
Derivation of Imperative Sequential
Programs from Formal Specifications

thesis

Submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

submitted by

Dipak Liladhar Chaudhari

(Roll No. 08305901)

Under the supervision of

Prof. Om Damani

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

August, 2016

To my father

Late Shri. Liladhar Atmaram Chaudhari

Declaration

I declare that this written submission represents my ideas in my own words and

where others’ ideas or words have been included, I have adequately cited and referenced the

original sources. I also declare that I have adhered to all principles of academic honesty and

integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source

in my submission. I understand that any violation of the above will be cause for disciplinary

action by the Institute and can also evoke penal action from the sources which have thus

not been properly cited or from whom proper permission has not been taken when needed.

Dipak Liladhar Chaudhari

Roll No: 08305901

i

Abstract

Calculational Style of Programming, while very appealing, has several practical difficulties

when done manually. Due to the large number of proofs involved, the derivations can

be cumbersome and error-prone. To address these issues, we have developed automated

theorem prove assisted program and formula transformation rules, which when coupled

with the ability to extract context of a subformula, help in shortening and simplifying the

derivations.

At an intermediate stage in a derivation, users may have to make certain assumptions

to proceed further. To ensure that the assumptions hold true at that point in the pro-

gram, certain other assumptions may need to be introduced upstream as loop invariants or

preconditions. Typically these upstream assumptions are made in an ad hoc fashion and

may result in unnecessary rework, or worse, complete exclusion of some of the alternative

solutions. We present correctness-preserving rules for propagating assumptions through

annotated programs. We show how these rules can be integrated in a top-down derivation

methodology to provide a systematic approach for propagating the assumptions, material-

izing them with executable statements at a place different from the place of introduction,

and strengthening of loop invariants with minimal additional proof efforts.

We have developed a program derivation system called CAPS for the interactive,

calculational derivation of imperative programs. We have implemented the automated

theorem prover assisted rules and the assumption propagation rules in the CAPS system.

We show how the CAPS system helps in taking the drudgery out of the derivation process

while ensuring correctness.

Keywords: Program Derivation; Correct-by-construction Programming; Assumption

Propagation; Annotated Programs; Program Transformations

ii

Contents

Abstract ii

Contents iii

List of Tables vii

List of Figures viii

Nomenclature x

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Organization of the Thesis . 4

