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Abstract

The problem of recovering distributed systems from
crash failures has been widely studied in the context of tra-
ditional non-threaded processes. However, extending those
solutions to the multi-threaded scenario presents new prob-
lems. We identify and address these problems for optimistic
logging protocols.

There are two natural extension to optimistic logging
protocols in the multi-threaded scenario. The first exten-
sion is process-centric, where the points of internal non-
determinism caused by threads are logged. The second
extension is thread-centric, where each thread is treated
as a separate process. The process-centric approach suf-
fers from false causality while the thread-centric approach
suffers from high causality tracking overhead. By observ-
ing that the granularity of failures can be different from
the granularity of rollbacks, we design a new balanced ap-
proach which incurs low causality tracking overhead and
also eliminates false causality.

1. Introduction

Multi-threading is becoming increasingly common in
distributed systems owing to the need for light-weight con-

Vijay K. Garg
Dept. of Electr. and Comp. Engg.
Univ. of Texas at Austin
garg @ece.utexas.edu

itself to a consistent global state. We focus on optimistic
logging, an important class of log-based rollback recovery.

Optimistic logging protocols log messages to stable stor-
age asynchronously, thus incurring low failure-free over-
head. On a failure, some unlogged messages may be lost,
resulting in the loss of some states of the failed process.
Furthermore, this results in the rollback of states on other
non-failed processes that causally depend on the lost states.
In order to determine which states need to be rolled back,
the causal dependencies between states needs to be tracked.
This can be implemented by having all messages piggyback
a dependency vector of size O(n), where n is the number
of processes in the system [15].

While extending this solution to multi-threaded pro-
cesses we have two natural choices: a process-centric ap-
proach and a thread-centric approach. In the process-
centric approach, the internal non-deterministic events
caused by threads are logged [7, 14]. With this provision,
other researchers have used traditional optimistic protocols.
This, however, gives rise to the problem of false causality
between threads of a process. This problem has two serious
repercussions. First, during failure-free mode, it causes the
unnecessary blocking of outputs to the environment. Sec-
ond, during recovery from a failure, it causes unnecessary
rollbacks.

currency. We address the problem of recovering multi-
threaded distributed systems from process crash failures.
Although recovery has been a widely studied problem in
traditional non-threaded systems [5], extending these solu-
tions to the multi-threaded scenario gives rise to new prob-
lems. We address those problems for the optimistic logging
protocols.

The traditional distributed recovery problem deals with
recovering a distributed system from process crash failures.
One approach to solving the recovery problem is log-based
rollback recovery, which combines checkpointing and mes-
sage logging. When a failure occurs, the distributed system
can make use of the checkpoints and message logs to restore
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Attempting to eliminate false causality leads to the
thread-centric approach. Here, each individual thread is
treated as a process and a process crash is treated as multiple
concurrent thread crashes. In this approach, during failure-
free operation, causality is tracked at the level of threads.
This makes causality tracking an expensive operation re-
quiring a dependency vector of size O(nm), where n is the
number of processes and m is a bound on the number of
threads per process. This increases the message size over-
head, as well as space and time overhead.

Thus the process-centric and the thread-centric ap-
proaches present a trade-off between false causality and
tracking overhead. We make the observation that processes
fail independently and are thus failure units and that threads
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may be rolled back independently and are thus rollback



units. Therefore, it is sufficient to track the dependency of
threads on processes. This balanced approach tracks causal
dependencies using a dependency vector of size O(n). At
the same time it eliminates false causality, since threads are
rolled back independently.

In Section 2, we present some background on optimistic
recovery in traditional non-threaded environments. In Sec-
tion 3, we describe the two natural extensions — process-
centric logging and thread-centric logging — and the asso-
ciated false causality versus tracking overhead trade-off. In
Section 4, we describe our new balanced protocol for opti-
mistic recovery in multi-threaded distributed systems. Sec-
tion 5 is a note on generalizing the ideas of the paper.

2. Background: Optimistic Recovery
2.1. System Model and the Recovery Problem

We consider an application system consisting of n pro-
cesses communicating only through messages. The com-
munication system used is unreliable, in that it can lose,
delay, or duplicate a message. The environment also uses
messages to provide inputs to and receive outputs from the
application system. Each process has its own volatile stor-
age and also has access to stable storage. The data saved
on volatile storage is lost in a process crash, while the data
saved on stable storage remains unaffected by a process
crash.

