Fault-Tolerant Distributed Simulation

Om. P. Damani
Dept. of Computer Sciences

Vijay K. Garg*
Dept. of Elec. and Comp. Eng.

University of Texas at Austin, Austin, TX, 78712
hitp://maple.ece.utexas.edu/

Abstract

In traditional distributed simulation schemes, entire
simulation needs to be restarted if any of the partici-
pating LP crashes. This is highly undesirable for long
running simulations. Some form of fault-tolerance is
required to minimize the wasted computation.

In this paper, a rollback based optimistic fault-
tolerance scheme is integrated with an optimistic dis-
tributed simulation scheme. In rollback recovery
schemes, checkpoints are periodically saved on stable
storage. After a crash, these saved checkpoints are
used to restart the computation.

We make use of the novel insight that a failure can
be modeled as a straggler event with the receive time
equal to the virtual time of the last checkpoint saved
on stable storage. This results in saving of implemen-
tation efforts, as well as reduced overheads. We define
stable global virtual time (SGVT), as the virtual time
such that no state with a lower timestamp will ever be
rolled back despite crash failures. A simple change is
made in existing GVT algorithms to compute SGVT.
Our use of transitive dependency tracking eliminates
antimessages. LPs are clubbed in clusters to minimize
stable storage access time.

1 Introduction

In a distributed simulation, a crash of any Logical
Process(LP) causes the entire computation to halt.
As the number of LPs taking part in a simulation
increases, so does the probability that one of them
will crash during the simulation. Simply restarting
the failed LP may leave the simulation in an incon-
sistent state [5]. So far, the only recourse in such a
situation has been to restart the entire system. How-
ever, restarting the system is unacceptable for sim-
ulations that run for hours or days. Clearly, some
form of fault-tolerance is required to minimize the
wasted computation.

*supported in part by the NSF Grants CCR-9520540 and
ECS-9414780, THECB ARP-320, a General Motors Fellowship,
and an IBM grant.

An LP may crash due to a bug in the application
code, simulator code, or operating system code. Even
when all the code is correct, the code being run with
a distributed simulator may have been written for a
sequential simulator [15]. In such cases, it is difficult
to find and correct the source of the crash. Even when
the bug lies entirely in the application code, the user
of an application may not be the developer of the code.
So the user may be unable (or unwilling) to debug the
application. The situation will be hopeless, if every
time the system is restarted, the same bug were to lead
to the same crash. Luckily, experiments with differ-
ent kind of software systems have shown that most of
the bugs encountered in practice are transient [9, 17].
For example, a process may crash if it does not check
for a ‘null pointer’ value on returning from a mem-
ory allocation routine. When the process is restarted,
more memory may be available, thereby avoiding the
crash. Crashes should especially be transient in the
optimistic simulation, where a different message or-
dering or a different process scheduling results in a
different, execution, possibly bypassing the bug that
caused the original crash. Hence, restarting the failed
process is a viable option, provided steps are taken to
ensure that the resulting system state is consistent:
for example, by rolling back the other processes.

A fault tolerance strategy should also be able to
tolerate hardware failures. Hardware failures may be
in the form of processor malfunctioning, power failure
or someone tripping over the connecting wires.

We assume that processes fail by simply crashing
and they do not send out any erroneous messages or
do some other harm. A process loses all its volatile
memory in a failure. To reduce the amount of wasted
computation, it periodically writes its checkpoints to
stable storage. After a failure, it is restarted from its
last stable checkpoint. We model a failure as a strag-
gler event with a timestamp equal to the timestamp
of the highest checkpoint saved on stable storage. In
this model, computation lost due to a failure can be
treated in the same way as a computation rolled back

due to a straggler.

Note that a naive application of the above idea to
Time Warp does not work. In Time Warp, when an LP
receives a straggler, it sends out antimessages for the
messages in its output queue. But the output queue
is lost in a failure. In fact, all volatile storage is lost in
a failure. Hence to tolerate failures, we need a simu-
lation scheme that does not use any state information
of the rolled back computation.