2 Calculational Style of Programming 6

2.1 Calculational Style . 6

2.2 Preliminaries . 7

2.2.1 Hoare Triple, Weakest Precondition, and Strongest Postcondition . 7

2.2.2 Eindhoven Notation . 8

2.3 Motivating Example . 8

2.4 Teaching Calculational Style of Programming 11

3 Derivation Methodology 14

3.1 Derivation Process . 14

3.2 Annotated Programs . 15

3.3 Annotated Program Transformation Rules 17

iii

3.4 Formula Transformations . 19

4 Theorem Prover Assisted Program Derivation 21

4.1 Harnessing the Automated Theorem Provers 22

4.2 Theorem Prover Assisted Tactics . 23

4.2.1 Extracting Context of Subprograms 23

4.2.2 Extracting Context of Subformulas 24

4.2.3 Automation at Tactic Level . 26

4.3 Why3 Encoding . 29

4.3.1 Encoding Scheme . 29

4.3.2 Encoding Function (E) . 30

4.3.3 Create a Why3 theory . 32

4.3.4 Example . 32

4.4 Related Work . 34

5 Assumption Propagation 37

5.1 Introduction . 37

5.2 Maximum Segment Sum Revisited . 38

5.2.1 Maximum Segment Sum Derivation 38

5.2.2 Ad Hoc Decision Making . 40

5.2.3 Motivation for Assumption Propagation 41

5.3 Assumption Propagation . 42

5.3.1 Assumption Propagation for Bottom up Derivation 42

5.3.2 Precondition Exploration . 43

5.3.3 Rules for Propagating and Establishing Assumptions 43

5.3.4 Adding New Transformation Rules 51

5.3.5 Selecting Appropriate Rules . 51

5.3.6 Down-propagating the Assertions 52

5.4 Derivation Examples . 52

5.4.1 Evaluating Polynomials . 52

5.4.2 Back to the Motivating Example 53

5.5 Related Work . 57

iv

6 Correctness of Assumption Propagation Rules 58

6.1 SkipUp Rule . 59

6.2 AssumeUp Rule . 60

6.3 AssumeMerge Rule . 60

6.4 AssignmentUp Rule . 61

6.5 UnkProgUp Rule . 62

6.6 UnkProgEst Rule . 63

6.7 CompositionIn Rule . 63

6.8 CompositionOut Rule . 65

6.9 CompoToIf Rule . 66

6.10 IfIn Rule . 67

6.11 IfOut Rule . 68

6.12 IfGrd Rule . 70

6.13 IfGrd2 Rule . 71

6.14 WhileIn Rule . 73

6.15 WhileStrInv Rule . 75

6.16 WhilePostStrInv Rule . 77

7 CAPS 79

7.1 Introduction . 79

7.2 Graphical User Interface . 79

7.3 Textual vs Structured Representation . 80

7.4 Focusing on Subcomponents . 82

7.5 Selective Display of Information . 83

7.6 Maintaining Derivation History . 85

7.7 Implementing Assumption Propagation . 86

7.8 System Architecture . 87

7.9 Using the CAPS System . 88

7.9.1 Evaluation . 90

7.10 Related Work . 91

8 Conclusion and Future Work 92

v

Appendix A BigMax Theory in Why3 95

Bibilography 97

List of Publications 103

Acknowledgments 104

vi

List of Tables

3.1 Partial correctness proof obligations for annGCL constructs 16

4.1 Contextual assumptions . 24

vii

List of Figures

2.1 Selected stages in the derivation of the Maximum Segment Sum problem. . 9

3.1 Schematic Derivation Tree. 15

3.2 annGCL grammar . 17

3.3 Program transformation tactics. 18

3.4 A path in the synthesis tree for the Integer Division program 20

3.5 Calculation representation . 20

4.1 Focusing on a subformula. 25

4.2 Calculation of initialization assignment in Integer Division program 26

4.3 An example of application of the SimplifyAuto tactic 28

4.4 Example of Why3 encoding . 35

5.1 Sketch of the derivation of the Maximum Segment Sum problem. 39

5.2 Result of assuming precondition θ in the derivation of {α}unkprog1 {β}. . 43

5.3 SkipUp rule . 44

5.4 AssumeUp rule . 44

5.5 AssumeMerge rule . 44

5.6 UnkProgUp rule . 44

5.7 UnkProgEst rule . 44

5.8 AssignmentUp rule . 45

5.9 CompositionIn rule . 45

5.10 CompositionOut rule . 45

5.11 CompoToIf rule . 45

5.12 IfIn rule. 47

5.13 IfOut rule . 47

viii

5.14 IfGrd rule . 47

5.15 WhileIn rule . 50

5.16 WhileStrInv rule . 50

5.17 WhilePostStrInv rule . 50

5.18 IfGrd2 rule . 51

5.19 Some steps in the derivation of a program for the Horner’s rule. 54

5.20 Maximum Segment Sum derivations using the assumption propagation rules. 56

7.1 CAPS GUI . 80

7.2 Structured representation of a formula . 80

7.3 InputPanel . 81

7.4 Formula transformations from the derivation of the Binary Search program. 83

7.5 Annotation Modes . 84

7.6 Navigating the derivation tree . 86

7.7 CAPS Architecture . 87

ix

Nomenclature

ATP Automated Theorem Prover

A(θ) assume(θ)

wp(S,R) Weakest precondition of program S with respect to postcondition R

sp(S, P) Strongest postcondition of program S with respect to precondition P

Q(x := E) A predicate obtained by substituting expressions E for the free occurrences

of variable x in the predicate Q

po(A) Proof Obligation of the annotated program A
E Encoding function to encode formulas to Why3 declarations

x

Chapter 1

Introduction

Importance of software correctness can not be overemphasized in today’s world wherein our

lives are becoming increasingly dependent on the reliable functioning of computer systems.

Software testing is the most predominant approach used in the industry to evaluate

correctness. Although testing helps in finding software defects, it does not guarantee

absence of them. As the state space of the systems is usually very large, it is infeasible to

test the functionality for all the possible inputs.

In contrast to testing, formal verification can prove correctness of systems with re-

spect to their formal specifications. Traditional formal verification work flow typically

involves an implementation phase followed by a separate formal verification phase. In such

implement-and-verify approaches, formal specification does not play an active role in the

implementation phase. In reality, systems are formally specified often after the implementa-

tion phase and just before the verification stage. Verification efforts involve reconstruction

of the correctness arguments which might have been considered, albeit informally, during

the implementation phase. For example, for sequential programs, automatically inferring

loop invariants is a hard problem. It can be argued however that, for the designer of

program, it would be easier to suggest the right invariants during the implementation

itself. Moverover, the verification methodologies do not help the programmers during the

implementation phase.