A process execution is a sequence of states. The states
may be divided into state intervals consisting of the states
between two consecutive message receipts by the appli-
cation process. In single threaded systems, the execution
within each interval is assumed to be completely determin-
istic, i.e., actions performed between two message receives
are completely determined by the content of the first mes-
sage received and the state of the process at the time of the
first receive. As we will see, in multi-threaded systems,
non-deterministic thread scheduling affects the state of a
process. It is sufficient for our purposes to view process ex-
ecutions at the granularity of state intervals and not states.
Therefore, for simplicity, we will sometimes use states to
mean state intervals.

All n process executions together constitute a system ex-
ecution. Two physical system executions are considered
equivalent if their interaction with the environment is the
same.

A process fails by simply crashing. In a crash failure,
a process stops executing and loses the data in its volatile
storage. The process does no other harm, such as sending
incorrect messages. Pre-failure states of a process that can-
not be recreated after a failure are called lost states.

The application system is controlled by an underlying re-
covery system. The type of control may be of various forms,

the state of an application process, adding control informa-
tion to a message, rolling back the application to an earlier
state, etc.

The recovery problem is to specify the behavior of a re-
covery system that controls the application system to ensure
that despite crash failures, the system execution remains
equivalent to a possible crash-free execution of the stand-
alone application system.

2.2. Optimistic Logging

Log-based rollback recovery protocols [5] rely on check-
points and message logs, using them during recovery to re-
store the whole system to a consistent global state (one in
which every received message was sent). It is guaranteed
that this restored state is one which could possibly have hap-
pened in a failure-free system execution and, therefore, this
approach solves the recovery problem. Depending on when
and where the received messages are logged, the log-based
rollback recovery schemes can be divided into three cate-
gories: pessimistic, optimistic, and causal [5]. In this paper,
our focus is on optimistic logging protocols.

We first present an example and then use it to specify
the details of how a traditional optimistic logging protocol
operates. The protocol we present is similar in spirit to the
ones presented in [3, 15].

Example

An example of an optimistic recovery system is shown in
Figure 1. Solid horizontal lines show the useful computa-
tion, and dashed horizontal lines show the computation that
is either lost in a failure or rolled back by the recovery pro-
tocol. In the figure, c1 and ¢2, shown by squares, are check-
points of processes P1 and P2 respectively. State intervals
are numbered from s0 to s7 and they extend from one mes-
sage receive to the next. The numbers shown in rectangular
boxes will be explained later in this chapter.

In Figure 1(a), process P1 takes a checkpoint c1, acts on
some messages (not shown in the figure) and starts the inter-
val s0. P1 logs to stable storage all messages that have been
received so far. It starts interval s2 by processinging the
message m0. In interval s2, message m2 is sent to P2. P1
then fails without logging the message mO0 to stable storage
or receiving the message m1. It loses its volatile memory,
which includes the knowledge about processing the mes-
sage m0. During this time, P2 acts on the message m2.

Figure 1(b) shows the post-failure computation. On
restarting after the failure, P1 restores its last checkpoint
cl, replays all the logged messages and restores the interval
s1. It then broadcasts a failure announcement (not shown
in Figure 1). It continues its execution and starts interval s6
by processing m1. P2 receives the failure announcement in

such as saving a checkpoint of the application process, stop-

interval s5 and realizes that it is dependent on a Tost state.

ping an application process, adding control information to
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Figure 1. Example: Optimistic Recovery in Action

logged messages until it is about to process m2, the mes-
sage that made it dependent on a lost state. It discards m?2
and continues its execution by processing m3. The mes-
sage m2 is not regenerated in post-failure computation. PO
remains unaffected by the failure of P1.

Detecting Orphans: Causally Precedes

As just seen, in optimistic logging, some messages may be
lost in a failure. This may result in some lost states on the
failed process. All states that “causally depend” on such lost
states must also be detected and rolled back. Such states are
known as orphans.

The intuitive notion of “causally depends” that we have
used is formalized by the following relation. Let causally
precedes (denoted by —) be the smallest transitive binary
relation on state intervals satisfying the following two con-
ditions:

e u — v if the processing of an application message in
state u results in state v, (for example, s1 — s6 in
Figure 1(b)),

e u — v if the processing of an application message sent
from u starts v (for example, s2 — s5 in Figure 1(a)).