In [6], we presented one such simulation scheme.
We integrate that scheme with the optimistic fault-
tolerant method presented in [19] to come up with
a low overhead, fault-tolerant, optimistic, distributed
simulation protocol. The contributions of this paper
are following:

e Development of a formal framework for fault-
tolerant distributed simulation.

e Modeling of a failure as a straggler to facilitate
low overhead fault-tolerance.

e Integration of the optimistic simulation scheme in
[6] with the optimistic fault-tolerance scheme in
[19].

e Definition of Stable GVT: Global Virtual Time in
failure prone systems.

e Identification of the issues involved in the design
of a fault-tolerant simulation.

There has not been much discussion in simulation lit-
erature about fault-tolerance. In the seminal paper
on Time Warp [11], Jefferson mentions that processes
may co-ordinate to take a consistent snapshot and save
it on stable storage. When any process fails, the en-
tire system may roll back to the last snapshot. In
contrast, our method rolls back only those states that
are dependent on a lost state, and thus minimizes
the wasted computation. In [1], a replication based
strategy is presented to provide fault-tolerance. Our
scheme has much lower overhead than that of the repli-
cation. Some degree of fault-tolerance was built in
the original TWOS. Signal handlers were installed to
‘catch exceptions’. Once a signal indicating an error
was ‘caught’, partially processed events were cleaned
and processing was resumed. This approach takes care
of some errors, but not all. It very well supplements
our solution but does not replace it.

In our method, checkpoints are saved to stable
storage asynchronously, i.e., while computation is in
progress. Any failure during the saving of check-
points is indistinguishable from a scenario, where no
checkpoints were being saved at that time. Similar
treatment of failure and straggler coupled with asyn-
chronous stable storage operations results in reduced
overhead for fault-tolerance.

2 Background in Fault-Tolerance

There are many well-known techniques for provid-
ing fault-tolerance to distributed applications. They
can be classified into two broad categories: replica-
tion based [4] and checkpointing based [7]. Replica-
tion based techniques consume extra resources and
have synchronization overhead to maintain consisten-
cies between replicas. In checkpointing based tech-
niques, checkpoints are saved on stable storage, so that
a failed process can be restarted from its last stable
checkpoint. We only consider the checkpointing based
schemes. Checkpointing schemes require synchroniza-
tion between processes, or else they suffer from the
domino effect, where all the processes may rollback
to their initial state [7]. Note that checkpoints need
not be immediately saved on stable storage. Applica-
tions with high checkpointing activity may take many
checkpoints before writing them to stable storage.

To avoid both synchronization and domino effect,
some schemes also save the received messages on stable
storage. This is called message logging. After a failure,
a process restores its last checkpoint and replays the
logged messages. It may inform other processes about
its failure and may also request some information from
other processes. This method is similar to ‘periodic
checkpointing’ and ‘coast forward’ mechanism used in
simulation [13]. Message logging schemes can be di-
vided into three categories [7]: pessimistic, optimistic,
and causal. Pessimistic and causal schemes recreate
the pre-failure computation. Pessimistic logging re-
quires that each message be synchronously saved in
stable storage, before a process acts on it. This is
unacceptable in distributed simulation where message
activity is high. Causal logging piggybacks the pro-
cessing order of messages on each outgoing message.
This will also result in high overhead due to high mes-
sage activity in simulation.

In optimistic schemes, messages are saved to stable
storage asynchronously. As a result, processing order
of messages may be lost in a failure. So the execution
after a failure may be different from the pre-failure
execution, resulting in lost states. States dependent
on a lost state are called orphan states. Correctness
of computation requires that these orphan states be
rolled back. It is no coincidence that this reminds one
of optimistic simulation. The seminal work on opti-
mistic recovery by Strom and Yemini [18] was inspired
by the Time Warp mechanism.

In an optimistic scheme, a process may fail with-
out logging any of its received messages since its last
checkpoint. This implies that, to reduce the cost of
accessing stable storage, messages can be logged only

when checkpoints are being written to stable stor-
age. This makes optimistic schemes well suited for
distributed simulation, where message activity is high.

3 Model of Simulation

We consider an event-driven optimistic simulation.
The execution of an LP consists of a sequence of states
where a state transition is caused by execution of an
event. In addition to causing a state transition, exe-
cuting an event may also schedule new events for other
LPs (or the local LP) by sending messages. When LP
P1 acts on a message from P2, P1 becomes dependent
on P2. This dependency relation is transitive.

