) ; Insert(log_progl[j],(t,x)) ;
Check_orphan ;
Check_send_buffer ;
if knows_orphan(s,s) then Rollback ;

Rollback :
Log_state ;
s := maximum{u € Stable_state_list | —knows_orphan(s,u) } ;
Stable_state_list := Stable_state_list - {u € Stable_statelist | s — u} ;

Start_incarnation ;

Start_incarnation
cur_inc := cur_.inc + 1 ;

c[i].inc := cur.inc ;

Figure 3.7: K-optimistic logging protocol: Routines involving failure.




3.3.7 Handling a Failure

We next describe the routines in Figure 3.7. These routines are executed in case of
a failure.

Restart: On restarting after a failure, P; restores its last stable state and
broadcasts the index of this state as a failure announcement. We assume that the re-
liable broadcast of a failure includes the execution of the routine Receive_failure_ann
by all processes. P; starts a new incarnation by incrementing its incarnation number
in the routine Start_incarnation.

Receive_failure_ann: On receiving a failure announcement, P; updates its
incarnation end table. As explained in Section 3.2, this announcement also serves
as a logging progress notification. P; also discards orphan messages in Send_buffer
and Receive_buffer by calling Check_orphan (in Figure 3.5). If the current state of
P; has become orphan due to this failure, then P; rolls back by calling Rollback.

Rollback: Before rolling back, P; logs its volatile states in stable storage.
Clearly, an implementation will log only the non-orphan states. The highest non-
orphan stable state is restored and the orphan states are discarded from stable
storage. A new incarnation is started. No rollback announcement is send to other
processes, which is a distinctive feature of our protocol.

Start_incarnation: This routine increments the current incarnation num-
ber, which is saved in stable storage as the variable cur_inc. This ensures that the
current incarnation number is not lost in a failure. This routine also updates the

dependency vector.

3.3.8 Adapting K

Note that there is nothing in the protocol to prevent a change in the value of K.
Therefore, the value of K can be changed dynamically in response to changing

system characteristics. Also, different processes can have different value of K. A
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process that is failing frequently may choose to become completely pessimistic by
setting its K value to 0 while other processes in system may continue to be opti-
mistic. On the other hand, if the stable storage manager becomes busy, a process

may choose to increases its K value.

3.3.9 Output Commit

If a process needs to commit output to external world, it maintains an Output_buffer
like the Send_buffer. This buffer is also updated whenever the Send_buffer is up-
dated. An output message is released when all entries in message’s dependency
vector become NULL. It is interesting to note that an output can be viewed as a
0-optimistic message, and that different values of K can in fact be applied to differ-
ent messages in the same system. In our implementation described in Section 3.8,
we do not use the Output_buffer. Instead, we attach a K value with each message
with 0 being assigned to output messages.

In practice, the concept of K-output commit may also be useful. Although
strict output commit may be necessary for military or medical applications, most
service-providing applications can revoke an output, if absolutely necessary, by es-
calating the recovery procedure to a higher level which may involve human inter-
vention. Therefore, K-output commit can be useful to provide a trade-off between

the commit latency and the degree of commitment.

3.3.10 Using Checkpoints and Message Logs

A simplification that we have used to clarify the correctness proof is that of re-
placing checkpointing and message logging with the saving of entire states. In our
presentation, we save all states in volatile and stable storage. This is useful only in
the unlikely case of the average state size being much smaller than the average mes-

sage size. Otherwise, an implementation should save the received message instead



Log_message :
Stable_message_list := Stable_message_list U Message_list ;
Message_list := {} ;
Insert(log_prog][i].c[i]) ;
Check_send_buffer ;
Checkpoint :

Log_messages ;

Stable_state_list := Stable_state_list U {s} ;

Figure 3.8: K-optimistic protocol routines that use checkpointing.

of the states in volatile memory. Periodically, the current state should be saved
on stable storage as a checkpoint. Any state can be reconstructed by restoring the
highest checkpoint prior to that state and replaying the messages that have been
received between the checkpoint and the state. Instead of a volatile State_list, a
volatile Message_list is used. A Stable_message_list is also used. Checkpoints are
stored in Stable_state_list. Instead of routine Log_state, two new routines are used.
These routines are given in Figure 3.8. The old routines that are modified by this
implementation strategy are shown in Figure 3.9.

So far, we have discussed the design of the K-optimistic protocol. There are
a number of implementation issues that have been avoided for clarity. We now take

a look at these issues.

3.4 Implementation Notes

There are a number of policy decisions and optimizations that are available to a

system designer.



Process_message(m) :
if admissible(m) then
¢ := max(c,m.c) ; c[i].seq := c[i].seq + 1 ;
Message_list := Message_list U {m} ;

// Application acts on the message

Restart : // after failure
s := head(Stable_state_list) ;
replay the logged messages that follow;
Insert(iet[i], c[i]) ;
Broadcast_failure(c[i]) ;

Start_incarnation ;

Rollback :
Log_message ;
s := maximum{u € Stable_state_list | =knows_orphan(s,u) } ;
Stable_state_list := Stable_state_list - {u € Stable_state_list | s — u} ;
Replay the messages logged after s in the original receipt order,
till the current state remains non-orphan;
Among remaining logged messages, discard orphans and
add non-orphans to Receive_buffer ;

Start_incarnation ;

Figure 3.9: Modified K-optimistic logging protocol routines.
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3.4.1 Policy Decisions

1. While broadcasting the logging progress information, a process can choose to
broadcast either its own logging information only or the information about
all processes that it knows of. Similarly, at the time of failure announcement,

logging information about all processes can be broadcast.

2. In general, logging progress need not be broadcast reliably. For a given in-
carnation, logging progress is monotonic. Therefore, future notification will
supply the missing information. However, if an implementation does not
broadcast the information about previous incarnations, then in the routine
Start_incarnation, logging information of previous incarnation needs to be

broadcast reliably.

3. We maintain the dependency vector as a vector of n entries. However, de-
pendency vector can also be viewed as a set of triplets of the form (process
number, incarnation number, sequence number). Depending on the relative

values of K and n, more efficient form should be used.

3.4.2 Optimizations

1. In Figure 3.9, in routine Restart, failure broadcast is done after replaying
the messages. An implementation will compute the index of the maximum

recoverable state and broadcast it before replaying the messages.

2. In Figure 3.9, routine Log_message is called in the routine Rollback to log all

unlogged messages. An implementation will log only non-orphan messages.

3. When a process sets its K value to 0, it needs to reliably broadcast a logging
progress notification. After that it does not need to send a logging notification

as no other process will be commit dependent on its future intervals. With
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this optimization, our protocol behaves like the pessimistic protocol in [37] for

K equal to 0.

3.4.3 Other Issues

In this dissertation, our focus is on the design of efficient optimistic protocols. There
are a number of implementation issues that are not addressed here. We next give
a partial list of these issues. These and many other issues are discussed in detail

in [24].

e Failure detection: In theory, it is impossible to distinguish a failed process
from a very slow process [28]. In practice, many failure detectors have been
built that work well for practical situations [33]. Most of these detectors use

a timeout mechanism.

¢ Garbage collection: Some form of garbage collection is required to reclaim

the space used for checkpoints and message logs [61].

e Stable storage: Logging protocols require some form of stable storage that
remains available across failures. In a multi-processor environment local disk
can be used, because as other processors can access the local disk even if
one of the processors fails. In a networking environment, the local disk may
be inaccessible when the corresponding processor fails. Therefore, a network
storage server is required. The storage server itself can be made fault-tolerant

by using the techniques presented in [46].

e Network Address: When a failed process is restarted, it may have a different
network address. Therefore, location independent identifiers need to be used

for the purpose of inter-process communication.

e Environment Variables: If a failed process is restarted on a processor dif-

ferent from the one used before the failure then some inconsistency may arise

42



is required.

due to mismatch of the values of environment variables in pre- and post-failure
computation. In such scenario, logging and resetting of environment variables

3.5 A Detailed Example
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Figure 3.10:
computation

K-optimistic recovery: (a) Pre-failure computation (b) Post-failure

Figure 3.10 shows an example of the protocol execution. Dependency vectors

and that for P2 is 1.

are shown only for some states and messages. To avoid cluttering the figure, some
messages causing state transitions are not shown. The K value for PO and P1 is 3

In Figure 3.10(a), P1 sends the message m1l to PO in the state interval s1.

PO processes this message, starts the state interval s4 and sends a message m5 to
P1 (mb5 is shown in the Figure 3.10(b) only). In the state interval s2, P2 sends

the message m0 to P1. However, the recovery layer delays the sending of m0 as it
is dependent on two non-stable intervals. The message is sent after P2 makes its

own interval (1,4) stable. P1 processes this message and sends the message m2 to

P0. It performs some more computations and fails (shown by a cross). At the time
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of failure, it has logged all the messages received till the interval sl and has not
logged the message m0. During this time, PO acts on the messages m2 and starts
the interval sb.

The post-failure computation is shown in the Figure 3.10(b). On restart, P1
restores its last checkpoint cl, replays the logged messages and recreates the interval
sl. It broadcasts the failure announcement (3,6) to other processes and increments
its own incarnation number. P1 now processes message mb resulting in the interval
6. P1 sends message m4 to P0. During this time, PO sends the message m3 to
P2. The recovery layer of PO receives the message m4 before it receives the failure
announcement from P1. Note that the message m4 is received by the recovery layer
in state 5, but it is not delivered to the application. In the figure, arrows point
to the state in which a message is delivered and not the state in which they are
received. The second entry in dependency vector of m4 is (4,7), while the second
entry in P0’s dependency vector in state s5 is (3,7). Therefore, PO decides that
m4 is inadmissible. Later, when P0 receives the failure announcement, it rolls
back. PO restores the checkpoint c0 and replays the logged messages, until, in state
s4, it is about to process the message m2 that made it orphan. It discards m2 and
increments its incarnation number. It does not send out any rollback announcement.
Now message m4 is processed and interval s7 is started. On receiving message m3,

P2 detects that m3 is orphan and discards it.

3.6 Properties of the Protocol

In this section, we prove our protocol correct and discuss its properties. All the
lemmas and invariants presented before the Theorem 4 are used to for the correctness
proof in the Theorem 4. The Theorem 5 shows that our protocol does not indefinitely
postpone the sending of a message. The Theorem 6 establishes the meaning of K,

i.e., given any message m released by its sender, the number of processes whose

44



failure can revoke m is at most K.

In Figure 3.2, the function get_state returns a state interval of a given process
corresponding to a given entity. This function is well defined only if the entries
corresponding to the states of a process are unique. The following lemma shows

that the function get_state is indeed well defined.
Lemma 2 Different states of the same process have different entries.

Proof. Whenever a new state is started in the routine Process_message, sequence
number is incremented. In Start_incarnation, incarnation number is incremented.
Storing cur_inc on stable storage prevents the loss of incarnation information in a
failure. A failure before the completion of the routine Start_incarnation will result
in the restoration of the same state. Therefore, reuse of the incarnation number
does not matter. m

The converse of this lemma is not true. A state can have more than one
entry. This happens to a state restored after a failure or rollback when the state’s
incarnation number is incremented.

The following lemma shows that stability is monotonic with respect to the

happened before relation within the same process.
Lemma 3 (s—=w A s.p = w.p A stable(w)) = stable(s)

Proof. First note that whenever an interval is started, it is added to the State_list.
Also note that either State_list is empty or all the states in it belong to the same
incarnation and are consecutive. This is because routine Log_state is called in the
routine Rollback. Lemma is trivially true when s is same as w. Now we prove the
lemma by induction on the number of states between distinct s and w.

Base Case (0 states): If s is not made stable in the call to Log_state that

made w stable, then s must have been made stable in an previous call to Log_state.
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Induction Step: Let s — w . Let u be the state immediately preceding w.
Now stable(w) implies stable(u) by induction hypothesis. Also, stable(u) implies
stable(s) by induction hypothesis. Hence the result. m

The following lemma shows that the predicate knows_stable correctly detects

a stable state.
Lemma 4 knows_stable(s,e,j) = stable(get_state(j,e)).