Program verification systems like Why3 [FP13], Dafny [Lei10], VCC [CDH+09] and

VeriFast [JP08] are trying to bring the verification phase closer to the implementation phase.

Programmers can annotate programs with the invariants and the verification systems

can run the verification engine immediately after compilation. Although the failed proof

1

obligations provide some hint, there is no structured help available to the programmer

in the actual task of implementing the programs. Programmers often rely on ad hoc use

cases and informal reasoning to guess the program constructs.

In contrast to this, in the correct-by-construction style of programming, programs and

the correctness proofs are developed hand in hand. The calculational style of programming,

which is the subject of this thesis, is one such correct-by-construction methodology wherein

proofs are carried out in a particular style, called calculational style, which allows proofs

to be presented at right level of granularity. Formal specification plays a central role in this

method as programs are incrementally derived by manipulating the formal specification.

1.1 Objectives

Calculational style of programming, while very appealing, has several practical difficulties

when done manually. Due to the large number of proofs involved, the derivations can be

cumbersome and error-prone. Derivations are often non-linear and involve intricate user

interactions making them difficult to manage. To address these issues, we set out to develop

a program derivation methodology based on the calculational style of programming with

an overall objective of taking the drudgery out of the program derivation process. Our

aim has been to automate the mundane tasks without sacrificing the readability that is so

characteristic of the calculational style, and to provide support for capturing the creative

aspects of the derivation process in the form of program/formula transformation rules.

One gaping hole in the existing literature of program derivation has been the lack

of a mechanism for propagating assumptions. At an intermediate stage in a derivation,

users may have to make certain assumptions to proceed further. To ensure that the

assumptions hold true at that point in the program, certain other assumptions may need

to be introduced upstream as loop invariants or preconditions. Typically, these upstream

assumptions are made in an ad hoc fashion and may result in unnecessary rework, or

worse, complete exclusion of some of the alternative solutions. We set out to fill this

gap by developing an approach for propagating assumptions through annotated programs

while ensuring correctness. Our aim has been to eliminate the unnecessary branchings

and associated rework due to the trial and errors involved in establishing the predicates

at downstream locations.

2

Scope of the work. In this thesis, we restrict our attention to the derivation of sequen-

tial imperative programs. Large systems are composed of several small modules which in

turn are composed of many small programs. We focus on programs at the programming-

in-the-small level with the basic tenet being that, in David Gries’s words, “ability to

develop small programs is a necessary condition for developing large ones — although

it may not sufficient”[Gri87]. We hope that, as argued in [Sol86], the insights gained in

research into programming-in-the-small can to lead to effective, productive research into

programming-in-the-large.

1.2 Contributions

The main contributions of this work are as follows.

Methodological Contributions

Program derivation methodology. We have developed a tactic based interactive pro-

gram derivation methodology based on the calculational style of program derivation.

By providing a unified framework for carrying out program as well as formula trans-

formations, we have kept the derivation style and notation close to the pen-and-paper

style of derivation which is known for its rigor and readability.

Theorem prover assisted tactics. We have automated the mundane formula manip-

ulation tasks and exploited the power of automated theorem proving to design

powerful transformation rules (tactics) which help in shortening and simplifying the

derivations without sacrificing the correctness. We have extended the Structured Cal-

culational Proof format [BGVW97] by making the transformation relation explicit

and by adding metavariable support. We have developed tactics for automatically

simplifying proof obligation formulas with the help of external theorem provers.

Theoretical Contributions

To address the problem of ad hoc reasoning involved in propagation of assumptions made

during a top-down derivation of programs, we have developed correctness preserving rules

for propagating assumptions through annotated programs. We show how these rules can

3

be integrated in a top-down derivation methodology to provide a systematic approach for

propagating the assumptions, materializing them with executable statements at a place

different from the place of introduction, and strengthening of loop invariants/preconditions

with minimal additional proof efforts. With the help of examples, we demonstrate how these

rules help users in avoiding unnecessary rework and also help them explore alternative

solutions.

Systems-level Contributions

We have designed and implemented a system, called CAPS, for the calculational derivation

of imperative programs. We have implemented the program derivation tactics and the

assumption propagation tactics in the CAPS system. In building CAPS, our main emphasis

has been on the usability; in particular on being able to model and replay the complex

interactions and iterations that usually occur during the manual program derivation.