By s = u, we mean s — u or s = u. Note that a failure
or arollback does not start a new interval. It simply restores

an old interval. Now we can define an orphan state as:

orphan(s) = Ju: lost(u) A u—s

Tracking Causal Dependencies: Dependency Vectors

is used. The dv of a process P; has n state interval indices,
where n is the number of processes in the system and a state
interval index is a tuple containing an incarnation number
and a sequence number.

Whenever a process fails and is restarted, it is said to be
in a new incarnation. The incarnation number in the 7’th en-
try of its dv is its own incarnation number. The incarnation
number in the j’th entry is equal to the highest incarnation
number of P; which causally precedes P;. Let state inter-
val index e be (¢, ). Then, we define a total ordering, <,
on state interval indices as e; < ex = (t; < t2) V [(t; =
tg) N (7,1 < 7,2)]

Each process piggybacks its dv on every outgoing mes-
sage. Before processing a message, a process updates its
dv by taking a componentwise maximum of its dv with the
dv of the incoming message and incrementing its own se-
quence number.

An example of dv is shown in Figure 1. The dv of each
state is shown in a rectangular box near it. The k’th row of
the rectangular box corresponds to dv[k].

It has been previously demonstrated that dependency
vectors track the causally precedes relation, and therefore,
can be used to detect orphans [3, 15].

Recovering from a Crash

When a process P; fails, it restores its most recent check-
point and replays the logged messages that were processed
after that checkpoint. Next, P; broadcasts a failure an-
nouncement containing its state index, which is the ending
index number of the failed incarnation. In Figure 1, fail-
ure announcement of P2 contains (1,7). It then waits for an
acknowledgment from all processes.

The causally precedes relation needs to be tracked for or-
phan detection. For this purpose, a dependency vector (dv)

Upon receiving a failure announcement, a process P;
compares its dv with that index. If the dv shows that P;’s



state depends on a higher-index interval of the failed incar-
nation of P;, P; rolls back to undo the orphan states. Sim-
ilarly, it discards the orphan messages from its log. It also
saves the received failure announcement in an incarnation
end table to discard any orphan message that may arrive in
future. It then sends an acknowledgment to the sender of
the failure announcement.

Handling Output Commits

Distributed applications often need to interact with the out-
side world. Examples include setting hardware switches,
performing database updates, printing computation results,
displaying execution progress, etc. Since the outside world
in general does not have the capability of rolling back its
state, the applications must guarantee that any output sent
to the outside world will never need to be revoked. This is
called the output commit problem.

In optimistic recovery, an output can be committed when
the state intervals that the output depends on have all be-
come stable [15]. (An interval is said to be stable if it can
be recreated from the information saved on stable storage).
To determine when an output can be committed, each pro-
cess periodically broadcasts a logging progress notification
to let other processes know which of its state intervals have
become stable.

3. Optimistic Recovery with Multi-threaded
Processes

3.1. System Model

Each process contains a set of threads and a set of shared
objects. Threads of different processes communicate only
through messages. Threads of the same process communi-
cate through shared objects and messages. Any other form
of communication is allowed between threads, as long as it
can be modeled using shared objects or messages. For ex-
ample, wait-notify synchronizations can be modeled using
messages.

Threads of a process crash together. This happens not
only in hardware crashes but also in most software crashes
because threads share the same address space and are not
protected from each other by the operating system.

The recovery system can restore the state of an individual
thread or shared object to an old state without affecting the
other threads or shared objects. This assumption will be
discussed in Section 4.4.

3.2. Extending Optimistic Recovery

We now investigate how to extend the optimistic recov-
ery protocol given in Section 2 to multi-threaded environ-
ments.

units. A recovery unit is a single unit of execution in opti-
mistic recovery systems. Recovery units fail as a unit and
roll back in response to another unit’s failure.

In previous sections, we chose individual processes as
recovery units. In a multi-threaded environment, there are
two natural candidates for the recovery unit: a process or a
thread.

3.2.1 Process-centric Logging

In treating a process as a recovery unit in a multi-threaded
system, there is another source of non-determinism apart
from the order of message receives. Depending on the
scheduling, the threads may access shared objects in a dif-
ferent order. Therefore, after a failure, replaying the mes-
sage log to a process is not sufficient to recreate the desired
states.

To solve this problem, Goldberg et. al. [7] require that
shared objects be accessed only in locked regions. The or-
der in which threads acquire locks is logged. During a re-
play, the same locking order is enforced. This trace-and-
replay technique has also been used in concurrent debug-
gers [10, 16].