Proof. A state enters its entry into its log_prog in the routine Log_state. It does so,
only after adding the current state to the stable state list. Therefore, lemma is true
when s.p is equal to j. Now we consider the case when s.p is different from j.
knows_stable(s, e, j)
= { definition of knows_stable }
seq_num(s.log_prog[j], e.inc) > e.seq
= { Definition of seq_num }
Jdz : (e.inc,x) € s.log_prog[j] N x > e.seq
= { e belongs to s.log_prog[j] implies that P; has broadcast it. }
Jw:wp=j N w.clj] = (einc,x) N stable(w)
= { Definition of get_state }
Jw : stable(w) N w.p=j A get_state(j,e).c[j].inc = w.c[j].inc
A get_state(j, e).c[j].seq < w.c[j].seq
= { Lemma 3 }
stable(get_state(j,e)) m
The following lemma proves a similar result in the other direction. Before
we continue, we need one more predicate definition. A set or an entry satisfies the

predicate broadcast if it has been broadcast by some state.
Lemma 5 stable(get_state(j,e)) = Vi: Is € P; : knows_stable(s, e, j)

Proof. Let w be the state returned by get_state(j,e). Let u be the first state of P;
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after w in which Log_state is called. We next prove that w and w have the same
incarnation number. A new incarnation is started only due to a failure or a rollback.
By our choice of u, a failure before u means that w is not stable. A rollback before
u means that u is not the first state after w in which Log_state is called as Log_state
is called in Rollback. Therefore, u and w have same incarnation number. Now,

stable(w)
= { Above argument, Log_state is atomic }

u.c[j].inc = e.inc A\ wu.c[jl.seq > e.seq A u.c[j] € u.log_progl[j]
= { Future insertions maintain the following property }

Vo:vp=37 A u=wv:[Jz: (einc z) € vlog_prog[j] Nz > e.seq |
= { Broadcast_log_prog is called eventually. }

Jlog_prog : broadcast(log_prog) : [3x : (e.inc,x) € log_prog[j] N x > e.seq]
= {Receive_log_prog is called eventually }

Vi:3ds € P;: 3z : (edinc,x) € s.log_proglj] ANz > e.seq
= { Definition of seq_num }

Vi : ds € P; : seq-num(s.log_prog|j], e.inc) > e.seq
= { Definition of knows_stable }

Vi:ds € P; : knows_stable(s,e,j) m

The following invariant is at the heart of our protocol. It ensures that de-
pendencies on unstable states are never set to NULL. Therefore when an unstable

state is lost in a failure, this invariant helps in the detection of orphan states.

Invariant 1 Vs,u: (s=u A —stable(s)) = ((u.c[s.pl.inc = s.c[s.p].inc)

A (u.c[s.p].seq > s.c[s.p].seq))

Proof. Invariant holds trivially if s is same as u. Therefore, we consider s, such that
s happened before u. We show that the above invariant holds initially. We also
show that the invariant holds after the execution of a routine, if it holds before the

routine is called. It is sufficient to consider the routines that create a new interval
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or modify the dependency vector.

Initialize: Invariant is trivially true, because for any initial state v and any
state s, s 4 u.

Process_message: Let the message m be sent by an interval w. Let interval
v process m and start interval u. Incrementing the sequence number in the second
operation in the routine leaves the invariant unaffected. Therefore, it is sufficient to
show that the invariant holds after the maz operation.

In general, dependency vector of w and m can be different as some entries in
the dependency vector of m might be set to NULL in the routine Check_send_buffer.
Happened before relation is defined between w and u, whereas dependency vector
of u is updated by taking maximum of dependency vectors of v and m. In order to
reason about happened before relation, sometimes we would like to use the depen-
dency vector of w instead of dependency vector of m. The following claim shows
that dependency vectors of m and w agree on the dependencies on the non-stable
intervals.

Claim 1: smw A —stable(s) = m.c[s.p] = w.c[s.p]
Proof. s—w A —stable(s)
= { Invariant holds before this routine is called }

(w.c[s.pl.inc = s.c[s.p].inc) A (w.c[s.p].seq > s.c[s.p].seq)
= { Definitions of get_state and happened before }

s — get_state(s.p, w.c[s.p])
= { —stable(s), Lemma 3 }

—stable(get_state(s.p, w.c[s.p]))
= { Lemma 4 }

Vr : mknows_stable(r, s.p, w.c[s.p])
= { First if condition in Check_send_buffer is not satisfied }

m.c[s.p] = w.c[s.p] { End of Claim }
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Now, s - u
= {By definition of happened before}

s=vVs—w ... (1)

We consider the following three cases separately:
1) v.c[s.p].inc = m.c[s.p].inc
2) v.c[s.p].inc > m.c[s.p].inc

3) v.c[s.p].inc < m.c[s.p].inc

Case 1: v.c[s.p].inc = m.c[s.p].inc. From (I), there are two subcases to consider:
l.a) s=wv, 1.b) s—w.
Subcase 1.a: s—=v A —stable(s)
= { Invariant holds before this routine is called. }
(v.c[s.p].inc = s.c[s.p].inc) A (v.c[s.p].seq > s.c[s.p].seq)
= { u.c[s.p] = mazx(v.c[s.p], m.c[s.p]), case 1 }

(u.c[s.pl.inc = s.c[s.p].inc) A (u.c[s.p].seq > s.c[s.p].seq)

Subcase 1.b: By Claim 1, m.c[s.p] is equal to w.clw.p]. The rest of the proof is

similar to the subcase 1.a.

Case 2: v.c[s.p].inc > m.c[s.p].inc. From (I), there are two subcases to consider:
2.a) s—wv, 2.b) s—w.

Subcase 2.a: It is similar to subcase 1.a.
Subcase 2.b: s—mw N —stable(s)

= { Invariant holds before this routine is called }

(w.c[s.pl.inc = s.c[s.p].inc) A (w.c[s.p].seq > s.c[s.p].seq)
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= { Claim 1: m.c[s.p] = w.c[s.p] }
(m.c[s.p].inc = s.c[s.p].inc) A (m.c[s.p].seq > s.c[s.p].seq)
= { admissible(m,v), case 2 }
(m.c[s.p].inc = s.c[s.p].inc) A (m.c[s.p].seq > s.c[s.p].seq)
A knows_stable(v, m.c[s.p], s.p)
= { Definition of knows_stable }
knows_stable(v, s.c[s.p], s.p)
= { Lemma 4 }
stable(s)

Case 3: v.c[s.p|.inc < m.c[s.p].inc . Proof is similar to that of case 2.

This concludes the proof for the routine Process_message.

Start_incarnation: Let u be the state in which this routine is called. This
routine is called inside routines Restart and Rollback only. Therefore, u is stable.
We consider the following two cases: 1) s.p = u.p, 2) s.p # u.p .

Case 1: s.p =u.p

s = u=s—u

= { u is stable, stability is monotonic }

stable(s)

case 2: s.p # u.p
S — U
= { Antecedent: —stable(s) }
s —u A —stable(s)
= { Invariant holds before this routine, s.p # u.p, only u.c[u.p] is modified in this

routine }



(u.c[s.pl.inc = s.c[s.p].inc) A (u.c[s.p].seq > s.c[s.p].seq)

Receive_log_prog: Let u be the interval calling this routine. Modification
of dependency vector of u can cause violations of invariant involving two kinds of
states: 1) s — u, 2) u — s. As u.p’th entry is not modified in this routine, so it is
sufficient to consider the first case. We need to consider state s only if the s.p’th
entry is modified in this routine.

Now, s.p’th entry is modified.
= { Test in the if condition }

knows_stable(u, u.c[s.p], s.p)
= { Antecedent, invariant holds before this routine is called }

(u.c[s.pl.inc = s.c[s.p].inc) A (u.c[s.p].seq > s.c[s.p].seq)

A knows_stable(u, u.c[s.p], s.p)
= { Definition of knows_stable }

knows_stable(u, s.c[s.p], s.p)
= { Lemma 4 }

stable(s) m

The following invariant shows that a process never sets its own entry to

NULL, as its own entry is needed to start its next interval.
Invariant 2 Vs : s.c[s.p] # NULL.

Proof. Process P j, starts with a non-NULL c[s.p]. It updates it by taking maximum
with another entry or by incrementing it. Hence the result. m
The following invariant ensures that our dependency tracking mechanism

does not introduce any false dependencies.
Invariant 3 s/Au = ((s.c[s.p].inc # u.c[s.pl.inc) V (s.c[s.p].seq > u.c[s.p].seq))
Proof. If distinct s and u belong to the same incarnation of a process and s did

not happen before u then v happened before s. Now within the same incarnation,
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sequence number is only increased. Hence the invariant holds in this case. Therefore,
we assume that s and u belong to different processes.

We show that the above invariant holds initially. We also show that the
invariant holds after the execution of a routine, if it holds before the routine is
called. It is sufficient to consider the routines that create a new interval or modify
the dependency vector.

Initialize: Let u be the initial interval.
= { Assumption: s.p # u.p }

u.c[s.p] = NULL
= { Invariant 2 }

u.c[s.p].inc # s.c[s.pl.inc

Process_message: Let the message m be sent by an interval w. Let interval
v process m and start interval u. Incrementing the sequence number in the second
operation in the routine leaves the invariant unaffected as s.p is not equal to u.p.
Therefore, it is sufficient to show that the invariant holds after the maz operation.

Now, u.c[s.p] = max(v.c[s.p], m.c[s.p])
= { Definition of max }

u.c[s.p] = v.c[s.p] V u.c[s.p] = m.c[s.p]

We consider the following two cases: 1) w.c[s.p] = v.c[s.p], 2) u.c[s.p] =
m.c[s.p]
Case 1: u.c[s.p] = v.c[s.p].

Now, s A u
= { Definition of happened before }

s A
= { Invariant holds before this routine is called }

(s.c[s.pl.inc # v.c[s.pl.inc) V (s.c[s.p].seq > v.c[s.p].seq)



= { Case 1}
(s.c[s.pl.inc # u.c[s.p].inc) V (s.c[s.p].seq > u.c[s.p].seq)

Case 2: u.c[s.p] = m.c[s.p]. If m.c[s.p] is NULL then wu.c[s.p] is NULL. This implies
that v.c[s.p] is also NULL and the case 1 applies. Therefore, we consider the case
when m.c[s.p] is not NULL. This implies that m.c[s.p| is same as w.c[s.p]. Rest of

the proof is similar to the case 1.

Start_incarnation: let u be the state in which this routine is called.
Now, s A u

= { Invariant holds before this routine is called }
(s.c[s.p].inc # u.c[s.p].inc) V (s.c[s.p].seq > u.c[s.p].seq)

= { Assumption s.p # u.p, only wu.c[u.p] is modified in this routine }

(s.c[s.pl.inc # u.c[s.p].inc) V (s.c[s.p].seq > u.c[s.p].seq)

Receive_log _prog: Let u be the interval calling this routine. Modification
of dependency vector of u can cause violations of invariant involving two kinds of
states: 1) s 4 u, 2) u 4 s. As u.p’th entry is not modified in this routine, so it is
sufficient to consider the first case. We need to consider state s only if the s.p’th
entry is set to NULL in this routine. By Invariant 2, s.c[s.p| is non-NULL. Hence
the result follows. m

The following lemma shows that the predicate knows_orphan correctly de-

tects an orphan state.
Lemma 6 knows_orphan(s,u) = orphan(u).

Proof. knows_orphan(s,u)
= { Definition of knows_orphan }

35 : 3(t, z) € s.iet[j] : (t = u.c[jl.inc) N (z < u.c[j].seq)
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Let w be the minimum state lost in the failure of P; that resulted in the

failure announcement entry (¢,x). Now w.p is same as j.

Then, w.clw.p] = (t,x + 1)
= { Definition of knows_orphan(s,u) }
w.clw.pl.inc = u.clw.pl.inc A w.clw.p].seq < u.clw.p].seq
= { Invariant 3 }
—(w £ u)
= { w is a lost state }
w—u A rolled_back(w)
= { Definition of orphan }
orphan(u) m

The following lemma proves a similar result in the other direction.
Lemma 7 orphan(u) = Vi : Jw € P; : knows_orphan(w, u)

Proof. Let v be lost in a failure and s be the state restored after that failure.
Then we prove that s and v have the same incarnation number before the routine
Start_incarnation is called by s. If s and v have different incarnation number then
the routine, Start_incarnation must have been called by an intermediate state. Since
s is the first state to call Restart, after loss of v, the routine Rollback must have been
called in some intermediate state. As Log_state is called in Rollback, so all unlogged
states including v are made stable. Then v cannot be lost in a failure. Therefore, s
and v have the same incarnation number.

Now, orphan(u)
= { Definition of orphan }

Fv : lost(v) A v=u

= { Above argument, Restart is atomic, idempotent. }
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Ju,s : lost(v) A v=u A broadcast(s.clv.p]) A s.clv.pl.inc = wv.c[v.p].inc A
v.cv.p].seq > s.clv.p].seq
= { Reliable broadcast includes the execution of Receive_failure_ann. }
Vi : Jw € P; : Je € w.iet[v.p] A e.inc = v.c[v.p].inc A v.c[v.p].seq > e.seq
= { Invariant 1, not stable v }
Vi:Jw € P;: Je € w.iet[v.p] A e.inc = u.c[v.p].inc A u.c[v.p].seq > e.seq
= { Definition of knows_orphan }
Vi : Jw € P; : knows_orphan(w,u) m
Two executions of a process are considered equivalent if their stable states

and the sets of messages sent to other processes are same.