An LP periodically saves its checkpoints on sta-
ble storage. After a failure, an LP restores its last
checkpoint from stable storage and starts executing
from there. The resulting execution may be different
from the pre-failure execution. States that are not
re-executed after failure are called lost states.

The arrival of a straggler causes an LP to roll back.
A state that is lost, rolled back, or transitively de-
pendent on a lost or rolled back state is called an or-
phan state. We denote transitive dependency by the
happened before (—) relation, which we define later
in this section. As stated earlier, we model a failure
as a straggler event with a timestamp equal to the
timestamp of the highest checkpoint saved on stable
storage. We formally define orphan states as follows:

straggled(s) = state s was rolled back due to a straggler
stable(P) = timestamp of last stable checkpoint of LP P
failure(P) = event scheduled for P at time stable(P)
orphan(s) = straggled(s) V u : (orphan(u) Au — s)

Note that in this model lost states are treated as
straggled states. A message sent from an orphan state
is called an orphan message. For correctness of a sim-
ulation, all orphan states must be rolled back and all
orphan messages must be discarded. To distinguish
the computation before and after the rollback, we say
that an LP starts a new incarnation after each roll-
back. An example of a distributed simulation is shown
in Figure 1. Numbers shown in parentheses are either
the virtual times of states or the virtual times of sched-
uled events carried by the messages. Solid lines indi-
cate useful computation, while dashed lines indicate
rolled back computation.

In Figure 1(a), s00 schedules an event for P1 at
time 5 by sending message m0. P1 optimistically exe-
cutes this event, resulting in the state transition from
s10 to s11, and schedules an event for P2 at time 7
by sending message m1l. Then P1 receives message
m?2 which schedules an event at time 2 and is de-
tected as a straggler. Execution after the arrival of

this straggler is shown in Figure 1(b). P1 rolls back
by restoring the state s10. It then takes the actions
needed for maintaining the correctness of the simula-
tion, which, for our scheme, consists of broadcasting
a rollback announcement (shown by dotted arrows).
It restarts from r10, acts on m2, and then acts on
m0. Upon receiving the rollback announcement from
P1, P2 realizes that it is dependent on a rolled back
state and so it also rolls back, restores state s20, takes
actions needed, and restarts from state r20. Finally,
the orphan message m1 is discarded by P2. In [6] we
have shown that by tracking transitive dependency,
only the LP receiving the straggler needs to send a
rollback announcement. On receiving this announce-
ment, all other LPs roll back their orphan states and
discard the received orphan messages. Other LPs do
not need to send rollback announcement while rolling
back in response to a rollback. Simulation proceeds
correctly, without requiring antimessages.

Now we describe a simulation in a failure-prone sys-
tem. Let us look at Figure 1 again. Assume that the
system has performed the computation shown in Fig-
ure 1(a), but P1 has not yet received the message
m2. Let P1 fail before it receives the message m2. It
loses its volatile memory, which includes the message
m0. Now Figure 1(b) shows the post-failure compu-
tation. P1 restores its last stable checkpoint s10. It
then broadcasts a failure-announcement. On receiving
this announcement, PO and P2 resend the messages
m0 and m2 as they might have been lost in the fail-
ure. P2 also realizes that it is dependent on a lost
state and rolls back, restores state s20, takes actions
needed, and restarts from state r20. P1 on the other
hand processes m0 and m2 in the correct order. This
shows how we handle a failure and a straggler in the
same way.

In order to track transitive dependency in presence
of rollback, in [6] we extended the happened before(—)
relation defined by Lamport [12]. Intuitively, state s
happens before state w, if, in the simulation diagram,
there exists a directed path from s to w consisting of
solid or dashed arrows. Failure or rollback announce-
ments, denoted by dotted arrows, do not contribute
to the happened before relation. For example, in Fig-
ure 1(a), s10 — s11 and s00 — s21, and in Figure 1(b)
s11 4 r10. Saying s happened before u is equivalent
to saying that w is transitively dependent on s.