Another approach has been used by Elnozahy and
Slye [14]. They focus on uniprocessor multi-threaded en-
vironments in which the points of non-determinism can be
reduced to the thread switches. Therefore, they log the or-
der of thread switches and ensure that thread switches occur
in the same order during replay. Again, this approach has
been used in concurrent debuggers [11, 13].

Given that the non-determinism due to thread scheduling
can be tracked and replayed, the general optimistic recovery
approach described before can be used with a process as a
recovery unit.

The False Causality Problem

An example of how the process-centric approach operates
is shown in Figure 2(a). Receive of message m1, m2 and
mJ3 starts the intervals s1, s2 and s3 respectively. When PO
fails and loses state interval s1, P1 has to roll back state
interval s3. In the figure, the threads in each process are not
shown, since processes are the recovery units.

Let us now take another look at this scenario at the level
of threads instead of processes. Figure 2(b) shows the same
scenario at the level of threads. The figure shows that pro-
cess P1 consists of two threads T2 and T3. Therefore, s3
is an interleaving of the states of 72 and 7T'3. Suppose that,
after m3 was received, there was no shared object interac-
tions between T2 and T'3. So, only the states on T'3 were

Strom and Yemini [15] presented the original optimistic

really caused by m3 and needed to roll back. The states in

protocol not in terms of processes, but in terms of recovery

s3 belonging to T2 were rolled back unnecessarily. This is
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Figure 2. Extending Optimistic Logging

said to be due to false causality induced between the states
in the two threads.

Besides causing unnecessary rollbacks during recovery,
false causality has an unwanted effect in failure-free mode
as well. In Figure 2(a), the output message m4 from s2
cannot be committed until sO has become stable. However,
the thread view in Figure 2(b) shows us that this was, in
fact, unnecessary. The waiting was a result of false causal-
ity induced between m2 and m4. Thus, false causality also
increases the latency of output commits. As seen in the pre-
vious section, the latency of output commits is an important
factor for message logging protocols.

How often does false causality arise? Lewis and Berg [9]
have divided multi-threaded programs into two main cate-
gories: inherently multi-threaded programs and not obvi-
ously multi-threaded programs. Inherently multi-threaded
programs require multi-threading for ease of programming
and not for speedup. These programs have highly in-
dependent tasks that are naturally expressed as threads.
Some examples of such programs are: servers which handle
multiple requests simultaneously, debuggers which moni-
tor a program while keeping multiple displays active at the
same time, and simulators which simulate different enti-
ties that operate simultaneously. The other class of not
obviously multi-threaded programs are those that require
multi-threading for speedup on a multi-processor machine.
Such programs have tightly-coupled threads that interact
frequently through shared memory. Some examples are
numerical programs and fine-tuning bottlenecks in existing
code. Of these two categories, the inherently multi-threaded
programs have highly independent threads which do not in-
teract frequently, and therefore, would display false causal-
ity more often. Our focus will be on this important category
of multi-threaded applications.

Given that the false causality problem is an important
concern, how can it be addressed? The problem arises be-
cause threads, which are independent units, are grouped to-
gether as a single unit. To solve this problem, we now study

3.2.2 Thread-centric Logging

Threads can be modeled as recovery units since they can be
rolled back independently. Failure of a process is modeled
as concurrent multiple failure of all its threads.

There are a number of important issues that arise when
treating threads as recovery units in the optimistic logging
scheme. First, in addition to dependencies between threads
due to messages, there are also dependencies caused by
shared objects. These new dependencies must be tracked.
Second, on a failure, just as a thread may have to roll back,
a shared object may also have to roll back. Thus, orphan de-
tection must be carried out for threads, as well as for shared
objects. Third, both threads and shared objects must be re-
stored to a checkpoint and replayed.

In order to address these issues, we now describe a way
to model shared objects using messages and threads. A fic-
titious thread is associated with each shared object whose
state is the same as that of the corresponding object. We
model each method invocation on a shared object as a pair
of messages between the invoking thread and the thread as-
sociated with the object. The first message is sent by the
invoking thread and contains the method identifier and the
method parameters. The second message is sent by the
thread associated with the object and contains the return
value of the method. This greatly simplifies presentation
of the protocols because now messages are the only form of
communication in the whole distributed system.