1.3 Organization of the Thesis

The organization of the thesis is as follows.

Chapter 2: Calculational Style of Programming. In this chapter, we introduce the

reader to the calculational style of programming with the help of an example. We

discuss the virtues of the methodology and the problems in the adoption of the

methodology. We motivate the need for a tool-supported methodology to address

the discussed problems.

Chapter 3: Derivation Methodology. We propose an interactive program derivation

methodology wherein programs are derived by incrementally applying correctness

preserving annotated program transformation rules. We give a high level description

of the proposed methodology and introduce notations and definitions which are used

in the remainder of the thesis.

Chapter 4. Theorem Prover Assisted Program Derivation. In this chapter, we present

the theorem prover assisted tactics which automate various program derivation tasks

by employing external theorem provers. We discuss various techniques employed to

4

make the tactic level theorem prover integration possible. We demonstrate how the

theorem prover assisted tactics help in shortening and simplifying the derivations.

Chapter 5: Assumption Propagation. We discuss the problem of ad hoc reasoning

in top-down program derivations and its repercussions. To address this problem,

we introduce the concept of assumption propagation rules. We present correctness

preserving assumption propagation rules for various program constructs. With the

help of simple examples, we explain how these rules reduce the ad hoc reasoning

and the associated rework during the derivations.

Chapter 6: CAPS. In this chapter, we discuss the architecture of the CAPS system. We

discuss various features of the CAPS system and explain how these features help in

addressing the common problems. We also share our experience of using the CAPS

system in the classroom setting.

Chapter 7: Conclusion and Future Work. We conclude by summarizing the work

and outlining a few future research directions.

Appendix A. In this appendix, we prove that the assumption propagation rules pre-

sented in Chapter 5 preserve the correctness of annotated programs.

5

Chapter 2

Calculational Style of Programming

The purpose of this chapter is to introduce the calculational style of programming and to

motivate the work presented in this thesis. We start by giving a brief historical account of

the development of the calculational style of programming. With the help of an example

derivation, we discuss the appeal of the methodology and various problems in its adoption.

We discuss our experience in teaching the methodology to sophomore students and present

common difficulties faced by the students.

2.1 Calculational Style

During the 1970s, Dijkstra, Feijen, Gries, and others [Dij76, Gri87, DF88] developed an

approach to programming wherein the program and its correctness arguments are de-

signed hand in hand. With this approach, programming becomes more of a discipline, in a

sense that instead of relying solely on intuition and trial-and-error, programs are derived

from their formal specifications by applying well-established principles and heuristics. The

derived programs are correct-by-construction since correctness is implicit in the deriva-

tion. This method was then refined by using a proof format in which a hint justifying

the transformation is written on a dedicated line between the formulas connected by it.

This proof style came to be known as the calculational style. The program derivation

textbooks [Kal90] and [Coh90] extensively use the calculational style while manipulat-

ing correctness proof obligation formulas of partially derived programs. Back and von

Wright [BGVW97] refined the calculational proof format further by providing support for

hierarchical decomposition of larger proofs into smaller ones.

6

The calculational program derivation as presented in [Dij76, Gri87, DF88], although

rigorous, were not mechanically verifiable. In support of the case for mechanized checking

of proofs, Manolios and Moore [MM01] pointed out to some errors in the calculational

proofs in Dijkstra’s work. The refinement calculus [Mor90, BvW98] formalizes program

derivation in the form of a top-down methodology. However, as we will see in the next

section, program derivations often do not proceed in strictly top-down manner.

The calculational style is known for its readability and rigor. The calculational

derivation helps in understanding the rationale behind the introduction of the program

constructs and associated invariants thereby providing more opportunities to explore

alternative solutions. This method often results in simple and elegant programs since

program constructs are introduced only when logical manipulations show them to be

necessary for discharging the correctness proof obligations.

2.2 Preliminaries

In this section, we present some of the basic definitions and general notations used in the

thesis.

2.2.1 Hoare Triple, Weakest Precondition, and Strongest Post-

condition

For program S and predicates P and Q, a Hoare triple [Hoa69], denoted as {P}S {Q}, is

a boolean that has the value true if and only if every terminating execution of program S

starting in a state satisfying predicate P terminates in a final state satisfying predicate Q.

This notion of correctness is called partial correctness since termination is not guaranteed.