4 The Fault-Tolerant Protocol

For fault-tolerance, checkpoints need to be saved
on the stable storage. The overhead of separately ac-
cessing stable storage for the checkpoint of each LP is
unacceptable. Therefore we club LPs into clusters and

(0.0)

(0,-1)
(0,-1)
PO (5
00 mo (5) 0.0)
O] (0,2)
s10 (0) Sﬁ 0,-1)

pr (2

(0-1)
(0,0)
(0-1)
00
s20 (0) 0.1)
P2 Chox
01 21 (7)
(0-1)
(0.0)

@

I N
©-1) 21
©-1

(1,0) r20 (0)

(b)

Figure 1: A Distributed Simulation. (a) Pre-straggler(failure) computation. (b) Post-straggler(failure) comp.

take checkpoint of entire clusters. The idea of cluster-
ing has already been used in [16] and [2]. In [16],
inter-cluster execution is conservative, whereas intra-
cluster execution is optimistic. In [2], inter-cluster ex-
ecution is optimistic, whereas intra-cluster execution
is sequential. We assume inter-cluster execution to be
optimistic. Our scheme works with both conservative
and optimistic policy for intra-cluster execution. For
purpose of exposition, we assume that intra-cluster ex-
ecution is sequential. Details of intra-cluster execution
can be found in [2].

Since the simulation inside a cluster is sequential,
the state of a cluster at a given virtual time is well-
defined. This state includes the input messages in all
the LPs input queues. The state also includes the
cluster output queue, which is described later. Clus-
ters periodically save their state on stable storage. For
discussion we use the term ‘state of a cluster’. For im-
plementation, states of only those LPs need be saved
on stable storage, that have changed since the last
state saving operation. From here on, we refer to
intra-cluster messages as ‘internal’ messages and inter-
cluster messages as ‘external’ messages.

From here on, 4,5 refer to cluster numbers; v refers
to incarnation number; s,u refer to states; P; refers to
cluster ¢ ; m refers to a message and e refers to an
event.

4.1 Data Structures
The data structures used by a cluster are shown in
figure 2. We describe the main data structures below:

Dependency Vector: To track transitive depen-
dency information, we use a Dependency Vector(DV)

Cluster P; :

type entry = (int inc, int sii) ;
// incarnation, state interval index
var cut : real; // cluster virtual time
maz_inc : int; // stored on stable storage
dv : array[0..n-1] of entry; // dependency vector
iet : array[0..n-1] of set of entry;
// incarnation end table
token : entry; // rollback announcement
C1IQ : set of pointers ;
// cluster input queue for external messages
COQ : set of messages ;
// cluster output queue for external messages

Initialize :
cvt =0 ; maz_inc =0 ;
YV j 1 dvljlinc = 0 ; du[j].sii = -1 ;
dv[i].sit = 0 ;
YV j:iet[j] = {};// empty set
token = (0,-1) ; CIQ = {}; COQ = {};

Figure 2: Data Structures used by a cluster

[6]. It has n entries, where n is the number of clus-
ters in the system. Each entry contains an incarnation
number and a state interval index. A state interval is
the sequence of states between two events scheduled
by the external messages. The index in the i** entry
of the DV of P; corresponds to the number of external
messages that P; has acted on. The index in the j*"
entry corresponds to the index of the latest state of
P; on which P; depends. The incarnation number in

the " entry is equal to the number of times P; has
rolled back. The incarnation number in the j** entry
is equal to the highest incarnation number of P; on
which P; depends. Let entry en be a tuple (incarna-
tion v, index t). We define a lexicographical ordering
between entries as follows:

en; < ens = (’Ul < ’02) \ [(’Ul = ’02) A (t1 < tz)].

Suppose P; schedules an event e for P; by sending
a message m. P; attaches its current DV to m. If m
is neither an orphan nor a straggler, it is kept in the
incoming queue by P;. When the event corresponding
to m is executed, P; updates its DV with m’s DV by
taking the componentwise lexicographical maximum,
as shown in the routine Fzrecute_message in figure 3.
An example of DV is shown in figure 1 where DV of
each state is shown in a box near it.

In [6], entries in DV include the virtual time in-
stead of the state interval index. This method does
not work in the presence of failures. Let P receive two
messages with the same scheduling time. Let P fail
after scheduling one of the events. We need to dis-
tinguish between the states resulting from these two
events. Hence we replace the timestamp in each DV
entry with a state interval index.