Lemma 8 Given an arbitrary execution of a process and an arbitrary point of fail-
ure, there exists an equivalent execution in which the failure occurs just before the

routine Log_state is called.

Proof. A failure during execution of any routine that modifies volatile storage only
is same as the failure before the execution of that routine.

Using the techniques in [46], all routines that modify stable storage can be
made atomic. These routines are idempotent as well. A repeated execution of any
routine in Figure 3.7 has the same effect as that of executing it only once, provided no
new failure announcements are received during the repeated execution. If new failure
announcements are received then repeated execution is equivalent to an execution
in which all failure announcements are received before executing the routine under
consideration. This follows from the fact that the set of the stable states is totally
ordered and execution of the routine Receive_failure_ann has either no effect or causes
one of the stable states to be restored. So repeated execution of a number of failure
announcements is same as executing them once in an arbitrary order. Therefore,
any failure is equivalent to a failure just before the routine Log_state is called. m

The following theorem proves the correctness of our protocol.
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Theorem 4 The protocol rolls back all orphan states and orphan states only.

Proof. As per Lemma 8, any failure is equivalent to a failure before executing the
routine Log_state. Therefore, the only effect of a failure is that unlogged states are
lost.

We show below that all orphan states are rolled back when failure announce-
ment arrives. Also all orphan messages are discarded whether they arrive before
failure announcement or after. Therefore, no state becomes orphan with respect to
a failure after the arrival of the corresponding announcement.

In routine Restart, an announcement is made about the entry of the last
stable interval of the last incarnation. On receiving this announcement, all processes
roll back all states that satisfy the predicate knows_orphan. By Lemma 7, all orphan
states satisfy this predicate. Further, by Lemma 6, only orphan states satisfy this
predicate. This ensures that the resulting system state is consistent. This point
requires some elaboration. Let interval s be lost in a failure. One can imagine a
protocol which rolls back a state u that is not dependent on s. A protocol that rolls
back all states dependent on a lost state s can be wrong in the following way. It
may not roll back a state w that is dependent on u. As it rolled back u, resulting
system state will not be consistent.

As proved below, all messages that are orphan with respect to this failure
are discarded. A message is orphan if its sending interval is orphan. A sending
interval’s dependency vector is attached with the message. As lost states are not
stable, their entry in message’s dependency vector is not set to NULL in the routine
Check_send_buffer. Hence by using the Invariant 1, all orphan messages that have
been received before the corresponding failure announcement are discarded when
that failure announcement is received.

We assume that reliable delivery of failure announcement includes the atomic

execution of the routine Receive_failure_ann. This means that received failure an-
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nouncements are not lost afterwards. So all messages that are orphan w.r.t. this
failure and that arrive after the failure announcement will be discarded upon their
arrival in the routine Receive_message.

This completes the proof obligations stated earlier. m

The following theorem shows that our protocol does not indefinitely postpone

the sending of a message.

Theorem 5 Each message in Send_buffer is either lost in a failure, or discarded as

an orphan, or eventually sent.

Proof. Consider a message m that is not lost in a failure and is not discarded as
an orphan and is present in the Send_buffer of P;. Let w be the maximum state
of a process P; on which m is dependent. If w is lost in failure then by Lemma 7,
P; will detect that m is orphan and will discard it. Else w will eventually become
stable and by Lemma 5, P; will eventually set m.c[j] to NULL. As our choice of j
was arbitrary, so the number of non-NULL entries in the dependency vector of m
will become at most K and m will be sent. m

The following theorem shows the meaning of K.

Theorem 6 Given any message m released by its sender, the number of processes

that can make the message orphan on their failure is at most K.

Proof. In Check_send_buffer, the j’th entry of the dependency vector of a message
m is set to NULL when the corresponding interval in P; becomes stable. As per
proof of Theorem 3, a failure of P; cannot cause m to become an orphan. Since
m is released when the number of non-NULL entries become at most K, the result

follows. m
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3.7 Variations of the Basic Protocol

The K-optimistic protocol presented in previous sections is one of the possible ap-
plications of Theorem 3. This theorem can be used to implement many different
policies. For example, P; may be unwilling to roll back due to a failure of P;. This
can be enforced by P; by blocking the delivery of any message that is commit de-
pendent on any interval of P; till that interval becomes stable. Interestingly, P;
may choose to become commit dependent on P, while avoiding commit dependency
on Pj, even though P, may become commit dependent on P;. This is because, on
receiving a message from P, P; can detect that Pj is passing an unstable depen-
dency on P;j. That message delivery can be blocked by P; till the dependency on P;

becomes stable.

Simulating a Failure

As discussed in Section 1.2, there are many scenarios like non-crash failures and
software error recovery, where recreating pre-failure states is undesirable. This poses
a problem for our protocol, because we are setting stable entries to NULL under the
assumption that they can never be lost in a failure. But, now we need to simulate
the loss of stable intervals. To do this, we add one more bit (initially 0) to each
entry in the dependency vector. Instead of setting an entry to NULL, we simply
set the corresponding bit to 1. Lexicographic comparison operation still remains
the same. Incarnation numbers and state indices are compared to determine the
maximum of two entries. Everything else in the protocol remains the same except
that for the purpose of orphan detection, all entries including the stable ones need
to be inspected. For example, suppose the second entry of P1 dependency vector
is (2,6,0). It corresponds to entry (2,6) in the old notation. Now P1 receives the
logging notification (2,8) from P2. Instead of setting (2,6,0) to NULL, it is changed

to (2,6,1). Later on, if P2 were to simulate a failure and send the announcement
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(2,4), P1 will know that it is an orphan by comparing (2,4) to the entry (2,6,1) in
its dependency vector.

There is a clear limitation of this approach. It does not work when an entry
from a lower incarnation is overwritten by an entry from a higher incarnation. This
means that failures can be simulated only within the current incarnation.

An alternative approach to failure simulation is that in addition to logging
on stable storage, an application may also need to satisfy some other conditions
before it can declare an interval stable. For example, with latent errors, an interval

becomes stable only after the maximum error detection latency period.

3.8 Experimental Results

So far we have mainly discussed the theoretical issues related to K-optimistic log-
ging. This section presents the experimental results of a prototype implementation.

To our knowledge, there is no general answer to the question: What value
of K should one use? It depends entirely on the application characteristics and the
application. Some of the factors that play a crucial role are: communication pattern,
message size distribution, message arrival rate, network bandwidth, stable storage
server load, and failure probability. Given the wide range of these parameters, it
is not possible to come up with a table showing the failure-free overhead and the
recovery time for combinations of particular values of these parameters. Instead, we
recommend that a prototype of the application be run with different values of K
and be tested for different failure scenarios. Based on the observed behavior and the
application requirements regarding maximum down time and failure-free overhead,
appropriate value of K can be chosen. In the following sections, we discuss some
particular applications and present the failure-free overhead and recovery time for

the single failure case.
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Figure 3.11: Recovery layer architecture.

3.8.1 Architecture

We have implemented a prototype of the K-optimistic protocol. Our architecture
is shown in the Figure 3.11. An application is compiled with a recovery library that
consists of a logging server, a checkpointing server and a recovery manager. Solid
arrows show the flow of application messages while the dashed arrows show the
messages required for the fault-tolerance. Application should periodically send an I-
am-alive message to the failure detector. As per the diagram, recovery manager and
application belong to the same process. Therefore, on detecting many consecutive
missing I-am-alive message, the failure detector will start a new recovery manager
which will load the latest checkpoint and pass the control to the application. Since
our focus is on the message logging part, we have not implemented the checkpointing
server and the failure detector. We simulate them appropriately, as explained in the

Section 3.8.5.



3.8.2 Message Logging Policy

In traditional optimistic schemes, the volatile log is periodically flushed to stable
storage. However logging at fixed interval does not work well for the K-optimistic
scheme. This is because for the lower values of K, the logging needs to take place
more often to give acceptable performance. For example, consider the case of K
being 0. If messages are logged at a fixed interval of say 300 millisecond, then no
process can send out messages faster than once in 300 millisecond.

The application progress is affected in a non-linear fashion with the varying
logging frequency. Higher logging frequency may result in non-optimal use of the file
server. Also, the application and the logging server may compete for the processor
cycles and the network bandwidth. On the other hand, lower logging frequency may
result in messages being held in Send_buffer for a long time. This implies that for a
given value of K, one needs to experiment with different values of logging frequency
to select the optimal value. However, this method of determining logging frequency
does not work in presence of different message sizes, changing message arrival rates
and varying system load.

To solve this problem, we have designed a novel message logging policy.
Our policy asynchronously logs the very first message, right after it is received.
After that, whenever a notification from the file server is received that the previous
logging completed successfully, all the received messages since the previous logging
are submitted to the file server for asynchronous logging. This policy automatically
adapts to the changing system load. For a lightly loaded system, messages will
be logged frequently. As the system load increases, logging frequency decreases
correspondingly.

For K value of n, above logging policy is similar in spirit to the logging policy
used in traditional optimistic protocols. Even for K value of 0, this policy works like

the pessimistic protocol in [37]. In that protocol, the logging overhead is reduced by



delaying the logging till the point where a message dependent on unlogged messages
needs to be sent.

A related issue is that of logging progress notification frequency. It offers
trade-offs similar to those discussed for the logging frequency. However, as the
size of the logging notification message is much smaller than a typical application
message (8 to 8n bytes, depending on the implementation), frequent notification
results in negligible overhead compared to frequent logging. We also piggyback the
logging progress information about the highest known incarnation of each process
on every outgoing message. We found that this adds very little to the message
processing overhead but helps in fast logging notification.

We have chosen a period of 500 millisecond for the logging notification, except
when K equals n, for which notification period is 1 second. In the latter case, logging
notification is needed only for the output commit and not for the progress of the

computation.

3.8.3 Test Scripts

In our experiments, each process receives a message, sleeps for a while, sends a
message and then blocks for the next message receive. In the beginning, an initiator
process sends a message to all other processes. For a given experiment, the message
size is fixed but compute time is chosen uniformly from a range. Compute time is
the time between the processing of a message and the send of next message. It is

inversely related to message frequency.

3.8.4 Application Parameters

We vary following parameters in our tests: message size, compute time and commu-
nication pattern. We consider these parameters because they are the main determi-

nant of the trade-off provided by the K-optimistic protocol. The trade-off depends



on two factors: how fast messages can be logged and how fast messages need to be
logged. How fast messages can be logged depends on the message size. How fast
the messages need to be logged depends on the message frequency. We later show

that communication pattern also determines how fast messages can be logged.

Communication Pattern

We have tested our protocol for two different communication patterns. In test Ran-
dom, the receiver of a message is chosen randomly by the sender, whereas in test
Netwghbor, processes are arranged in a ring and they alternately send messages to
their left and right neighbors only. Tests Random and Neighbor were chosen because
they are representatives of the many different applications studied in the litera-
ture [26, 55]. They represent two extreme communication patterns for distributed
applications and if our protocol works well for these extremes, then it should work
well for the patterns in between the extremes.

In Random, each process receives messages from all other processes. There-
fore, if a single process were to fail, other processes will not slow down much as they
will still be able to communicate with each other. On the other hand, in Neighbor,
failure of a single process changes the topology from a ring to a doubly-linked list.
The neighbors of the failed process are expected to slow down as their message in-
take is reduced by half. As a result, other neighbors of these neighbors will also
slow down and so on, resulting in a slowdown of the entire application. In Neighbor,
all processes receive equal number of messages and so they block and compute for
approximately equal periods. On the other hand, in Random, some processes receive
a little more messages than average while others receive a little less. This implies
that some process may be blocked waiting for a message to process while some other

process may always have a message to process when it needs one.



Message Size and Compute Time

We have selected specific message sizes and compute time to illustrate a wide range
of applications. If the message logging time for most messages is less than the
minimum computation time, then most of the messages will be logged before the
application finishes processing them. As a result, very few messages will get lost
in a failure and the recovery time will be dominated by the checkpoint restoration
and the message replay time for the failed process. Therefore, the recovery time for
different values of K should be similar. Also, during failure-free computation, very
few messages should be held in the send buffer. Therefore, the overhead for different
values of K should be similar and little. This overhead can be made arbitrarily small
by selecting very high compute times. If the message logging time for most messages
is more than the maximum compute time, then the overhead for lower values of K
can be arbitrarily large depending on the actual values of logging and computation
time.

For message size of 1K, compute time of 80 to 100 millisecond is more than
the average logging time for both the tests. For message size of 10K, compute time
of 80 to 100 millisecond is less than the average logging time for both the tests.
For message size of 4K, compute time of 50-70 millisecond is less than the average

logging time for Random and more than the average logging time for Neighbor.