The weakest precondition of S with respect to Q, denoted as wp(S,Q), is the weak-

est predicate P for which {P}S {Q} holds[Dij76]. More formally {P}S {Q} ≡ [P ⇒
wp(S,Q)] where the square brackets denote universal quantification over the points in

state space[DS90]. The notation [R] is an abbreviation for (∀x1 . . . ∀xn R) where x1, . . . , xn

are the program variables in predicate R. The weakest precondition for the multiple as-

signment x, y := E,F is defined as:

wp((x, y := E,F), Q) ≡ Q(x, y := E,F)

7

Here, the expression Q(x, y := E,F) denotes a predicate obtained by substituting E and

F for the free occurrences of variables x and y in the predicate Q.

Dual to the notion of weakest precondition is the notion of strongest postcondition

[Gri87, DS90]. The strongest postcondition of program S with respect to predicate P ,

denoted as sp(S, P), is the strongest predicate Q for which {P}S {Q} holds.

2.2.2 Eindhoven Notation

For representing quantified expressions, we use the Eindhoven notation [Dij75, BM06]

(OP i : R : T) where OP is the quantifier version of a symmetric and associative binary

operator op, i is a list of quantified variables, R is the Range - a boolean expression

involving the quantified variables, and T is the Term - an expression. For example, the

expression
∑10

i=0 i
2 in the conventional notation is expressed as (

∑
i : 0 ≤ i ≤ 10 : i2) in

the Eindhoven notation. We also use the Eindhoven notation for the logical quantifiers

(∀ and ∃). For example, the expressions ∀i R(i)⇒ T (i) and ∃i R(i) ∧ T (i) in the conven-

tional notation are expressed as (∀i : R(i) : T (i)) and (∃i : R(i) : T (i)) respectively in the

Eindhoven notation.

2.3 Motivating Example

In this section, we present a calculational derivation of the well-known Maximum Segment

Sum problem. This derivation highlights the complex user interactions usually involved

in a typical program derivation session. The derivation is based on the derivations given

in [Kal90] and [Coh90].

In the Maximum Segment Sum problem, we are required to compute the maximum

of all the segment sums of a given integer array. A segment sum of an array segment is

the sum of all the elements of the segment.

Main steps in the derivation are given in Fig. 2.1. We start the derivation by providing

the formal specification of the program as shown in subfigure (b). The postcondition R of

the program is as follows:

R : r = (Max p, q : 0 ≤ p ≤ q ≤ N : Sum(p, q))

8

con N : {N ≥ 0};
con A : array[0..N) of int;
var r : int;
S
{R}

Sum(p, q) : (Σ i : p ≤ i < q : A[i])
R : r = (Max p, q : 0 ≤ p ≤ q ≤ N : Sum(p, q))
P0 : r = (Max p, q : 0 ≤ p ≤ q ≤ n : Sum(p, q))
P1 : 0 ≤ n ≤ N
Q(n) : (Max p : 0 ≤ p ≤ n : Sum(p, n))

r, n := 0, 0;
{loopinv : P0 ∧ P1}
while (n 6= N)
r := r′;
{P0 (n := n+ 1)};
n := n+ 1

end

1 wp(r := r′, wp(n := n+ 1, P0))
2 ≡ { definition of P0 }
3 wp(r := r′, wp(n := n+ 1, r = (Max p, q : 0 ≤ p ≤ q ≤ n : Sum(p, q))))
4 ≡ { definition of wp}
5 wp(r := r′, (Max p, q : 0 ≤ p ≤ q ≤ n+ 1 : Sum(p, q)))
6 ≡ { definition of wp}
7 r′ = (Max p, q : 0 ≤ p ≤ q ≤ n+ 1 : Sum(p, q))
8 ≡ {q ≤ n+ 1 ≡ (q ≤ n ∧ q = n+ 1)}
9 r′ = (Max p, q : (0 ≤ p ≤ q ≤ n) ∨ (0 ≤ p ≤ q = n+ 1) : Sum(p, q))

10 ≡ { range split }
11 r′ =

(
(Max p, q : 0 ≤ p ≤ q ≤ n : Sum(p, q))
max (Max p, q : 0 ≤ p ≤ q = n+ 1 : Sum(p, q))

)