Further, the simplified model captures a way to deal with
each of the three issues mentioned above. The new depen-
dencies are tracked by treating the shared object accesses as
messages and associating a vector with each shared object.
Similarly, orphan detection and replay of shared objects is
done just as in threads.

Since we have dealt with the new issues, all that remains
is to apply the general optimistic logging scheme. So the
computation in Figure 2(a) appears as that in Figure 2(b).
When 70 and T'1 fail, the thread-interval sending m2 is
not lost in the failure. So only 7'3 and not T'2 is rolled
back. Also, message m4 is committed without waiting for
the interval sending m?2 to become stable.

an approach that models each thread as a recovery unit.

Therefore, the thread-centric approach clearly reduces



type sti_type:  (inc: int, seq: int);

/I type representing state interval index with incarnation
/I and sequence numbers

Thread T}
dv array[n] of sii_type;

/I dependency vector
IET  array[n] of set of sii_type;

/ incarnation end table

Process P;

Si1 sii_type;
// state interval index
log list of untyped objects;
/l'log for messages and siz values
list of untyped objects;
/1 stable log for messages,

/1 sit values, and checkpoints

LOG

Figure 3. Variables Used in the Protocol

false causality. The dependency tracking overhead, how-
ever, is greatly increased. A main factor in this overhead is
that, instead of O(n) entries, each dependency vector now
has O(mn) entries (where m is the maximum number of
threads per process). A more detailed discussion on this
overhead will be presented in Section 4.3.

An Inherent Trade-off?

The process-centric and thread-centric approaches offer a
trade-off between dependency tracking overhead and extent
of false causality. This trade-off seems to be an inherent one
as it arises from the choice of granularity of the recovery
unit. A larger recovery unit introduces more false causal-
ity and has lower tracking overhead than a smaller one.
In database systems, an analogous trade-off exists between
lock maintenance overhead and extent of false causality
while choosing the lock granularity. Surprisingly, in multi-
threaded recovery, this trade-off can be avoided by a scheme
that we now present.

4. The Balanced Protocol

We observe that a recovery unit plays two distinct roles
in optimistic recovery. The first role is that of a failure unit.
The defining characteristic of a failure unit is that it fails as
a unit. The second role is that of a rollback unit. A rollback
unit can be rolled back and restored to a previous state in-
dependently. For example, in the process-centric protocol,
the process was both the failure unit and the rollback unit,
whereas in the thread-centric protocol, the thread was the
failure unit and rollback unit.

A general observation we can make about optimistic re-
covery is that: to detect orphans, it is sufficient for a roll-
back unit to track its transitive dependency on a failure unit.
Then, the failure of a failure unit causes all orphaned roll-

tities to track. Also, choosing a larger granularity rollback
unit increases the extent of false causality since multiple
entities are forced to roll back together. In the previous sec-
tion, we saw that the trade-off between dependency track-
ing overhead and false causality depended on the granular-
ity of the recovery unit. The separation of roles into failure
units and rollback units allows the trade-off to be avoided,
by choosing a larger granularity failure unit (process) and a
smaller granularity rollback unit (thread). This is the central
idea for our balanced protocol.

However, to achieve the separation of roles, we must si-
multaneously deal with both thread state intervals and pro-
cess state intervals. This requires a redefinition of a process
state interval as a “consistent” set of thread state intervals.
We define this notion of consistency formally in [4].

4.1. The Balanced Protocol: Details

The protocol specifies the actions to be taken by the re-
covery system. The actions are divided into two categories,
those for a process (failure unit) and those for a thread (roll-
back unit).

Figure 3 shows the variables used in the protocol. We
use capital letters to indicate variables on stable storage
(e.g. IET) and small letters to indicate variables on volatile
storage (e.g. dv). Global variables common to all threads
(process variables) are underlined (e.g. siz). Calls to
the run-time environment start with an underscore (e.g.
_Send(data, dv) calls the environment, while Send(data)
calls the program’s function).

Each thread maintains a dependency vector dv and an in-
carnation end table I ET' in order to detect orphans. The si¢
indicates the current process-wide state interval index. The
log and LOG are the volatile and stable logs respectively.
The volatile log is used as a buffer for the log before it is
made stable. The stable log is used to recover from a pro-

back units to rollback, bringing the system back to a consis-

cess failure. The stable and volatile Togs are also used to

tent state.

independently restore a thread to a previous state.