3.8.5 Performance Evaluation

Performance Metrics

We measure the failure-free overhead by running the test with and without K-
optimistic logging for different values of K. We measure recovery time as the differ-
ence in the average values of execution time without any failure and the execution
time with a single failure. This definition implies that the recovery time may be

similar for different values of K, even though the number of processes rolling back
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are different. This is because processes may roll back concurrently. Also, when one
process rolls back, other processes may block. Therefore, the recovery time may

change little if the blocked processes were to actually roll back a little.

Experimental Settings

We use a network of IBM-250/25T workstations connected by a 10Mb/s Ethernet.
Each workstation runs AIX 4.1.5 and is equipped with a 66-MHz PowerPC 601
processor, 32KB of data cache and 256MB of memory. A highly available NFS is

used for stable storage.

Measurement Methodology

All measurements are made with applications distributed across 4 machines with
2 processes per machines. All tests involved 20 trials. All results presented here
are averages of middle 10 values for each test. The duration of a trial for the case
of no message logging ranged from 24 to 40 seconds for different combinations of
test parameters. Standard deviations for most measurements are under 1% of the
average.

The occurrence of a failure is simulated after a process has processed 30
messages since a designated checkpoint. The latency of failure detection is heavily
dependent on the implementation of the failure detector and the application envi-
ronment. Since we consider only the single failure case, we have chosen to ignore
this latency in comparing the recovery time for different values of K. Since the
checkpoint size in our tests is very small, we simulate the cost of restoring a large
checkpoint and reading the message log by blocking the application for 2 seconds
while recovering from a failure. The value of 2 second was chosen based on the

values reported in [55].
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Figure 3.12: Performance results for application Neighbor. Legend consists of the

experiment number, the message size in bytes and the compute time range in mil-

liseconds.



—&— 4:1024,80-100
---&-- 5:4096,50-70
— -A—- 6:10240,80-100

Failure-free overhead (%)

il Eotririrtrts
l———Y
T 1
6 8

Degree of optimism

(a)

Recovery time (sec.)

0 T N T N T T T T 1

0 2 4 6 8
Degree of optimism

(b)
Figure 3.13: Performance results for application Random. Legend consists of the
experiment number, the message size in bytes and the compute time range in mil-

liseconds.

67



Results

The results of our experiments are shown in Figures 3.12 and 3.13. Part (a) of
the figures shows the failure-free overhead in percentage terms for various values of
K. Part (b) shows the recovery time in seconds for the corresponding values of K.
First entry in the legends is an experiment number that we use to discuss the results.
Next two entries show the message size in bytes and the range in millisecond from
which computation time for each message is uniformly chosen.

The failure-free overhead for traditional optimistic (KX = 8) and pessimistic
(K = 0) logging ranges from 6-14% and 8-66% respectively. These ranges are
completely arbitrary and they can be much larger or smaller, depending on the
application characteristics. For example, in [67], overhead of 3% is reported for
completely pessimistic logging with a compute time of 2 seconds. The recovery time
measurement should be used for illustration only, and not as the absolute values

since we simulate the failure.

Discussion

Both failure-free overhead and recovery time graphs for experiment 4 are almost
flat. This is to be expected, since in this experiment, almost all messages are logged
before the application finishes processing them. Same logging pattern implies same
failure-free overhead. Since no messages are lost in a failure, recovery time is also
same for different values of K. In general, whenever compute time is much more
than the average message logging time, we should expect the failure-free overhead
and the recovery time graphs to be flat.

All other parameters being equal, the failure-free overhead for Neighbor is
always more than that for Random. In Neighbor, all processes block and compute
for similar period of time. Therefore, there are times when no process is trying to

log messages while at other times, many processes try to log messages concurrently.
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Compared to this, access to stable storage is more uniformly distributed over time for
Random. Another reason is that in Neighbor, if one process is waiting for the current
logging to finish to release its messages from the send buffer, then its neighbors also
slow down. However, in Random, neighbors can receive messages from any other
processes and can make progress.

We also note that the recovery time for Neighbor is always more than the
recovery time for Random. This is because while a process is recovering, its neighbors
receive messages only from their other neighbor, while in Random, they receive
messages from many other processes.

For lower values of K, the time to restore the checkpoint and replay the
message logs is always greater than the recovery time, which is defined as the dif-
ference in the running time of a failure-free run and a single-failure run. This is
because while a process is recovering, other processes are making progress. Also,
other processes are sending messages to the recovering process. Therefore, when the
failed process finishes its replay, it will have many more messages to process without
blocking for the want of a message to process.

Another interesting trend is that for the lower values of K and the same value
of compute time, computation with smaller message size takes longer to recover.
This is contrary to what one would expect if one were to define recovery time as the
time to restore the checkpoint plus the time to replay the message logs. We explain
this with reference to the experiments 1 and 3. But before that, let us understand
the effect of a failure on an application completion time.

In general, processes compute most of the time and when they have no mes-
sages to process, they remain idle. When a failed process is recovering, it is also
receiving messages from other processes. After the end of the replay, the failed
process acts on these received messages and does not remain idle for quite some

time. In this period, other processes receive message from the failed process at a



rate faster than normal. As a result, overall computation proceeds at a rate faster
than normal. More time a computation takes to finish in a failure-free run, less is
the increase in completion time caused by a failure because the computation has
more time to adjust to the disturbance caused by a failure.

Since messages of size 1K are logged faster than messages of size 10K, in the
absence of any failure, experiment 1 takes less time to complete than experiment 3.
Experiment 1 takes 37 seconds whereas experiment 3 takes 49 seconds. A failed pro-
cess takes almost same time (5 seconds) to restore a checkpoint and replay messages
in both experiments. Compared to experiment 1, experiment 3 has more time to
adjust to the disturbance caused by this blocking. Therefore, the extra time taken
to finish is more in experiment 1.

For higher values of K and same compute time, recovery time is lower for
experiments with lower message sizes. This is expected because for lower message
sizes, fewer messages are lost in a failure and as a result, fewer processes roll back
compared to higher message sizes.

The failure-free overhead varies with varying message sizes in an intuitive
manner. For Random, the failure-free overhead does not increase much as the K
changes from 8 to 4. This is probably because most messages are dependent on at
most 4 non-stable intervals. Therefore, for K value of 4 to 8, most messages are
never held in the send buffer, resulting in similar failure-free overhead. However,
logging progress in Neighbor is slow compared to Random for the reasons discussed
earlier. Therefore, for experiments 2 and 3, failure-free overhead changes as K
changes from 8 to 4. For experiment 1, small message size results in little change of
failure-free overhead for higher values of K.

Finally, note that the configurations that give similar failure-free perfor-

mance (5,6) give different recovery characteristics.
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3.8.6 Selecting K
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Figure 3.14: Selecting a K value for a given . Numbers in the legend represent the

o values.

At the beginning of this section, we proposed that to select the appropriate
value of K for a given application, a prototype of the application should be run with
different values of K and failure-free overhead and recovery time graphs should be
obtained. After that, K can be chosen based on the constraints on the failure-free
overhead or recovery time. For example, let us consider the results of the experiment
2, shown in Figure 3.12. If the system designer wants to minimize the recovery time
while keeping failure-free overhead under 20% then he can choose K equal to 6. On
the other hand if the goal is to have the maximum recovery time of 4 seconds while
minimizing the failure-free overhead then K value of 2 can be used.

Another approach is to minimize an objective function of the failure-free

overhead and recovery time. For example, let the objective function F' be:
F(O,R)=a0+(1-a)R
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Arguments O and R represent the failure-free overhead and the recovery time
in some normalized form and « is a parameter to be chosen by the system designer.
As a changes from 0 to 1, we should expect the optimum K value to change from 0
to n. In Figure 3.14, we plot the function F for two different values of a. Argument
O is obtained by dividing the failure-free overhead for experiment 2 by 10% and
argument R is taken as recovery time. As both curves have a unique minimum, we

select the K value of 4 for o equal to .5 and K value of 2 for a equal to .25.

3.9 Related Work

Strom and Yemini [61] started the area of optimistic message logging. The protocol
presented in this chapter is similar in spirit to their protocol. They, however, did not
define orphans properly and did not distinguish between failures and rollbacks. As
a result, their protocol suffers from the exponential rollback problem, where a single
failure of a process can roll back another process exponential number of times. For
the same reason, they could not omit dependency tracking on stable states. They
also assumed FIFO message ordering which is not required in optimistic protocols.

Johnson and Zwaenepoel [40] present a centralized optimistic protocol. Un-
like most optimistic protocols including ours, their protocol does not require every
received message to be logged. This can be advantageous in case average message
size is much larger than average checkpoint size. They also use direct dependency
tracking instead of transitive dependency tracking. This implies that instead of
dependency vectors, only a small constant amount of information is piggybacked
on each message. These advantages come at the expense of a centralized recovery
manager, which itself needs to be made fault-tolerant.

Smith, Johnson and Tygar [59] present the first completely asynchronous
optimistic protocol. Their protocol is completely asynchronous in that, in their

system, neither a process is ever blocked from progressing, nor a message is ever
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blocked from being delivered. This is achieved by piggybacking on each message
a data structure that is similar to our incarnation end table. This results in high
failure-free overhead. In their protocol, no failure announcement is used. Since the
incarnation end table is piggybacked on every message, each process learns about
a failure when a message path is established between the restarted failed process
and every other process. We believe that rather than letting orphan computation
continue for a long time, it is better to announce failure and let every process know
as soon as possible. In Strom and Yemini’s and in our protocol, a process does not
block after a failure, but a message may be blocked from delivery. In Chapter 4, we
go one step further and block the failed process from recomputing till all non-failed
processes acknowledge the receipt of failure announcement. This obviates the need
for checking whether any message delivery should be blocked. Thus, it reduces the
failure-free overhead at the expense of recovery time.

To address the scalability issue of dependency tracking for large systems,
Sistla and Welch [60] divided the entire system into clusters and treated inter-
cluster messages as output messages. Lowry et al. [45] introduced the concept
of recovery unit gateways to compress the vector at the cost of introducing false
dependencies. Direct dependency tracking techniques [60, 40, 38] piggyback only
the sender’s current state interval index, and are more scalable in general. The
trade-off is that, at the time of output commit or recovery, the system needs to
assemble direct dependencies to obtain transitive dependencies.

In Table 3.1 we present a comparison of our protocol with other optimistic
protocols that track transitive dependencies. Since no other protocol bridges the
gap between optimism and pessimism, we consider our protocol for K equal to n.
Note that, using our ideas presented in [21], Smith and Johnson reduced the size of
dependency vectors in their algorithm [58].

Our protocol generalizes several previously known protocols. For K equal
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Message | Number of | Number of | Number of | Asynchronous
ordering integers concurrent | rollbacks Recovery

piggybacked failures per failure

Strom and
Yemini 85 FIFO O(n) n o2m) Mostly
Sistla and
Welch 89 FIFO O(n) 1 1 No
Johnson and
Zwaenepoel 90 None 0(1) n 1 No
Peterson and
Kearns 93 FIFO O(n) 1 1 No
Smith, Johnson
and Tygar 95 None O(n2f) n 1 Yes
Damani and
Garg 96 None O(n) n 1 Mostly
Smith and
Johnson 96 None O(nf) n 1 Yes

Table 3.1: Comparison with related work. (n is the number of processes in the

system and f is the maximum number of failures of any single process.)
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to m, our protocol reduces to the optimistic protocol presented in [21], while for K
equal to 0, it reduces to the pessimistic protocol presented in [37]. The protocol
in [6] can be thought of as a variant of our protocol where the server processes set
K to 0 and the clients set K to n.

Although no parallel exists to our protocol in the area of message logging,
in the area of checkpoint-based rollback-recovery, the concept of lazy checkpoint
coordination [66] has been proposed to provide a fine-grain trade-off in-between
the two extremes of uncoordinated checkpointing and coordinated checkpointing.
An integer parameter Z, called the laziness, is introduced to control the degree of
optimism by controlling the frequency of coordination. The concept of K-optimistic
logging can be considered as the counterpart of lazy checkpoint coordination for the

area of log-based rollback-recovery.

3.10 Summary

In this chapter, we have proved two fundamental results. First, with transitive de-
pendency tracking, only the failures and not all rollbacks need to be announced.
Second, only the dependencies on non-stable intervals need to be tracked. Based on
these results, we have introduced the concept of K-optimistic logging that allows a
system to explicitly fine-tune the trade-off between failure-free overhead and recov-
ery efficiency. In such a system, given any message, the number of processes whose
failures can revoke the message is bounded by K, and therefore K indicates the
maximum amount of risk that can be placed on each message or equivalently the
degree of optimism in the system. Traditional pessimistic logging and optimistic

logging then become the two extremes in the spectrum spanned by K-optimistic

logging.
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Chapter 4

Transparent Recovery for

Multi-Threaded Processes

In the previous chapter, we presented optimistic protocols for the systems where each
process is single-threaded. The natural extensions of single-threaded optimistic pro-
tocols to multi-threaded processes lead to a trade-off between failure-free overhead
and the degree of false causality in the system. We present a balanced approach that

eliminates false causality while incurring low overhead.