In general, DV of the sending state needs to be at-
tached with each message to correctly track transitive
dependencies and detect orphans. But we reduce this
overhead by making the observation that with cluster-
ing, DV needs to be attached with inter-cluster mes-
sages only. For intra-cluster messages, it suffices to
track send time as the receiver’s DV is always greater
than or equal to the sender’s DV.

Incarnation End Table: Besides a dependency
vector, each cluster also maintains an incarnation end
table (iet). The jt* component of iet is a set of entries
of the form (v, sii), where all states of the v*" incar-
nation of P; with indices greater than sii have been
rolled back. The et allows a cluster to detect orphan
messages.

Cluster Input Queue: Both external and inter-
nal messages are kept in the destination LP’s input
queue. A cluster keeps track of the external mes-
sages by keeping pointers to them in cluster input
queue(CIQ).

Cluster Output Queue: There is one output
queue per cluster called Cluster Output Queue(COQ).
Only inter-cluster messages are kept in COQ. Intra-
cluster messages are not saved in any per LP output
queue.

4.2 Protocol Description

The formal description of our protocol is given in
figures 2 to 6. In addition to the receive time, internal

messages also carry the send time, which is the same as
the local virtual time (lvt) of the sending LP. External
messages carry DV of the sender. Actions taken by
an LP are shown in figure 3. Actions taken by a

Logical Process LP : // belongs to cluster P;

var [vt : real ; // local virtual time
input_queue : set of message ;

Execute_message(m) :
lut = cvt = m.receive_time ;
// cvt is cluster virtual time
if m is an external message then
v j: dvlj] = max(dvlj], m.do[j]) ;
// dv is cluster dependency vector
dv[i].sii + + ;
Act on the event scheduled by m ;
Send_message(m)
if intra_cluster(m) then
put (m, Ip.lut, m.receive_time)
in destination LP’s input queue ;
if inter_cluster(m) then
send(m, dv, m.receive_time);
Rollback(ts)
Restore the latest state s such that s.lvt < ts ;
Discard the states that follow s ;
Vm € input_queue: if m.send_time > ts then
discard m; // m is orphan

Figure 3: Actions of an LP

cluster on receiving an external message are shown in
the figure 4. Upon receiving an external message m, P;
discards m if m is an orphan. This is the case when, for
some j, P’s iet and the j** entry of m’s DV indicate
that m is dependent on a rolled back state of P;. A
straggler for any LP in the cluster is also considered
a straggler for the entire cluster. If P; detects that
m is a straggler, it broadcasts a token containing the
it" entry (v, sii) of the DV of its highest checkpoint s
such that the virtual time of s is no greater than the
receive time of m. The token basically indicates that
all states of incarnation v with index greater than sii
are orphans. States dependent on any of these orphan
states are also orphans. For simplicity of presentation,
we show P; rolling back in figure 5 (after it receives its
broadcast). In practice, it will roll back immediately.

Steps taken by a cluster on receiving a token are
shown in figure 5. On receiving a token (v, sii) from
P;, P; acknowledges the token and enters it in its in-
carnation end table. It discards all the orphan mes-
sages in the cluster input queue. A message is an
orphan if it is dependent on a rolled back state of P;.

Receive_message(m) :

if 35,¢ : (m.dvu[j]-inc, t) € iet[]) A (t < m.dv[j].sii)
then discard m ; return ; // m is orphan

Copy m in input queue of the destination LP;

In the CIQ, add a pointer to m;

if m.receive_time < cvt then //m is a straggler
Let s be the latest cluster checkpoint

such that s.cvt < m.receive_time ;

token = (s.dv[i]) ;
Broadcast(token);
// P; receives its own broadcast and rolls back.
Block till all clusters acknowledge ;

Figure 4: Cluster actions on an external message

If the cluster is orphan then it restores the maximal
non-orphan state. This is done by rolling back all or-
phan LPs and discarding the orphan messages in each
LPs input queue. Note that in routine Rollback in
figure 3, an LP does not have to rollback if it is not
orphan. After the rollback, cluster incarnation num-
ber(saved in maz_inc) is incremented. To survive fail-
ures, maz_inc is stored in stable storage. It does not
broadcast a token, which is an important property of
this protocol. Note that internal orphans are detected
using a separate mechanism, as compared to external
orphans. If the current state of a cluster is not orphan,
then no LP and consequently no internal message can
be orphan. Routine Rollback is not called for any
LP. All external orphans are discarded using CIQ.