12 ≡ { definition of P0 }
13 r′ = r max (Max p, q : 0 ≤ p ≤ q = n+ 1 : Sum(p, q))
14 ≡ { q = n+ 1 }
15 r′ = r max (Max p, q : 0 ≤ p ≤ n+ 1 : Sum(p, n+ 1))
16 ≡ { define Q(n) as (Max p : 0 ≤ p ≤ n : Sum(p, n)) }
17 r′ = r max Q(n+ 1)
18 ≡ { introduce fresh variable s; assume s = Q(n+ 1) }
19 r′ = r max s

r, n, s := 0, 0, 0;
{loopinv : P0 ∧ P1 ∧ (s = Q(n))}
while (n 6= N)
s := s′;
{s = Q(n+ 1)}
r := r max s;
{P0 (n := n+ 1)};
n := n+ 1;

end

r, n, s := 0, 0, 0;
{loopinv : P0 ∧ P1 ∧ (s = Q(n))}
while (n 6= N)
s := (s+A[n]) max 0;
{s = Q(n+ 1)}
r := r max s;
{P0 (n := n+ 1)}
n := n+ 1

end

(b) Specification
(c) After introduction of the loop

(a) Term and Predicate definitions

(d) Calculation of r′

(e) After introducing statement
for updating r

(f) Final derived program

Figure 2.1. Selected stages in the derivation of the Maximum Segment Sum problem.

9

where the symbol Max denotes the quantifier version of the binary infix max operator in

the Eindhoven notation and Sum(p, q) is defined as given in subfigure (a).

We introduce a fresh variable n and rewrite the postcondition R as

P0 ∧ (n = N) ∧ P1

where P0 and P1 are defined as follows.

P0 : r = (MAX p, q : 0 ≤ p ≤ q ≤ n : Sum(p, q))

P1 : 0 ≤ n ≤ N

The predicate P0 is obtained by replacing constantN with a fresh variable n. We follow

the general guideline of adding bounds on the introduced variable n by adding a conjunct

P1 to the postcondition. Although this conjunct looks redundant due to the existence

of the stronger predicate n = N , it is used later and becomes part of the loop invariant.

Note that the new postcondition P0 ∧ (n = N) ∧ P2 implies the original postcondition R.

This commonly used heuristic is called the Replace Constant by a Variable[Kal90]. This

heuristic is applied to bring the postcondition in the form of a conjunction.

We then apply the Take Conjuncts as Invariants [Kal90] heuristic to select conjuncts

P0 and P1 as invariants and negation of the remaining conjunct n = N as a guard of the

while loop. We choose to traverse the array from left to right and envision a program

r := r′;n := n + 1, where r′ is a metavariable – a placeholder for an unknown program

expression (a quantifier free program term). The partially derived program at this stage

is shown in subfigure (c). The proof obligation for the invariance of P0 is :

P0 ∧ P1 ∧ n 6= N ⇒ wp(r := r′, wp(n := n+ 1), P0)

We now assume P0, P1 and n 6= N and manipulate the consequent of the formula with the

aim of finding a program expression for the metavariable r′. From the definition of P0 and

the definition of weakest precondition for the assignment construct, we get the following

formula (step 7 in subfigure (c)).

r′ = (Max p, q : 0 ≤ p ≤ q ≤ n+ 1 : Sum(p, q))

To separate out the q = n + 1 case, we split the range of the formula by applying the

range split rule and arrive at the following formula (step 11 in subfigure (c)).

r′ =


 (Max p, q : 0 ≤ p ≤ q ≤ n : Sum(p, q))

max (Max p, q : 0 ≤ p ≤ q = n+ 1 : Sum(p, q))




10

From the definition of P0, the first operand on the right hand side is equal to r. On

replacing it with r, we arrive at the following formula (step 13 in subfigure (c)).

r′ = r max (Max p, q : 0 ≤ p ≤ q = n+ 1 : Sum(p, q))

We now apply the one point rule and substitute n+ 1 for q to arrive at the formula (step

15 in subfigure (c)) :

r′ = r max (Max p : 0 ≤ p ≤ n+ 1 : Sum(p, n+ 1))

At this point, we realize that we can not represent r′ in terms of the existing program

variables as the expression on the right hand side involves quantifiers. We define Q(n) as

(Max p : 0 ≤ p ≤ n : Sum(p, n)) so that we can write the formula in step 15 as follows.

r′ = r max Q(n+ 1)

After analyzing the derivation, we realize that if we introduce a fresh variable (say s) and

maintain s = Q(n) as an additional loop invariant then we can express r′ in terms of the

program variables. After this manipulation, we can now instantiate r′ as r max s.

We now arrive at a program shown in subfigure (e). We have introduced an unknown

program S1 to establish the newly added invariant s = Q(n). For the calculation of s′, we

follow similar process and arrive at the final program shown in subfigure (f).