4.1 System Model

The system model in Chapter 2.2 assumed that the processes are single-threaded.
In this section, we extend that model to incorporate multi-threaded processes.
Each process contains a set of threads and a set of shared objects. Threads
of different processes communicate only through messages. Threads of the same
process communicate through shared objects and messages. Any other form of
communication is allowed between threads, as long as it can be modeled using shared

objects or messages. For example, wait-notify synchronizations can be modeled
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using messages.

Threads of a process crash together. This happens not only in hardware
crashes but also in most software crashes because threads share the same address
space and are not protected from each other by the operating system.

The recovery system can restore the state of an individual thread or shared
object to an old state without affecting the other threads or shared objects. This

assumption will be discussed in Section 4.3.3.

4.2 Extending Optimistic Recovery

We now extend the optimistic recovery protocol in Chapter 3 to multi-threaded
environments. For the sake of simplicity, we consider the optimistic protocol for
K equal to n. The protocol can be easily extended to incorporate the concept of
K-optimism.

Strom and Yemini [61] presented the original optimistic protocol not in terms
of processes, but in terms of recovery units. A recovery unit is a single unit of exe-
cution in optimistic recovery systems. A recovery unit fails as a unit and rolls back
in response to another unit’s failure. In Chapter 3, we chose individual processes as
recovery units. In a multi-threaded environment, there are two natural candidates

for the recovery unit: a process or a thread.
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(a) Process-centric Logging (b) Thread-centric Logging

Figure 4.1: Extending Optimistic Logging
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4.2.1 Process-centric Logging

In treating a process as a recovery unit in a multi-threaded system, there is another
source of non-determinism apart from the order of message receives. Depending on
the scheduling, the threads may access shared objects in a different order. Therefore,
after a failure, replaying the message log to a process is not sufficient to recreate the
desired states.

To solve this problem, Goldberg et. al. [29] require that shared objects be
accessed only in locked regions. The order in which threads acquire locks is logged.
During a replay, the same locking order is enforced. This trace-and-replay technique
has also been used in concurrent debuggers [44, 63].

Another approach has been used by Elnozahy and Slye [57]. They focus on
uniprocessor multi-threaded environments in which the points of non-determinism
can be reduced to the thread switches. Therefore, they log the order of thread
switches and ensure that thread switches occur in the same order during replay.
Again, this approach has been used in concurrent debuggers [50, 56].

Given that the non-determinism due to thread scheduling can be tracked and
replayed, the general optimistic recovery approach described in Chapter 3 can be

used with a process as a recovery unit.
The False Causality Problem:

An example of process-centric approach is shown in Figure 4.1(a). Receives of
messages m1l, m2 and m3 start the intervals sl, s2 and s3 respectively. When PO
fails and loses the state interval s1, P1 has to roll back the state interval s3. In the
figure, the threads in each process are not shown, since processes are the recovery
units.

Figure 4.1(b) shows the same scenario at level of threads. Process P1 consists

of two threads T2 and T3. Therefore, s3 is an interleaving of the states of T2 and
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T3. Suppose that after m3 was received, there was no shared object interactions
between T2 and T'3. So, only the states on T'3 were really caused by m3 and needed
to roll back. The states in s3 belonging to T2 were rolled back unnecessarily. This
is due to false causality induced between the states in the two threads.

Besides causing unnecessary rollbacks during recovery, false causality has an
unwanted effect in failure-free mode as well. In Figure 4.1(a), the output message
m4 from s2 cannot be committed until sO has become stable. However, the thread
view in Figure 4.1(b) shows us that this was, in fact, unnecessary. The waiting was
a result of false causality induced between m2 and m4. Thus, false causality also
increases the latency of output commits.

How often does false causality arise? The answer depends on the frequency of
shared object interactions between threads. Lewis and Berg [43] have divided multi-
threaded programs into two main categories: inherently multi-threaded programs and
not obviously multi-threaded programs. Inherently multi-threaded programs require
multi-threading for ease of programming and not for speedup. These programs have
highly independent tasks that are naturally expressed as threads. Some examples of
such programs are: servers which handle multiple requests simultaneously, debug-
gers which monitor a program while keeping multiple displays active at the same
time, and simulators which simulate different entities that operate simultaneously.
The class of “not obviously multi-threaded programs” are those that require multi-
threading for speedup on a multi-processor machine. Such programs have tightly-
coupled threads that interact frequently through shared memory. Some examples
are numerical programs and fine-tuning bottlenecks in existing code. Of these two
categories, the inherently multi-threaded programs have highly independent threads
which do not interact frequently, and therefore, would display false causality more
often. Our focus is on this important category of multi-threaded applications.

Given that the false causality problem is an important concern, how can it be
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addressed? The problem arises because threads, which are independent units, are
grouped together as a single unit. To solve this problem, we now study an approach

that models each thread as a recovery unit.

4.2.2 Thread-centric Logging

Threads can be modeled as recovery units since they can be rolled back indepen-
dently. Failure of a process is modeled as concurrent multiple failure of all its
threads. This approach has been taken in [8] in the context of causal logging.

A number of important issues arise when treating threads as recovery units
in the optimistic logging scheme. First, in addition to dependencies between threads
due to messages, there are also dependencies caused by shared objects. These new
dependencies must be tracked. Second, on a failure, just as a thread may have to
roll back, a shared object may also have to roll back. Thus, orphan detection must
be carried out for threads, as well as for shared objects. Third, both threads and
shared objects must be restored to a checkpoint and replayed.

To address these issues, we describe a way to model shared objects using
messages and threads. A fictitious thread is associated with each shared object
whose state is the same as that of the corresponding object. Each method invocation
on a shared object is modeled as a pair of messages between the invoking thread
and the thread associated with the object. The first message is sent by the invoking
thread and contains the method identifier and the method parameters. The second
message is sent by the thread associated with the object and contains the return
value of the method. This simplifies presentation of the protocols because messages
are the only form of communication in this system.

Further, the simplified model deals with all the three issues mentioned above.
The new dependencies are tracked by treating the shared object accesses as messages

and associating a vector with each shared object. Similarly, orphan detection and



replay of shared objects is done just as in threads.

Since we have dealt with the new issues, all that remains is to apply the
general optimistic logging scheme. The computation in Figure 4.1(a) appears as
that in Figure 4.1(b). When 70 and T'1 fail, the thread-interval sending m2 is not
lost in the failure. Therefore, only T'3, is rolled back and T2 is not rolled back. Also,
message m4 is committed without waiting for the interval sending m2 to become
stable.

Therefore, the thread-centric approach reduces false causality. The depen-
dency tracking overhead, however, is greatly increased. A main factor in this over-
head is that, instead of O(n) entries, each dependency vector now has O(mn) entries
(where m is the maximum number of threads per process). A more comprehensive

discussion on this overhead will be presented in Section 4.4.

An Inherent Trade-off?

The process-centric and thread-centric approaches offer a trade-off between depen-
dency tracking overhead and extent of false causality. This trade-off seems to be
an inherent one as it arises from the choice of granularity of the recovery unit. A
larger recovery unit introduces more false causality and has lower tracking overhead
than a smaller one. In database systems, an analogous trade-off exists between lock
maintenance overhead and extent of false causality while choosing the lock granu-
larity. Surprisingly, in multi-threaded recovery, this trade-off can be avoided by a

scheme, described next.

4.3 The Balanced Protocol

We observe that a recovery unit plays two distinct roles in optimistic recovery. The

first role is that of a failure unit. The defining characteristic of a failure unit is that

it fails as a unit. The second role is that of a rollback unit. A rollback unit can
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be rolled back and restored to a previous state independently. For example, in the
process-centric protocol, the process was both the failure unit and the rollback unit,
whereas in the thread-centric protocol, the thread was the failure unit and rollback
unit.

A general observation we make about optimistic recovery is that to detect
orphans, it is sufficient for a rollback unit to track its transitive dependency on a
failure unit. Then, the failure of a failure unit causes all orphaned rollback units to
rollback, bringing the system back to a consistent state.

Thus, choosing a larger granularity failure unit reduces the dependency track-
ing overhead since there are fewer entities to track. Also, choosing a larger gran-
ularity rollback unit increases the extent of false causality since multiple entities
are forced to roll back together. In the previous section, we saw that the trade-off
between dependency tracking overhead and false causality depended on the granu-
larity of the recovery unit. The separation of roles into failure units and rollback
units avoids the trade-off, by choosing a larger granularity failure unit and a smaller
granularity rollback unit. Applying this idea, our new balanced protocol uses a
process as the failure unit and a thread as the rollback unit.

There is one issue that must be resolved before a protocol based on the
balanced approach can be designed. In the balanced approach, our notion of state
interval of a process must be reviewed. We now see how this is done using a general

concept called monotonic receive sets.

4.3.1 Monotonic Receive Sets

In the process-centric protocol, a state interval of a process is the set of states
between two receive events. A state interval is caused by the receive event that
precedes it. Thus, tracking dependencies on the state interval is really meant to

track dependencies on the preceding receive event. For example, in Figure 4.2(a),



the state interval ¢; of process P; corresponds to the receive event ry.
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Figure 4.2: Monotonic Receive Sets

We split process P; into its constituent threads 77 and 75 as shown in Fig-
ure 4.2(b). Here, the receive events are partially ordered. The process view in
Figure 4.2(a) merely totally ordered the receive events in their order of occurrence
in real time. This total ordering may also be represented by an advancing frontier
that starts at the beginning of the process execution and advances one receive event
at a time. This total order is followed when tracking causal dependencies so that
only the maximum interval of a process as per the total order is tracked. This re-
quires that the logging of these messages to stable storage must also follow the same
total order and this is indeed the case in the process-centric protocol.
Now note that the frontier may be advanced multiple receive events at a time,

resulting in a total order of “sets of receive events”, called receive sets. For example,
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in Figure 4.2(c), receive set rs; contains two receive events 1 and ry. Further, the
way in which the frontier advances from left to right ensures that the receive sets
satisfy a special property that we call monotonicity. Monotonicity ensures that a
receive event in a higher receive set cannot causally precede a receive event in a
lower receive set.

Formally, let (R, —) be the partially ordered set of receive events in a process,
where — is the causally precedes relation within a process. Let (RS, <) be a partially
ordered set where RS is a partition of R into sets of receive events, called receive
sets. Let rs(r) denote the receive set in RS that contains the receive event r.

(RS, <) satisfies the monotonicity property if < is a total order, and
Vri,re: 1 — 1o = rs(r1) < rs(ra)

Although it is possible for each receive set to contain exactly one receive
event, thus totally ordering all receive events, the advantages of grouping receive

events into receive sets are two-fold:

1. First, while logging messages to disk, we notice that threads may naturally
batch their receives together. Receive events logged in the same batch must be
either both stable or both volatile. Thus it is sufficient to track dependencies

on them together.

2. Second, totally ordering all receive events requires synchronization between
threads. This is because each thread needs to be aware of the order of its
receives relative to those of the other threads. This synchronization limits
concurrency. By allowing groups of receive sets, we may reduce the synchro-
nization since receive events in the same group need not be aware of their order
relative to each other. In particular, if the ordering is maintained by a global

counter, the number of times the counter needs to be updated is reduced.

84



We next define a new notion of state interval of a process. Just as the old
notion of state interval was based on a receive event, the new notion is based on a
receive set. A state interval of a process is defined with respect to a receive set as the
union of the thread state intervals corresponding to the receive events in the receive
set. A state interval is monotonic if its corresponding receive set is monotonic.
For example, in Figure 4.2(c), the monotonic state interval corresponding to the
monotonic receive set, rsy, is the union of thread state intervals ¢; and t5. Notice
how this differs from the notion of process state interval in Figure 4.2(a) used in the
process-centric protocol.

This new notion of state intervals along with the monotonic receive sets is

sufficient for orphan detection, as shown in the next theorem.

Theorem 7 In a multi-threaded system, tracking dependency on monotonic receive

sets is sufficient for orphan detection.

Proof. Consider a logging system that atomically logs all events belonging
to a receive set. Also, the order in which receive sets are logged is same as the
total order imposed on them. After a failure, all the logged events are replayed. We
claim that the thread states restored in this fashion are non-orphan. If not, then
let s be a restored thread state which is dependent on a lost state u. By definition
of monotonicity, the receive set containing u is not ordered after the receive set
containing s. Therefore, by the assumed logging property, v cannot be lost in a
failure.