Receive_token(v, sii) from P; :
Send acknowledgment ;
iet[j] = iet[j] U {(v, si1)} ;
Vmp € CIQ : // mp : message pointer
if (xmp.dv[jl.inc == v) A (sii < smp.dv[j].sii)
then discard *mp ; // orphan xmp
if (dv[j].inc == v) A (sii < dv[j].sii) then
// Cluster is orphan
Let s be the latest checkpoint such that
s.dv[j] < (v, sii) ; // s: highest non-orphan state
Vip € cluster: Ip.Rollback(s.cvt) ;
dv = s.dv ; dvi].inc = + + maz_inc ;

Figure 5: Cluster actions on receiving a token

Steps taken by a cluster on restarting after a fail-
ure are shown in figure 6. The failure is handled in the
same way as a straggler. After the failure, the cluster
is restarted from its last checkpoint on stable storage.
It broadcasts a token containing the incarnation num-

Restart // after failure
Restore last checkpoint s from stable storage;
Broadcast(dv[i]); dv[i].inc = + + maz_inc ;
Block till all clusters acknowledge.

Figure 6: Cluster actions on restarting after a failure

ber and the index of the restored state. Other clusters
react to this token in the same way as they do to the
token due to a straggler.

There is one important difference between a failure
and a straggler, which we have not shown in figure 5
for clarity. In a failure, a cluster loses its volatile state,
i.e., its iet and all the messages that it has received
but not acted on till its last stable checkpoint. So on
learning about the failure, other clusters must resend
messages to the failed cluster. Of these messages, the
failed cluster should replay only those messages, which
it did not act on before the last checkpoint. For this
purpose, we need each sender to put a sequence num-
ber on outgoing messages on a per cluster basis. We
assume FIFO message order. Each cluster keeps only
the expected sequence number of next message to be
received from every other cluster. Now sender needs to
resend only those messages whose sequence number is
greater than the sequence number of the last message
received till the checkpoint. These sequence numbers
are broadcast along with the failure announcement.
Note that the above scheme can handle an arbitrary
number of concurrent failures. When a processor fails,
all clusters on that processor need to be restarted as
if each one of them have failed independently.

A rolled back state is called rollback inconsistent
with the states that occur after the corresponding roll-
back [15]. For example, in figure 1, s11 is rollback
inconsistent with s12. Allowing a state to become de-
pendent on two rollback inconsistent states have been
identified by Nicol and Liu as a potential source of
crash [15]. The next theorem shows that the our pro-
tocol avoids this problem.

Theorem 1 A state cannot become dependent on two
rollback inconsistent states.

Proof: After a rollback, a process blocks till it re-
ceives acknowledgment of its rollback announcement
from all processes. Therefore, all processes receive the
rollback announcement before becoming dependent on
a post-rollback state. Now, as per the routine Re-
ceive_token in figure 5, any state dependent on a
rolled back state is rolled back on receiving the cor-
responding token. Hence no state can become depen-
dent on two rollback inconsistent states. H

4.3 Correctness Proof

The following lemma states that Dependency Vectors
correctly track transitive dependency information.
Lemma 1 If s happens before u, then s.dv < u.dv .

Proof. As in [6], the proof follows by the induction on
the length of the path from s to u. B

The next theorem proves that our protocol cor-
rectly completes simulation in the presence of failures.

Theorem 2 At the end of the simulation, the follow-
ing conditions are true:

e All LPs have received all the messages that they
would have received in a sequential simulation.

e All LPs have processed all the messages in the
increasing order of their receive time.

e All orphan states have been rolled back.
e All orphan messages have been discarded.

Proof. To simplify the presentation, we assume that
each cluster contains only a single LP. The proof can
easily be extended to multiple LPs. First note that
in the presence of reliable delivery, actions taken after
receiving two tokens commute with each other and
also the actions taken after receiving a token commute
with a failure. Therefore, f concurrent failures are
not different from the case where f processes fail one
after another, such that between failures each process
receives each others failure announcement and takes
no other action. Hence, we only consider the single
non-concurrent failure case.