As this example shows, the final derived program, even when annotated with the

invariants, may not be sufficient to provide the reader with the rationale behind the

introduction of the program constructs and the invariants; whole derivation history is

required. The calculational derivation involves program transformations as well as formula

transformations.

2.4 Teaching Calculational Style of Programming

In the traditional implement-and-verify methodology, there is very little help available

to the user in the actual task of programming. In contrast, in the Calculational Style

of Programming programmers see the program transformation strategy that led to the

introduction of a particular programming construct, and hence they understand why the

construct was introduced at a particular point in a program. These positive aspects make

11

the calculational style an attractive option for introducing students to the concepts of

formal methods.

In its final report [ADG+01], the ITiCSE 2000 Working Group on Formal Methods

Education aspired to see the concepts of formal methods integrated seamlessly into the

computing curriculum. Fifteen years later that aspiration still remains an aspiration. In

our opinion, the major reason for this is the fact that the points of integration identified in

the report, in Appendices C and E, come much later in the curriculum. By that time, the

students are already used to the informal ways of developing programs and software and

the old habits die hard. Ideally formal methods should be introduced as early as possible,

particularly when students are just learning how to design programs [Cow10].

Existing attempts in this direction focus on employing formal verification for teaching

program correctness [SW14, CGG12, DLC06, Lau04]. The Implement-and-Verify program

development methodology involves an implementation phase followed by a separate verifica-

tion phase. Although the failed proof obligations provide some hint, there is no structured

help available to the students in the actual task of implementing the programs. Students

often rely on ad hoc use cases and informal reasoning to guess the program constructs.

I have been a teaching assistant of the Program Derivation elective course to sopho-

mores at IIT Bombay. The students’ interest in the methodology is reflected in the course

feedback where we received 87% score in the last offering of the course. Following two

comments exemplify the students’ excitement: “A quite different approach to programming,

very innovating and interesting too. Some really great insights.” and “We learned many

good things. I never thought that program could be derived. The experience was enriching.”

Despite the mostly positive feedback, we also realized that students were facing a number

of difficulties in manually (without using any tool support) deriving the programs:

Common Difficulties:

(CD0) Difficulty in understanding formal logic: Used to informal reasoning, students

make several mistakes in understanding and applying inference rules.

(CD1) Not checking transformation applicability conditions: Many of the program

transformation rules have prerequisites that need to be checked. For example, the +

operator distributes over quantified Max only if the range is non-empty. Students often

forget to check such conditions.

12

(CD2) Long derivations: Compared to the guess and test approach, the calculational

derivations are longer even for simple programs. Students get restless if the derivation

runs too long, leading to more errors.

(CD3) Mistakes made during guessing: Manual derivations often involve small jumps

where the unknown program expressions are simple enough to be guessed easily. Students

often inadvertently take big steps during guessing, resulting in incorrect program expres-

sions. For example, for program S1 in subfigure 2.1(f), many students make a jump and

guess the value of s′ to be s+ A[n].

(CD4) Forgetting to add bounds to the introduced variables: It is a general

guideline to add bounds for a newly introduced variable, such as the bounds for n in the

maximum segment sum problem. Students often forget to add such bounds, and later in

the derivation, when the bound constraints are needed, they have to backtrack and take

the corrective actions.

(CD5) Forgetting to prove proof obligations: With their focus on unraveling the

unknown program fragments, students often forget to prove some of the proof obligations.

(CD6) Problem with organizing derivations: The derivation process is not always

linear; it involves multiple iterations involving failed derivation attempts. Students often

fail organize the derivation in cases where they need to go back and make some corrective

changes. Unorganized derivations often lead to some missing proofs of correctness.

To address the problems discussed above, we set out to develop a tool-supported

methodology for calculational derivation of programs. In the next chapter, we discuss the

proposed program derivation methodology which tries to retain the positive aspects of the

calculational method while trying to address the problems described in this chapter.

13

Chapter 3

Derivation Methodology

In this chapter, we present a high-level description the methodology. We have implemented

this methodology in the CAPS system. Design and implementation details are discussed

later in chapter 7.