Given that a consistent state is restored, on receiving the failure announce-
ment, states of other processes that track dependency on receive sets can find
whether they are orphan. m

In practice, it is easy to implement monotonic state intervals. Since threads
share the same clock, one way to partition receive events is to use real time. The

recovery system periodically marks the start of a new receive set by incrementing a
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global counter. All threads must read this counter whenever they need to be aware
of the state interval they currently belong to. Since (r; — 72) implies that r; occurs
before ro in real time, this technique implements monotonic state intervals. We will
use this technique in our protocol in the next sub-section. Clearly, by starting a
new receive set at each receive event, we have the old notion of state interval used

in the process-centric protocol.

4.3.2 The Balanced Protocol: Details

The protocol specifies the actions to be taken by the recovery system. The actions
are divided into two categories, those for a process (failure unit) and those for a

thread (rollback unit).

type entry: (inc: int, seq: int); // type representing state index with

// incarnation and sequence numbers

Thread T;
c array[n] of entry; // dependency vector
iet array[n] of set of entry; // incarnation end table
Process P;
sii entry; // state interval index
log list of untyped objects; // volatile log for messages and sii values
Stable_log list of untyped objects; // stable log for messages,
// sii values, and checkpoints

Figure 4.3: Variables Used in the Protocol

Figure 4.3 shows the variables used in the protocol. Each thread maintains
a dependency vector ¢ and an incarnation end table iet in order to detect orphans.

The sii indicates the current process-wide monotonic state interval index.
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Thread T;

Process_message:
log := log + (m, j);
¢ := max(c, m.c);

c[j] := sij;

Process P;

Checkpoint:
log := log + sii;
Stable_log := Stable_log + log;
log := null;
Stable_log := Stable_log + s; // s: current state

sii.seq := sii.seq + 1;

Log_message:
Stable_log := Stable_log + log;

log := null;

Start_state_interval:
log := log + sii;

sii.seq := sii.seq + 1;

Figure 4.4: Protocol for Normal-mode Operation
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The actions of the protocol may be divided into two types: normal mode
and recovery mode. Figure 4.4 lists the normal mode protocol. For simplicity, all
actions are assumed to be atomic.

First, in order to implement monotonic state intervals, periodically the re-
covery system starts a new state interval (Start_state_interval) by incrementing
the global si¢ value. The old si¢ is queued in the log marking the end of the previous
receive set in the log. On processing the next message, each thread 7; assigns its
local c[j] entry the value of this global sii (Process_message), thus keeping track
of the monotonic state interval it belongs to. It is easy to verify that this results in
monotonic state intervals as defined in the previous section.

Each thread keeps track of the highest monotonic state interval of each pro-
cess that it is aware of using its local dependency vector c. The dependency vector
mechanism is the same as before.

A received message is logged in the log (Process_message). This log totally
orders all receives of all threads in their real time order, marking the end of receive
sets by storing their sii values (Start_state_interval). Periodically, this volatile
log is flushed to stable storage (Log_message).

Periodically, checkpoints are also taken. The volatile log is flushed to the
stable log and a checkpoint is appended (Checkpoint). The old sii value is logged
before the checkpoint and incremented after the checkpoint. This ensures that every
checkpoint is exactly between two state intervals.

The recovery mode protocol is presented in Figure 4.5. On a crash fail-
ure, the crashed process restores its last checkpoint in the stable log, Stable_log
(Restart). All threads are replayed from this point using messages and sii values
from Stable_log up to the last complete monotonic receive set. Note that the mono-
tonicity property of state intervals ensures that this recovered state is consistent

(i.e. in the recovered state, each message received has been sent). This would not



Thread T;

Receive_fail_ann(t,x,j): // receive (t,x) from P;
Insert(iet[j],(t,x));
if (knows_orphan(s,s))
Check_orphan; // deletes orphan messages and states from the log
restore last checkpoint of 7 in Stable_log;
locally replay thread T; using messages and sii
values after last checkpoint of T} in Stable_log and log;

send Ack_Announce to P;

Process P,

Restart:
restore last checkpoint in Stable_log;
globally replay all threads in P; using messages
and sii values after last checkpoint in Stable_log;
Broadcast_failure(sii)
wait for Ack_Announce from all;
sii.inc := sii.inc + 1;

sii.seq := 1;

Figure 4.5: Protocol for Recovery-mode Operation




be true, in general, if a partial monotonic receive set were replayed.

Next, the crashed process broadcasts an announcement of its failure to all
threads of all other processes. The announcement includes its recovered state inter-
val index indicating the end of that incarnation. This broadcast must be reliable
in order to ensure that the system returns to a consistent state. Reliability may be
ensured by repeating the broadcast periodically. The process then blocks, waiting
for an acknowledgment from all threads. Once all of these are received, it starts a
new incarnation by appropriately updating its state interval index.

When a thread receives a failure announcement, it first records the announce-
ment in its incarnation end table iet (Receive_fail_ann). This will be later used in
normal mode to discard orphan messages. It then decides if it is an orphan based
on its dependency vector and its newly updated iet. If it is, it deletes all orphan
entries from its stable and volatile logs. Next, it restores the last thread checkpoint
from the stable log. It then replays itself to its latest state using the messages and
sit values in the stable and volatile logs. This will bring it to the latest state that
is not an orphan with respect to the received failure announcement. Note that the
other threads and, in particular, the global sii remain unaffected by this action.
Finally, it sends an acknowledgment to the sender of the failure announcement.

To complete the protocol, we must add logging progress notification to ac-
commodate output commit. However, we omit these details because they are iden-

tical to those in traditional optimistic protocols.

An Example

An example of our protocol is shown in Figure 4.6. Threads 70, T'1 belong to
process PO and T2, T'3 belong to P1. The dashed arcs show the ends of the process
state intervals sl1, s2 and s3. Thread state intervals are t1 to ¢6. State interval

indices of s2 and s3 are (1,7) and (1,4) respectively. When PO fails, it loses the
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Figure 4.6: Example: Balanced Protocol

state interval s2. It broadcasts a failure announcement containing the index (1,6),
corresponding to the state interval index of s1. On receiving this announcement,
thread T2 rolls back the orphan state interval ¢t5. Thread T7'3 remains unaffected by
this failure. Note that, if P1 were to fail instead of PO, and lose the state interval
83, then both T0 and T'1 will detect that they are orphans due to the entry (1,4) in
their ¢’s. This illustrates an important point of our protocol: in spite of belonging
to the same process state interval and sharing a common index, thread intervals t5

and t6 act as independent rollback units and a single failure unit at the same time.

4.3.3 Implementation Issues

An important issue in implementing shared objects is defining a shared object ac-
cess. Lower the number of accesses, lower the overhead in the balanced protocol.
Frequently, multi-threaded programs are written using a discipline that ensures that
each shared object is accessed only through methods, made mutually exclusive us-
ing an object lock. These mutually exclusive methods increase the granularity of

a shared object access and provide a clear interface for tracking. Thus, instead of
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tracking every read and write to shared objects, we can track each method invoca-
tion on a shared object.

Each method invocation on a shared object is treated as a message from the
thread to the shared object and the return from the shared object is treated as a
message from the shared object to the thread. Thus, the recovery manager must
intervene at both these points, either by code instrumentation or by modifying the
run-time environment [18]. The log consists of the method and parameter values
in case of the invocation and the returned values in the case of the return. While
replaying a thread or a shared object, the logged values are replayed so that the
thread or shared object recovers its state. This can again be achieved by either code

instrumentation or run-time environment modifications.

4.4 Comparison with Related Work

There are two factors of interest while comparing various protocols: false causality
and dependency tracking overhead.

We have already discussed the false causality problem in Section 4.2.1. To
summarize: the false causality problem arises in the process-centric approach be-
cause threads are forced to roll back together even when they have low interactions
between them. False causality is particularly a problem for a large class of appli-
cations that have low interactions between threads. The observable effects of false
causality are: (1) delayed output commits, and (2) unnecessary rollbacks after a
failure. Both the thread-centric and balanced approaches avoid false causality by
allowing threads to roll back independently.

The price paid for avoiding false causality is the higher dependency tracking
overhead. This overhead is in three forms: space overhead, time overhead, and
message size overhead. Table 4.1 summarizes the relative overheads of the various

protocols. The overhead of checkpointing is common to all protocols and hence it
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is not shown in the table.

Space Time Message Size False

Overhead Overhead Overhead Causality
Process-centric(I) | O(s + en) O(c+en) O(n) yes
Process-centric(II) | O(o + en) O(o+ en) O(n) yes
Thread-centric O(mn(o+e)) | O(mn(o+e)) O(mn) no
Balanced O(n(o +e)) O(n(o+e)) O(n) no

Process-centric(I) is the process-centric protocol using Slye & Elnozahy [57]
Process-centric(II) is the process-centric protocol using Goldberg et al. [29]
n is the number of processes

m is the maximum number of threads and shared objects per process

e is the maximum number of message receive events per process execution
0 is the maximum number of shared object accesses per process execution
s is the maximum number of thread switches per process execution

¢ is the time overhead for maintaining a software counter

Table 4.1: Comparative Evaluation of Overheads

As discussed before, there have been two implementations of the process-
centric approach: Slye & Elnozahy [57], and Goldberg et al. [29]. Slye & Elnozahy
use a software counter to track the thread switches. Therefore, the space overhead
consists of O(s) space to log all thread switching information and O(en) space to
store dependency vectors for each receive event. The time overhead consists of
the total extra time the recovery protocol requires to execute. This involves the
time to save checkpoints, log thread switching information, log dependency vectors.
Therefore, the time overhead is proportional to the space overhead. The message
size overhead is O(n) since the dependency vector has n entries, one per process.

Goldberg et al. log the order of shared memory accesses so that they can be

deterministically replayed. Therefore, the space overhead is O(o+en) with the O(o0)
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component accounting for the log made on each shared memory access. The time
overhead is proportional to space overhead. The message overhead remains O(n) as
before.

For the thread-centric approach, we assume that the overheads of checkpoint-
ing are similar for thread and process checkpoints. In practice, thread checkpoints
may take additional time overhead to separate the thread local state from the pro-
cess address space. Another method would be to simply take process checkpoints
and extract the thread checkpoints when required. Since shared object accesses are
treated as message receives, the space overhead to log the dependency vectors is
O(mn(o + e)) since each vector has O(mn) entries. The time overhead is similar.
The message size overhead is now O(mn).

The balanced approach reduces the vector size from O(mn) in the thread-
centric approach to O(n). All overheads are similar to the thread-centric case re-
placing mn by n.

The saving in space, time and message size overhead of the balanced protocol
with respect to the thread-centric protocol is substantial because mn is potentially a
very large quantity compared to n. Each individual thread and shared object in the
system is accounted for in mn. Since both protocols achieve the same elimination
of false causality, the balanced protocol should always be preferred to the thread-
centric protocol.

Compared to the process-centric protocol of Goldberg et al., the balanced
protocol has the same message size overhead, but higher space and time overhead.
This is because each shared object access in the balanced approach logs a O(n)
vector instead of constant information. With respect to the process-centric protocol
using Slye & Elnozahy’s technique, the space and time overhead is also expected to
be higher since there are usually much fewer thread switches than shared memory

accesses. However, as in Section 4.2.1, only the applications that have low thread
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interaction suffer greatly from false causality. For these applications, the increase in
time and space overheads of balance protocol is low because the number of shared
object accesses is low. Thus, the process-centric protocol should be used for appli-
cations with high thread interaction, and, therefore, low false causality effects. The
balanced protocol should be used for the class of applications that have low thread
interaction, where the extra space and time overhead is outweighed by the saving

in false causality effects.

4.5 Summary

Attempting to extend traditional optimistic protocols to multi-threaded scenarios
leads to a choice of either process-centric logging or thread-centric logging. This
leaves us with a trade-off between false causality and high tracking overhead (O(nm)
dependency vector size).

This trade-off is avoided by noting the distinction between failure units and
rollback units, and choosing processes as failure units and threads as rollback units.
This allows threads to do the tracking while processes are the ones being tracked. We
design a protocol based on these observations that reduces the dependency vector
size to O(n) without incurring false causality.

Finally, we introduce the general notion of monotonic state intervals as a
generalization of the usual notion of state intervals. It is sufficient to track depen-
dencies on monotonic states intervals rather than state intervals. This coincides with
the batching of message logs to disk and also reduces the extent of synchronization

between threads in determining state intervals.



Chapter 5

Application-Specific Recovery

for Optimistic Computations

The protocols presented in Chapters 3 and 4 are independent of any particular ap-
plication characteristics. They can be used with any message passing distributed
application. The overhead of providing fault-tolerance can sometimes be reduced by
exploiting the particular characteristics of a given application. Optimistic compu-
tations present one such opportunity. In optimistic computations, a process avoids
blocking until an event by guessing its outcome. If the guess turns out to be cor-
rect, the optimism pays off. However, if it is wrong, all computation that follows
the wrong guess is undone. Optimistic recovery schemes rely on a similar concept,
and therefore can be conveniently integrated with optimistic computations. We

demonstrate this integration in the context of distributed simulation.