We have modeled a failure as a straggler event.
However, a failure also results in loss of the volatile
state. We do not use any of the lost information even
if the failure were truly a straggler event. The only in-
formation we need is the received messages and the iet
entries. This information is collected from the other
processes. The only tricky case is when the sender it-
self has failed and it cannot resend some message as
the state that sent that message is lost. This is harm-
less because according to the protocol, messages sent
from a lost state are also orphan and they anyway need
to be discarded upon their receive.

So our only remaining proof obligation is to show
that in absence of failures, our protocol handles the
straggler messages and orphan states correctly. This
proof follows directly from the proof of theorem 2 in
[6]. The heart of the proof is that lemma 1 assures us
that all orphan states are detected upon the arrival of
the corresponding token. B

4.4 Stable Global Virtual Time (SGVT)

Global Virtual Time(GVT) is defined as the virtual
time such that no state prior to GVT will ever be

rolled back [3]. Traditional methods for computing
GVT fail in presence of failures. A failure of a cluster
may result in the restoration of a state with the virtual
time less than GVT.

It is interesting to note that our modeling of failure
as a straggler event can directly be used in the stan-
dard GVT algorithm to come up with a value, which
we call SGVT, such that no state with virtual time
less than SGVT will ever be rolled back. Since failure
is treated as a straggler, so a potential failure of pro-
cess P can be treated as an unacknowledged message
with time-stamp stable(P).

GVT is approximated by taking the minimum of
receive times of all unacknowledged messages and all
the local virtual times of each process. We note that
GVT can be approximated by the minimum of re-
ceive times of all unacknowledged messages and all
the unprocessed messages in the input queue of a pro-
cess, which for a process P, we denote by unacked(P)
and unprocessed(P) respectively. Now we can define
SGVT as follows:

T; = min{stable(P;),unacked(P;), unprocessed(P;)}
SGVT = min{Vi : T;}

Theorem 3 No state with virtual time less than
SGVT can ever be rolled back.

Proof. Every rollback has a first cause in a straggler
or a failure. A failure cannot restore a state with a
timestamp less than the global minimum of stable.
A straggler cannot have a timestamp less than the
global minimum of unacked and unprocessed. Hence
the result follows. B

In addition to being useful for fossil collection and
output commit, the SGVT has another interesting
application. DV is used by a process to determine
whether it needs to roll back due to a rollback of an-
other process. We make the observation that only
those entries need to be kept in the DV whose associ-
ated states have virtual time greater than SGVT. De-
pendency on a state with virtual time less than SGVT
need not be tracked because the corresponding state
will never be rolled back. This results in the reduction
of the overhead associated with the DV. In fact, DV
starts with only one entry (process’s own entry). As
processes interact with one-another, size of DV starts
increasing. However, SGVT also keeps on increasing.
So we expect the average number of entries in DV to
be sufficiently small.

4.5 Overheads

Our scheme incurs the following overheads for pro-
viding fault-tolerance:

Accessing stable storage: We need to periodi-
cally save checkpoints on stable storage. This seems a

necessary cost in absence of redundant resources like
those used for replication. We save checkpoints asyn-
chronously. So computation is not blocked when sta-
ble storage is being accessed.

Dependency information: We tag a DV with
each inter-cluster message. We expect the number of
inter-cluster messages to be much smaller than the
total number of messages. The size of DV is O(n) en-
tries, where n is the number of clusters in the system.
But as explained in section 4.4, we expect the number
of entries to be much smaller in practice.

Cluster output queue: Only inter-cluster mes-
sages are saved in COQ. So we expect this overhead
to be much smaller than that for Time Warp.

Clustered rollback: Rollback of a single LP
means rollback of the entire cluster. This slows down
the simulation. But each cluster rolls back at most
once in response to each straggler or failure. There is
no possibility of avalanche of antimessages or echoing
[14]. This should compensate for the slowdown owing
to the clustered rollback.

5 Implementation Issues

So far we have discussed the modifications required
in simulation schemes when failures can occur. Now
we discuss some general issues that any distributed
computation must address to survive failures:

Failure Detection: In theory, it is impossible to
distinguish a failed process from a very slow process
[8]. In practice, many failure detectors have been built
that work well for most practical situations [10]. Most
of these detectors use a timeout mechanism.