Thus, choosing a larger granularity failure unit reduces

The actions of the protocol may be divided into two

the dependency tracking overhead since there are fewer en-

types: normal mode and recovery mode. Figure 4 Tists the




Thread T;

Initialize:
Yk #£ j: dvlk] :=(0,0)
dufj] =1, D

Vk: IET[K] = {}

Send(data):
_Send(data, dv);

Receive:
repeat
m := _Receive();
until (= orphan(m.dv, I ET));
log := log + (m. j);
dv := max(dv, m.dv);
dvlj] = sii;

Process P;

Initialize:
s11 :=(1,1)

Take Checkpoint:
log :=log + sii;

LOG = LOG + log;
log :=null;
LOG := LOG + _Checkpoint();

sii.seq = sit.seq + 1;

Make Message Log:
LOG := LOG + log;
lo_g :=null;

Start State Interval:
log = log + sit;
sii.seq = sit.seq + 1;

Figure 4. Protocol for Normal-mode Operation

normal mode protocol. For simplicity, all actions are as-
sumed to be atomic.

First, in order to ensure that process state intervals are
consistent, the recovery system periodically starts a new
state interval (Start State Interval) by incrementing the
global sit value. The old siz is queued in the log mark-
ing the end of the previous receive set in the log. On the
next receive event, each thread 7' assigns its local dv[j] en-
try the value of this global si¢ (Receive), thus keeping track
of the process state interval it belongs to.

Each thread keeps track of the highest process state inter-
val that it is aware of using its local dependency vector dv.
The dependency vector mechanism is the same as before.
(Send, Receive).

On receiving a message, a thread must discard it, if it is
an orphan message (Receive). It can detect this by looking
at its incarnation end table I E'T" which is updated appropri-
ately in the recovery mode of the protocol. More precisely,
we specify the predicate

orphan(dv, IET) = 35 : 3(t,x) € IET[j] :
(t = dvu[j]-inc) A (z < dv[j]-seq)

A received message is logged in the global volatile log
log (Receive). This log totally orders all receives of all
threads in their real time order, marking the end of receive
sets by storing their siz values (Start State Interval). Peri-

Periodically, checkpoints are also taken. The volatile log
is flushed to the stable log and a checkpoint is appended
(Take Checkpoint). The old siz value is logged before the
checkpoint and incremented after the checkpoint. This en-
sures that every checkpoint is exactly between two state in-
tervals. We assume that in addition to the application sys-
tem state, the checkpoint includes the dependency vector dv
for each thread.

The recovery mode protocol is listed in Figure 5. On a
crash failure, the crashed process restores its last checkpoint
in the stable log, LOG (Restart After Crash). All threads
are replayed from this point using messages and si¢ values
from LOG upto the last complete process state interval.

Next, the crashed process broadcasts an announcement
of its failure to all threads of all other processes. This an-
nouncement includes its recovered state interval index indi-
cating the end of that incarnation. This broadcast must be
reliable in order to ensure that the system returns to a con-
sistent state. Reliability may be ensured by repeating the
broadcast periodically. The process then blocks, waiting for
an acknowledgement from all threads. Once all of these are
received, it starts a new incarnation by appropriately updat-
ing its state interval index.

When a thread receives a failure announcement, it first
records the announcement in its incarnation end table I ET'
(Handle Fail_Announce). This will be later used in nor-

odically, this volatile Tog is flushed to stable storage (Make

mal mode to discard orphan messages (Receive). It then

Message Log).

decides if it is an orphan based on its dependency vector




Thread T}

Handle Fail_Announce(sender_id, sender_sii):
IET[senderd] := IET[sender_id] U {sender_sii};
if (orphan(dv, I ET))

delete_orphans(log, LOG, IET)
restore last checkpoint of T in LOG;;
locally replay thread T; using messages and si¢
values after last checkpoint of 7 in LOG and log;
send Ack_Announce t0 Psender_id

Process P;

Restart After Crash:

restore last checkpoint in LOG};

globally replay all threads in P; using messages
and sig values after last checkpoint in LOG;

reliably broadcast F'ail_Announce(i, sit) to
all threads in all other processes;

wait for Ack_Announce from all;

sti.anc = sit.anc + 1;

sii.seq = 1;

Figure 5. Protocol for Recovery-mode Operation

and its newly updated I ET'. If it is, it must delete all or-
phan entries from its stable and volatile logs. Next, it must
restore the last thread checkpoint from the stable log. It
then replays itself to its latest state using the messages and
si¢ values in the stable and volatile logs. This will bring it
to the latest state that is not an orphan with respect to the
received failure announcement. Note that the other threads
and, in particular, the global siz remain unaffected by this
action. Finally, it sends an acknowledgement to the sender
of the failure announcement.