5.1 Overview

In an event-driven distributed simulation [27], each logical process (LP) represents

a simulation object and schedules events for other objects by sending messages. The



correctness of a simulation requires that each object should execute all of its events
in the order of increasing time-stamps. In conservative distributed simulation, an
object processes an event only when it is sure that no event with a higher time-stamp
will arrive in future. In contrast, in optimistic distributed simulation, each object
optimistically processes the next available event, guessing that an event with a lower
time-stamp will not arrive. If this guess turns out to be wrong and a straggler, i.e.,
an event with a lower time-stamp arrives, the object has to roll back all the processed
events that have time-stamps higher than that of the straggler.

Although an application-independent recovery layer can be implemented be-
low the optimistic simulation system described above, more efficient recovery can
be achieved by modeling a failure as a straggler event. This straggler has a time-
stamp equal to the time-stamp of the latest checkpoint saved on stable storage. In
this model, computation lost due to a failure can be treated in the same way as
computation rolled back due to a straggler. No extra dependency tracking needs to

be done for recovery purpose. Thus, the fault-tolerance overhead is reduced.

5.2 Model of Simulation

We consider an event-driven optimistic simulation. Each simulation object corre-
sponds to a logical process (LP). The execution of an LP consists of a sequence of
states and a state transition is caused by an event execution. In addition to causing
a state transition, executing an event may also schedule new events for other LPs
(or the local LP) by sending messages. When an LP P1 acts on a message from P2,
P1 becomes dependent on P2. This dependency relation is transitive.

An LP periodically saves its checkpoints on stable storage. After a failure, an
LP restores its last checkpoint from stable storage and starts executing from there.

The arrival of a straggler causes an LP to roll back. A state that is lost in a

failure, rolled back, or transitively dependent on a lost or rolled back state, is called
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an orphan state. We model a failure as a straggler event with a time-stamp equal to
the time-stamp of the latest checkpoint saved on stable storage. We formally define
orphan states as follows:

straggled(s) = state s was rolled back due to a straggler

stable(P) = time-stamp of the last stable checkpoint of LP P

failure(P) = event scheduled for LP P at time stable(P)

orphan(s) = Ju : straggled(s) N u—s

In this model lost states are treated as straggled states. A message sent from
an orphan state is called an orphan message. For correctness of a simulation, an LP
must execute all its events in the order of increasing time-stamp, all orphan states
must be rolled back, and all orphan messages must be discarded. To distinguish the
computation before and after a rollback, we say that an LP starts a new incarnation
after each rollback.
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Figure 5.1: A Distributed Simulation. (a) Pre-straggler(failure) computation. (b)

Post-straggler(failure) computation

An example of distributed simulation is shown in Figure 5.1. Solid horizontal
lines indicate useful computation, and dashed horizontal lines indicate rolled back

computation. Simulation state intervals are numbered from s0 to s8 and they extend
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from one message receive to the next. Next to a state, its virtual time is shown in
parentheses. In optimistic simulation, simulation time is called virtual time. Next
to a message, virtual time of the event scheduled by the message is shown. The
rectangles in the figure correspond to dependency vectors and will be explained
later.

In Figure 5.1(a), sO schedules an event for P1 at time 5 by sending the
message m0. P1 optimistically executes this event, resulting in the state transition
from s1 to s2. P1 schedules an event for P2 at time 7 by sending message m2.
Then P1 receives the straggler message ml, which schedules an event at time 2.
Execution after the arrival of this straggler is shown in Figure 5.1(b). P1 rolls
back and restore the state sl. It takes the actions needed for maintaining the
correctness of the simulation, which, for our scheme, consists of broadcasting a
rollback announcement. P1 acts on ml, resulting in state s6. P1 then acts on m0
and starts the interval s8. Upon receiving the rollback announcement from P1, P2
realizes that it is dependent on a rolled back state and it rolls back and restores the
state s4. The orphan message m1l is discarded. P2 then acts on m3, resulting in
state s7.

We now describe a simulation in a failure-prone system. Assume that the
system has performed the computation shown in Figure 5.1(a), but P1 has not yet
received the message m1l. Let P1 fail before it receives the message ml. It loses
its volatile memory, which includes the knowledge about processing message m0.
Figure 5.1(b) shows the post-failure computation. P1 restores its last stable state
s1l. It broadcasts a failure announcement. On receiving this announcement, PO and
P2 resend the messages m0 and ml as they might have been lost in the failure. P2
realizes that it is dependent on a lost state and rolls back and restores state s4. This
time, P1 processes m0 and m2 in the correct order. This shows how we handle a

failure and a straggler in the same way.



5.3 The Fault-Tolerant Optimistic Simulation Protocol

In this section, we present the details of an optimistic simulation protocol in which
the recovery layer is integrated with the simulation layer. Although the protocol is
similar to protocols given in previous chapters, there is an important optimization
that is useful for simulations.

The number of logical processes in a simulation can be very high. The over-
head of separately accessing stable storage for each checkpoint of each LP may
be prohibitive. Therefore, we club LPs into clusters and take checkpoint of entire
clusters. The idea of clustering has already been used in [54] and [10]. In [54],
inter-cluster execution is conservative, whereas intra-cluster execution is optimistic.
In [10], inter-cluster execution is optimistic, whereas intra-cluster execution is se-
quential. In a sequential execution, across LPs, events are processed in the order of
increasing time-stamps. We employ optimistic inter-cluster execution. Our scheme
works with both sequential and optimistic policy for intra-cluster execution. For
purpose of exposition, we assume that intra-cluster execution is sequential.

Since the simulation inside a cluster is sequential, the state of a cluster at a
given virtual time is well-defined. This state includes the input messages in all the
LPs input queues. The state also includes the cluster output queue, that is described
later. Clusters periodically save their state on stable storage. For presentation
purpose, we use the term ‘state of a cluster’. In an implementation, state of an LP
needs to be saved on stable storage only if it has changed since the last state saving
operation.

We need to modify the notations used so far in the dissertation. Since a
cluster is implemented as a physical process, ¢,j refer to cluster numbers. Remaining
notations remain the same: t refers to incarnation number; s,u refer to state; P;
refers to the cluster ¢ ; m refers to a message and e refers to an event. We refer to

intra-cluster messages as ‘internal’ messages and inter-cluster messages as ‘external’
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messages.

Cluster P; :
type entry = (int inc, int seq) ; // incarnation, state sequence number
var cot : real; // cluster virtual time
c : array[n] of entry; // dependency vector
iet : array[n] of set of entry; // incarnation end table
CIQ : set of pointers ; // cluster input queue for external messages
COQ : set of messages ; // cluster output queue for external messages
// Following variable is stored in stable storage
cur_nc : int; // current incarnation number
Initialize :
cvt =0 ; cur_inc =1 ;
Vil =(00);
cli] = (1,1) ;
V g :det[j] = {}; // empty set
CIQ ={};CoQ ={};

Figure 5.2: Data Structures used by a cluster

5.3.1 Data Structures

The data structures used by a cluster are shown in figure 5.2. We describe the main
data structures below:

Dependency Vector: A dependency vector c is used to keep track of tran-
sitive dependencies. In general, the dependency vector of the sending state needs to

be attached with each message to correctly track transitive dependencies. We reduce
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this overhead by making the observation that with clustering, dependency vector
needs to be attached with inter-cluster messages only. For intra-cluster messages,
it is sufficient to track send time because the receiving state’s dependency vector is
always greater than or equal to the sending state’s dependency vector.

Incarnation End Table: To detect orphan messages, an incarnation end
table (iet) is used. It is similar to iet’s used in previous chapters.

Cluster Input Queue: All received messages, whether external or internal,
are kept in an LP’s input queue. In addition to this, references to received external
messages are kept in a cluster level input queue (CIQ).

Cluster Output Queue: There is one output queue per cluster called
Cluster Output Queue (COQ). Only inter-cluster messages are kept in COQ. Intra-

cluster messages are not saved in any per LP output queue.

5.3.2 Actions Taken by an LP

Actions taken by an LP are shown in Figure 5.3. Before carrying out an event
scheduled by a message, the dependency vector of the cluster is updated (Exe-
cute_message). Messages are send by calling the routine Send_message. In
addition to the receive time (virtual time at which corresponding event should be
executed), internal messages also carry the send time, which is same as the local
virtual time (lvt) of the sending LP. Instead of send time, external messages carry
the dependency vector of the sending cluster. If a cluster receives a straggler an-
nouncement (called token) from another cluster then all the LPs in the cluster need

to roll back orphan states and discard orphan messages (Rollback).

5.3.3 Actions Taken by a Cluster

Actions taken by a cluster on receiving an external message are shown in the fig-

ure 5.4. Upon receiving an external message m, P; discards m if m is an orphan.



Logical Process (LP) : // belongs to cluster P;

var [vt : real ; // local virtual time

input_queue : set of message ;

Execute_message(m) :
lvt = cvt = m.receive_time ; // cvt is the cluster virtual time
if m is an external message then
v j: clj] = max(c[j], m.c[j]) ;
cli].seq = cli].seq + 1 ;
Act on the event scheduled by m ;
Send_message(m)
if intra_cluster(m) then send(m, lvt, m.receive_time);
if inter_cluster(m) then send(m, ¢, m.receive_time);
Rollback(ts) // Roll back all states with virtual time > ts
Restore the latest state s such that s.lvt < ts ;
Discard the states that follow s ;
// Discard orphan messages

VYm € input_queue: if m.send_time > ts then discard m;

Figure 5.3: Actions of an LP



Receive_message(m) :

if 37,z : ((m.cl[jl.ane, z) € iet[j]) A (z < m.c[j].seq) then
7 \\ L] 7 Vi L1/ \ L/ 1)
discard m ; // m is orphan
return ;

Copy m in input queue of the destination LP;

In the CIQ, add a reference to m;

if m.receive_time < cvt then //m is a straggler
Let s be the latest cluster checkpoint such that s.cvt < m.receive_time ;
Broadcast((s.c[i]));
// P; receives its own broadcast and rolls back.

Block till all clusters acknowledge ;

Figure 5.4: Cluster actions on receiving an external message

This is the case when, for some j, P;’s iet and the j’th entry of m’s dependency
vector indicate that m is dependent on a rolled back state of P;. A straggler for
any LP in the cluster is considered a straggler for the entire cluster. If P; detects
that m is a straggler, it broadcasts a token containing the 7’th entry (¢, seq) of the
dependency vector of its highest checkpoint s such that the virtual time of s is no
greater than the receive time of m. The token indicates that all states of incarnation
t with sequence number greater than seq are orphans. States dependent on any of
these orphan states are also orphans. For simplicity of presentation, we show P,
rolling back in figure 5.5 (after it receives its broadcast). In practice, P; should roll
back immediately.

Steps taken by a cluster on receiving a token are shown in figure 5.5. On
receiving a token (¢, seq) from P;, P; acknowledges the receive and enters the token

in its tet. P; discards all orphan messages in the cluster input queue. A message is
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an orphan if it is dependent on a rolled back state of P;. If the cluster is orphan
then it restores the maximal non-orphan state. This is done by rolling back orphan
LPs and discarding orphan messages in each LPs input queue in routine Rollback.
All orphan external messages are discarded using C'I1Q). After the cluster’s rollback,
cluster incarnation number (saved in cur_inc) is incremented. To survive failures,

cur_nc is stored in stable storage.

Receive_token(t, seq) from P; :
Send acknowledgment ;

insert(iet[j], (¢, seq)) ;

Vm e CIQ : // discard orphans
if (m.c[j].inc ==t) A (m.c[j].seq > seq) then discard m ;
if (c[j].inc == t) A (c[j].seq > seq) then

// the cluster is orphan
Let s be the latest checkpoint such that
s.c[j] < (t,seq) ; // s: highest non-orphan state
Vip € cluster: Ip.Rollback(s.cvt) ;
c=s.c;
// start a new incarnation
cur_inc = cur_anc + 1;

cli].inc = cur_inc ;

Figure 5.5: Cluster actions on receiving a token

Steps taken by a cluster on restarting after a failure are shown in figure 5.6.
A failure is handled in the same way as a straggler. After a failure, the cluster is
restarted from its last checkpoint on stable storage. The cluster broadcasts a token

containing the index of the restored state. Other clusters react to this token in the



Restart // after failure
Restore last checkpoint s from stable storage;
Broadcast(cl[7]);

Block till all clusters acknowledge;

Figure 5.6: Cluster actions on restarting after a failure

same way as they do to the token due to a straggler.