Stable Storage: Stable storage must be available
across failures. In a multi-processor environment this
is easy, as other processors can access the disk even if
one of the processors fails. In a networking environ-
ment, the local disk may be inaccessible when the cor-
responding processor fails. So a network server must
be used to make checkpoints stable.

Process Identity: When a failed process is
restarted, it may have a different port number or IP
address. So location independent identifiers should be
used for the purpose of inter-process communication.

Environment Variables: If a process is restarted
on a different processor then some inconsistency may
arise due to mismatch of the values of environment
variables in pre- and post-failure computation. Log-
ging and resetting of environment variables is required.

Acknowledgement

We would like to thank the anonymous referees,
whose thoughtful comments have helped us in improv-
ing the presentation of the paper.

References
[1] D. Agrawal and J. R. Agre. Replicated Objects in
Time Warp Simulations. Proc. Winter Simulation
Conf., 657-664, 1992.
[2] H. Avril and C. Tropper. Clustered Time Warp and
Logic Simulation. Proc. 9th Workshop on Parallel and

Distributed Simulation, 112-119, 1995.
[3] S. Bellenot. Global Virtual Time Algorithms. Proc.

Multiconference on Dist. Simulation, 122-127, 1990.
[4] K. P. Birman. Building Secure and Reliable Network

Applications, CT: Manning Pub. Co., 1996.

[6] K. M. Chandy and L. Lamport. Distributed Snap-
shots: Determining Global States of Distributed Sys-
tems. ACM TOCS, 3(1): 63-75, Feb. 1985.

[6] O. P. Damani, Y. M. Wang and V. K. Garg. Op-
timistic Distributed Simulation Based on Transitive
Dependency Tracking. Proc. 11th Workshop on Par-

allel and Distributed Simulation, 90-97, 1997.
[7] E. N. Elnozahy, D. B. Johnson and Y. M. Wang. A

Survey of Rollback-Recovery Protocols in Message-
Passing Systems. Tech. Rep. No. CMU-CS-96-181,
Dept. of Computer Science, Carnegie Mellon Univ.,

ftp://ftp.cs.cmu.edu/user/mootaz/papers/S.ps,1996.
[8] M. J. Fischer, N. Lynch and M. S. Paterson. Impossi-

bility of Distributed Consensus with One Faulty Pro-

cess. Journal of the ACM, 32(2), 374-382, April 1985.

[9] J. Gray and A. Reuter. Transaction Processing: Con-

cepts and Techniques. San Mateo, CA: Morgan Kauf-
mann Publishers, 117-119, 1993.

[10] Y. Huang and C. Kintala. Software Implemented

Fault Tolerance: Technologies and Experience. Proc.

23rd Fault-Tolerant Computing Symp., 2-9, 1993.

[11] D. R. Jefferson. Virtual Time. ACM Trans. Prog.
Lang. and Sys., 7(3), 404-425, 1985.

[12] L. Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM, 21(7), 558-565, 1978.

[13] Y. B. Lin, B. R. Preiss, W. M. Loucks, and E. D.
Lazowska. Selecting the Checkpoint Interval in Time
Warp Simulation. Proc. 7th PADS, 3-10, 1993.

[14] B. D. Lubachevsky, A. Schwartz, and A. Weiss. Roll-
back Sometimes Works ... if Filtered. Proc. Winter

Simulation Conference, 630-639, 1989.

[15] D. M. Nicol and X. Liu. The Dark Side of Risk (What
your mother never told you about Time Warp). Proc.
11th PADS, 188-195, 1997.

[16] H. Rajaei, R. Ayani, and L. E. Thorelli. The Local
Time Warp Approach to Parallel Simulation. Proc.

7th PADS, 119-126, 1993.

[17] G. Suri, Y. Huang, Y. M. Wang, W. K. Fuchs and C.
Kintala. An Implementation and Performance Mea-
surement of the Progressive Retry Technique. Proc.
IEEE ICPDS, 41-48, 1995.

[18] R. E. Strom and S. Yemini. Optimistic Recovery
in Distributed Systems. ACM Trans. on Computer
Systes, 204-226, Aug. 1985.

[19] Y. M. Wang, O. P. Damani, and V. K. Garg. Dis-
tributed Recovery with K-Optimistic Logging. Proc.
17th Intl. Conf. Dist. Comp. Sys., 60-67, 1997.