To complete the protocol, we must add logging progress
notification to accomodate output commit. However, we
omit these details because they are identical to those in tra-
ditional optimistic protocols.

4.2. An Example
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Figure 6. Example: Balanced Protocol

An example of our protocol in action is shown in Fig-
ure 6. Threads T'0, T'1 belong to process PO and T2, T'3
belong to P1. The dashed arcs show the ends of the pro-
cess state intervals s1, s2 and s3. Thread state intervals are
t1 to t6. State interval indices of s2 and s3 are (1,7) and
(1,4) respectively. When PO fails, it loses the state inter-
val s2. It broadcasts a failure announcement containing the

orphan state interval ¢5. Thread T'3 remains unaffected by
this failure. Note that, if P1 were to fail instead of P0, and
lose the state interval s3, then both 7T°0 and 7'1 will detect
that they are orphans due to the entry (1,4) in their dv’s.
This illustrates an important point of our protocol: in spite
of belonging to the same process state interval and sharing a
common index, thread intervals t5 and 6 act as independent
rollback units and a single failure unit at the same time.

4.3. Comparative Evaluation

There are two factors of interest while comparing various
protocols: false causality and dependency tracking over-
head.

We have already discussed the false causality problem
in Section 3.2.1. To summarize: the false causality prob-
lem arises in the process-centric approach because threads
are forced to roll back together even when they have low
interactions between them. False causality is particularly a
problem for a large class of applications that have low in-
teractions between threads. The observable effects of false
causality are: (1) delayed output commits, and (2) unnec-
essary rollbacks after a failure. Both the thread-centric
and balanced approaches avoid false causality by allowing
threads to roll back independently.

The price paid for avoiding false causality is the higher
dependency tracking overhead. This overhead is in three
forms: space overhead, time overhead, and message size
overhead. Table 1 summarizes the relative overheads of the
various protocols. The overhead of checkpointing is com-
mon to all protocols and hence it is not shown in the table.

As discussed before, there have been two implementa-
tions of the process-centric approach: Slye & Elnozahy
[14], and Goldberg et al. [7]. Slye & Elnozahy use a soft-
ware counter to track the thread switches. Therefore, the
space overhead consists of O(s) space to log all thread
switching information and O(en) space to store depen-
dency vectors for each receive event. The time overhead

index (1,6), corresponding to the state interval index of s1.

consists of the total extra time the recovery protocol re-

On receiving this announcement, thread 72 rolls back the

quires to execute. This involves the time to save check-




Space Time Message Size False

Overhead Overhead Overhead Causality
Process-centric(I) | O(s + en) O(c+en) O(n) yes
Process-centric(IT) | O(o + en) O(o + en) O(n) yes
Thread-centric O(mn(o+e)) | O(mn(o+e)) O(mn) no
Balanced O(n(o+e)) O(n(o+e)) O(n) no

Process-centric(]) is the process-centric protocol using Slye & Elnozahy [14]
Process-centric(Il) is the process-centric protocol using Goldberg et al. [7]

n is the number of processes

m is the maximum number of threads and shared objects per process

e is the maximum number of message receive events per process execution
o is the maximum number of shared object accesses per process execution
s is the maximum number of thread switches per process execution

c is the time overhead for maintaining a software counter

Table 1. Comparative Evaluation of Overheads

points, log thread switching information, log dependency
vectors. Therefore, the time overhead is proportional to the
space overhead. The message size overhead is O(n) since
the dependency vector has n entries, one per process.

Goldberg et al. log the order of shared memory accesses
so that they can be deterministically replayed. Therefore,
the space overhead is O(o + en) with the O(0) component
accounting for the log made on each shared memory access.
The time overhead is proportional to space overhead. The
message overhead remains O(n) as before.

For the thread-centric approach, we assume that the over-
heads of checkpointing are similar for thread and process
checkpoints. In practice, thread checkpoints may take ad-
ditional time overhead to separate the thread local state
from the process address space. Another method would be
to simply take process checkpoints and extract the thread
checkpoints when required. Since shared object accesses
are treated as message receives, the space overhead to log
the dependency vectors is O(mn(o + e)) since each vec-
tor has O(mn) entries. The time overhead is similar. The
message size overhead is now O(mn).