5.3.4 Differences Between a Failure and a Straggler

There is one important difference between a failure and a straggler, which we have
not shown in the protocol for clarity. In a failure, a cluster loses its volatile state,
i.e., its et and all messages that it has received but not acted on till its last stable
checkpoint. Therefore, on learning about the failure, other clusters must resend
messages to the failed cluster. Of these messages, the failed cluster should replay
only those messages, which it did not act on before the last checkpoint.

This protocol can handle an arbitrary number of concurrent failures. When
a processor fails, all clusters on that processor need to be restarted as if each one of

them have failed independently.

5.3.5 Properties of the Protocol

A problem with optimistic protocols is that they are more prone to software crashes
because a programmer may not anticipate all unexpected messages that may arrive
in an optimistic system. In particular, the probability of crash increases if a state is
allowed to become dependent on two rollback inconsistent states [51]. A rolled back
state is called rollback inconsistent with the states that occur after the corresponding

rollback [51]. For example, in Figure 5.1, s2 is rollback inconsistent with s8. The
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next theorem shows that our protocol avoids this problem.

Theorem 8 A state cannot become dependent on two rollback inconsistent states.

Proof: After a rollback, a process blocks till it receives acknowledgment of its roll-
back announcement from all processes. Therefore, all processes receive the rollback
announcement before becoming dependent on a post-rollback state. Now, as per the
routine Receive_token in Figure 5.5, any state dependent on a rolled back state
is rolled back on receiving the corresponding token. Hence no state can become
dependent on two rollback inconsistent states. m

The next theorem shows that our protocol correctly completes simulation in

the presence of failures.
Theorem 9 At the end of a simulation, the following conditions are true:

o All LPs have received all the messages that they would have received in a

sequential simulation.

o All LPs have processed all the messages in the increasing order of their receive

time.
o All orphan states have been rolled back.
o All orphan messages have been discarded.

Proof. To simplify the presentation, we assume that each cluster contains only a
single LP. The proof can easily be extended to multiple LPs. Actions taken after
receiving two tokens commute with each other and also the actions taken after
receiving a token commute with a failure. Therefore, f concurrent failures are not
different from the case where f processes fail one after another, such that between
failures each process takes no action other than receiving failure announcements.

Hence, we only consider the single non-concurrent failure case.
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We have modeled a failure as a straggler event. A failure also results in
loss of volatile state. We do not use any of the lost information even if a failure
were truly a straggler event. The only information we need is the received messages
and the iet entries. This information is collected from other processes. The only
tricky case is when the sender itself has failed and it cannot resend some message as
the state that sent that message is lost. This is harmless because according to the
protocol, messages sent from a lost state are also orphan and they anyway need to
be discarded upon their receive.

Our remaining proof obligation is to show that in absence of failures, our
protocol handles the straggler messages and orphan states correctly. This follows

from the proof of Theorem 4 in Chapter 3. m

5.3.6 Stable Global Virtual Time (SGVT)

Global Virtual Time (GVT) is defined as the virtual time such that no state prior
to GVT will ever be rolled back [11]. Traditional methods for computing GVT do
not work in presence of crashes. A crash of a cluster may result in the restoration
of a state with the virtual time less than the GVT.

Our modeling of failure as a straggler event can be directly used in the stan-
dard GVT algorithm to come up with a value, which we call SGVT, such that no
state with virtual time less than SGVT will ever be rolled back. Since failure is
treated as a straggler, a potential failure of process P can be treated as an unac-
knowledged message with time-stamp stable(P).

GVT is approximated by taking the minimum of receive times of all unac-
knowledged messages and the local virtual times of all process. We make the ob-
servation that GVT can be approximated by taking the minimum of receive times
of all unacknowledged messages and all unprocessed messages in input queues of all

processes, which for a process P, is denoted by unacked(P) and unprocessed(P)



respectively. We define SGVT as follows:
T; = min{stable(F;), unacked(P;), unprocessed(P;)}
SGVT = min{Vi : T;}

Theorem 10 No state with virtual time less than SGVT can ever be rolled back.

Proof: Every rollback has a first cause in a straggler or a failure. A failure can-
not restore a state with a time-stamp less than the global minimum of stable. A
straggler cannot have a time-stamp less than the global minimum of unacked and
unprocessed. Hence the result follows. m

In addition to being useful for fossil collection (garbage collection in recovery
terminology) and output commit, SGVT has another application. We make the
observation that only those entries need to be kept in the dependency vector whose
associated states have virtual time greater than SGVT. Dependency on a state with
virtual time less than SGVT need not be tracked because the corresponding state
will never be rolled back. This results in the reduction of the overhead associated
with dependency vectors. In fact, dependency vectors start with only one entry
(process’s own entry). As processes interact with one-another, size of dependency
vector starts increasing. However, SGVT also keeps on increasing. Therefore, we

expect the average number of entries in dependency vectors to be small.

5.3.7 Overhead Analysis

Our scheme incurs the following overheads for providing fault-tolerance:
Accessing stable storage: We need to periodically save checkpoints on
stable storage. This is a necessary cost in absence of redundant resources like those
used for replication. We save checkpoints asynchronously. Therefore, computation
is not blocked when stable storage is being accessed.
Dependency information: We tag a dependency vector with each inter-

cluster message. We expect the number of inter-cluster messages to be much smaller
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than the total number of messages. The size of dependency vector is O(n) entries,
where n is the number of clusters in the system. But as explained in section 5.3.6,
we expect the number of entries to be much smaller in practice.

Cluster output queue: Inter-cluster messages are saved in a per cluster
COQ. This overhead is much smaller than the overhead of per LP output queue in
traditional optimistic simulation protocol like Time Warp [36].

Clustered rollback: Rollback of a single LP means rollback of the entire
cluster. This slows down the simulation. Each cluster, however, rolls back at most
once in response to each straggler or failure. There is no possibility of avalanche
of antimessages or echoing [47]. This compensates for the slowdown owing to the

clustered rollback.

5.4 Multi-Threaded Systems

The protocol presented in this chapter is in terms of single-threaded processes.
If multi-threading is available, then a cluster can be implemented using threads.
Although, in Chapter 4, we eliminated false causality between threads, a multi-
threaded simulation cluster will have false causality problem. This is because, the
elimination of false causality in Chapter 4 was based on the assumption that threads
of a process fail together. In a simulation, however, one object may receive a strag-
gler without other objects receiving a straggler. Therefore, either the complete
dependency tracking needs to be done, or the false causality among objects will
be present. These remarks are true not only for optimistic simulation, but for any

optimistic computation.



5.5 Related Work

Distributed simulation methods can be divided in two main categories: conservative
and optimistic. In conservative simulation, an object processes an event only when
it is sure that no event with a higher time-stamp will arrive in future. A detailed
discussion of different conservative simulation methods can be found in [27]. That
survey also describes several optimistic simulation methods.

Time Warp is the most popular optimistic simulation scheme [36]. In Time
Warp, dependency tracking is not used. Each LP maintains an output queue, where
it keeps a copy of each message that it has sent. On receiving a straggler, each LP
sends an antimessage corresponding to each orphan message in its output queue.
Each antimessage annihilates the corresponding message. Except for that, an an-
timessage acts just like an ordinary message. Therefore, an antimessage can also
become a straggler. This may result in an avalanche of antimessages and cascad-
ing rollbacks. These problems are not present in our scheme. Our scheme has less
memory overhead and simple memory management algorithms. Time Warp may
perform better than our scheme if the number of objects in the system is very large.

There has not been much discussion in simulation literature about fault-
tolerance. In the seminal paper on Time Warp [36], Jefferson mentions that processes
may coordinate to take a consistent snapshot and save it on stable storage. When
any process fails, the entire system may roll back to the last snapshot. In contrast,
our method rolls back only those states that are dependent on a lost state, and thus
minimizes the wasted computation. In [4], a replication based strategy is presented
to provide fault-tolerance. Our scheme has much lower overhead than that of the
replication.

Some degree of fault-tolerance was built in the original Time Warp Oper-
ating System. Signal handlers were installed to catch exceptions. Once a signal

indicating an error was caught, partially processed events were cleaned and process-
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ing was resumed. This approach takes care of some errors, but not all. It very well

supplements our solution but does not replace it.

5.6 Summary

In this chapter we demonstrated that the cost of recovery in optimistic computation
can be reduced by integrating the recovery layer with the application layer. This
concept was illustrated with the help of optimistic distributed simulation. In the
process we also developed a new simulation protocol that does not use anti-messages
and avoids cascading rollbacks. The techniques used are generic and can be used

for other optimistic computations as well.



Chapter 6

Conclusions

In this dissertation, we have developed a number of optimistic protocols. These
protocols are based on message logging and checkpointing. This chapter presents a
summary of the main contributions of the dissertation and discusses the directions

for possible future research.

6.1 Contributions

We have developed a formal model to reason about failure-prone computations. In
this model, a number of efficient optimistic protocols are designed. We have used
the same model to show that the recovery can be made more efficient by exploiting
the application-specific characteristics. We next discuss the contributions in more

detail.

6.1.1 Efficient Optimistic Protocol in Single Threaded Systems

We have established that if transitive dependency tracking is employed, then an-
nouncing only failures, instead of all rollbacks, is sufficient for correct recovery. Since

each process receives only one failure announcement, it rolls back at most once in



response to a given failure. This results in more efficient recovery compared to
traditional methods where a process can roll back exponential number of times in
response to a single failure. Other researchers have also used our result to improve
their protocols [58]. We have further shown that any protocol that employs transi-
tive dependency, need not track dependencies on stable states. This result reduces

the amount of information that needs to be piggybacked on each message.

6.1.2 Bridging the Gap Between Optimism and Pessimism

We have introduced the concept of K-optimism that provides a trade-off between
recovery time and logging overhead, with traditional optimistic and pessimistic log-
ging being the two end-points of the spectrum. As the value of K moves from 0 to
n, the recovery time goes up with a corresponding decrease in the logging overhead.

The parameter K can be dynamically tuned to adjust to a changing environment.

6.1.3 Efficient Optimistic Protocol in Multi-threaded Systems

Optimistic logging protocols can be extended to multi-threaded processes in two
natural ways: process-centric and thread-centric. These two approaches together
present a trade-off between false causality and tracking overhead. We have designed
a balanced protocol that eliminates false causality while incurring low overhead. The
main intuition is that processes fail independently and are thus failure units and that

threads may be rolled back independently and are thus rollback units.

6.1.4 Efficient Recovery for Optimistic Computations

We have shown how to achieve low cost fault-tolerance by integrating optimistic
recovery and optimistic simulation. The techniques used are generic and can be

extended to other optimistic computations.
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6.2 Future Research Directions

We next discuss a number of ways in which the results in this dissertation can be

extended.

6.2.1 Generalizing the Balanced Approach

In Chapter 4, we considered failure and rollback units in the context of processes
and threads. We can also select these units at coarser granularities. For simplicity,
let us consider a system consisting of non-threaded processes. In such a system, a
process can be a rollback unit while a processor can be a failure unit. To achieve
this, an implementation of monotonic receive sets is required. This can be done
in a number of ways: by using a centralized server or by explicit cooperation of
processes. Further research is required to evaluate these methods. Regardless of the
implementation of monotonic receive sets, dependency tracking overhead is likely to
decrease , while the increase in false causality among processes will increase.

The issue of false causality needs further elaboration. In case of a hardware
crash, entire processor indeed crashes as a unit. In case of a software crash of a single
process, all processes on the corresponding processor have to simulate a crash, and
hence the false causality between them.

Further generalizing, a local area network can be a failure unit in a wide area

environment. A process can still be a rollback unit.

6.2.2 Recovery in Weak Consistency Systems

In this dissertation, we assumed that system state needs to be consistent at all
times. Certain applications may be willing to tolerate certain inconsistencies if that
will result in a substantial reduction in the fault-tolerance overhead. For example,
a phone company may be willing to lose occasional call records to reduce operation

costs. Some other application may be willing to tolerate a small fraction of outputs
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as orphans. New recovery techniques need to be designed for these applications.

6.2.3 Combining Optimistic and Causal Techniques

In Section 1.2, we discussed a number of scenarios where ability to roll back a process
is desirable. In Section 3.7, we presented a method to introduce rollback capability
in pessimistic protocols. In [3], the author states that a causal protocol can be
modified to have roll back capability. It is desirable to develop a causal protocol
with explicit rollback capability, that will handle most failures without rolling back

non-failed processes but will be able to roll back processes in special circumstances.

6.2.4 Reconstructing Dependency Information from Other Pro-

cesses

In optimistic logging, information about unlogged messages of a failed process is
assumed to be completely lost. Some information, however, is available with other
non-failed processes. All orphan processes in the system have received dependency
vectors along with the messages that made those processes orphan. Although, com-
plete dependency information cannot always be reconstructed from these vectors,
it can be done some times. Even when it cannot be done, partial dependency in-
formation can still be reconstructed. A new optimistic protocol can be designed to

take advantage of this information.
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