The balanced approach reduces the vector size from
O(mn) in the thread-centric approach to O(n). All over-
heads are similar to the thread-centric case replacing mn
by n.

The saving in space, time and message size overhead of
the balanced protocol with respect to the thread-centric pro-
tocol is substantial because mn is potentially a very large
quantity compared to n. Each individual thread and shared
object in the system is accounted for in mn. Since both pro-
tocols achieve the same elimination of false causality, the

Compared to the process-centric protocol of Goldberg
et al., the balanced protocol has the same message size
overhead, but higher space and time overhead. This is be-
cause each shared object access in the balanced approach
logs a O(n) vector instead of constant information. With
respect to the process-centric protocol using Slye & El-
nozahy’s technique, the space and time overhead is also
expected to be higher since there are usually much fewer
thread switches than shared memory accesses. However, as
in Section 3.2.1, only the applications that have low thread
interaction suffer greatly from false causality. For these ap-
plications, the increase in time and space overheads of bal-
ance protocol is low because the number of shared object
accesses is low. Thus, the process-centric protocol should
be used for applications with high thread interaction, and,
therefore, low false causality effects. The balanced proto-
col should be used for the class of applications that have low
thread interaction, where the extra space and time overhead
is outweighed by the saving in false causality effects.

4.4. Implementation Issues

There are two new issues that arise when implementing
optimistic recovery in multi-threaded systems as opposed to
traditional systems: checkpointing threads, tracking causal-
ity through shared object accesses, and replaying threads
independently.

Checkpointing threads is handled differently in different
multi-threaded systems. In POSIX Threads, the thread state
consists of the stack, register context (including program
counter), thread local storage, and objects that are created
on the heap by a thread. The global data is shared between
all threads. This division may be simplistic, and it is pos-

balanced protocol should always be preferred to the thread-

sible for shared objects to exist in the stack of one process

centric protocol.

or on the heap. In such cases, a simplistic division would



work correctly but would induce greater false causality. It
is possible to track ownership of objects on the heap at the
execution point when the object was created (e.g. by instru-
menting at the malloc calls). It is important to note that the
checkpoint can be made for the whole process as in exist-
ing schemes for multi-threaded systems [7]. This logically
corresponds to all threads checkpointing at the same time.
However, when required, the thread state must be extracted
from the process checkpoint independently. In Java, object
serialization allows the objects to be saved independently.
The thread stacks are not exposed by the Java VM. In order
to save thread stacks, existing schemes either modify the
Java VM [12], or instrument the Java code [6].

An important issue in implementing shared objects is
defining what exactly a shared object access is. This has
impact on the number of accesses, o. As we have just seen,
the smaller the value of o, the lower would be the overhead
in the balanced protocol. Frequently, multi-threaded pro-
grams are written using a discipline that ensures that each
shared object is accessed only through methods and all the
methods are made mutually exclusive using an object lock.
This is the model used by Java threads [8]. These mutually
exclusive methods increase the granularity of a shared ob-
ject access and provide a clear interface for tracking. Thus,
instead of tracking every read and write to shared objects,
we can now track each method invocation on a shared ob-
ject.

Each method invocation on a shared object is treated as
a message from the thread to the shared object and the re-
turn from the shared object is treated as a message from
the shared object to the thread. Thus, the recovery manager
must intervene at both these points. The log consists of the
method and parameter values in case of the invocation and
the returned values in the case of the return. While replay-
ing a thread or a shared object, the logged values are re-
played so that the thread or shared object recovers its state.

5. Final Note: Generalization

So far, we have considered the failure and rollback units
in the context of processes and threads. We can select these
units at even coarser granularities. For simplicity, let us con-
sider a system consisting of non-threaded processes. Now,
a process can be a rollback unit while a processor can be
a failure unit. Compared to traditional optimistic proto-
cols, this approach reduces the dependency tracking over-
head while injecting false causality between processes. In
case of a hardware crash, entire processor indeed crashes as
a unit. In case of a software crash of a single process, all
processes on the corresponding processor have to simulate
a crash, and hence the false causality between them. Further
generalizing, a local area network can act as a failure unit in
a wide area environment. A process still acts as a rollback
unit.
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