3.1 Derivation Process

The program derivation methodology that we propose is similar in spirit to the one we

followed in the motivating example. We start with the formal specification of the program

and incrementally transform it into a fully derived correct program. The process, however,

is not linear and users often need to backtrack and try out different options. Fig. 3.1 shows

a schematic diagram of a derivation tree. Node 1 is the starting node representing the

specification and node 12 represents the final derived program. The intermediate nodes

can represent programs or formulas. (The way to transition between these to modes is

explained in Section 3.4.) Node 6 and node 9 are the nodes where the user faces some

difficulties with the derivation and decides not to carry out the derivation further and

prefers to backtrack and branch out. The paths in the derivation tree enclosed in rectangles

correspond to transformations on subcomponents of the program/formula nodes. This

functionality is discussed later in Section 4.2.

14

1

2

3

4

5

6

7

8

9 10

11

12

Partial program corresponding
to the specification

Final Derived Program

Stepping into
subprogram

Figure 3.1. Schematic Derivation Tree.

3.2 Annotated Programs

For representing a program fragment and its specification, we use an extension of the

Guarded Command Language (GCL) [Dij75] called annGCL. It is obtained by augmenting

each program construct in the GCL with its precondition and postcondition. The grammar

for the annGCL language is given in Fig. 3.2.

For the sake of simplicity, we exclude variable declarations from the grammar. Also,

the grammars for variables (var), expressions (expn), boolean expressions (bexpn), and

assertions (assertion) are not described here. We use the formulas in sorted first-order

predicate logic for expressing the assertions. We adopt the Eindhoven notation [BM06]

for representing the quantified formulas. We have introduced program constructs unkprog

and assume to represent unimplemented program fragments.

Note that in an annGCL, all its subprograms (and not just the outermost program)

are annotated with the pre- and postconditions.

Correctness of Annotated Programs

Definition 3.1 (Correctness of an annotated program). An annGCL program A is correct

iff the proof obligation of A (denoted by po(A) in Table 3.1) is valid.

The proof obligations for the newly introduced program constructs unkprog and

assume deserve some explanation. The proof obligation for the annGCL program {α} unkprog {β}

15

Table 3.1. Partial correctness proof obligations for annGCL constructs

Annotated program (annGCL) Correctness proof obligation of A
A po (A)

{α}
skip
{β}

α⇒ β

{α}
assume(θ)
{β}

α ∧ θ ⇒ β

{α}
unkprog
{β}

true

{α}
x1, . . . , xn := E1, . . . , En

{β}
α⇒ β(x1, . . . , xn := E1, . . . , En)

{α}
if
| G1 → {ϕ1}S1 {ψ1}
.
| Gn → {ϕn}Sn {ψn}
end
{β}

pocoverage ∧ poentry ∧ pobody ∧ poexit
where,
pocoverage : α⇒ ∨

i∈[1,n]Gi

poentry :
∧

i∈[1,n] (α ∧Gi ⇒ ϕi)

pobody :
∧

i∈[1,n] (po ({ϕi}Si {ψi}))
poexit :

∧
i∈[1,n] (ψi ⇒ β)

{α}
while {Inv: ω}
G→ {ϕ}

S
{ψ}

end
{β}

poinit ∧ poentry ∧ pobody ∧ poinv ∧ poexit
where,
poinit : α⇒ ω
poentry : ω ∧G⇒ ϕ
pobody : po ({ϕ}S {ψ})
poinv : ψ ⇒ ω
poexit : ω ∧ ¬G⇒ β

{α}
{ϕ1}S1 {ψ1}

. . .
{ϕn}Sn {ψn}

{β}

poentry ∧ pobody ∧ pojoins ∧ poexit
where,
poentry : α⇒ ϕ1

pobody :
∧

i∈[1,n] (po ({ϕi}Si {ψi}))
pojoins :

∧
i∈[1,n−1] (ψi ⇒ ϕi+1)

poexit : ψn ⇒ β

16

annGCL ::= {assertion} program {assertion}

program ::= skip

| assume(assertion)

|unkprog

| var1, . . . , varn := expn1, . . . , expnn

| if bexpn1 → annGCL1 [] . . . [] bexpnn → annGCLn end

|while {inv:assertion} bexpn→ annGCL end

| annGCL1; . . . ; annGCLn

Figure 3.2. annGCL grammar

is true. In other words, unkprog is correct by definition and hence can represent any arbi-

trary unsynthesized program. The proof obligation for {α} assume(θ) {β} is α ∧ θ ⇒ β.

From this it follows that the program {α} assume(θ) {α ∧ θ} is always correct. The assume

program is used to represent an unsynthesized program fragment that preserves the pre-

condition α while establishing θ.

The proof obligations of the composite constructs are defined inductively. The pobody

proof obligation for the if, while, and composition constructs asserts the correctness of

corresponding subprograms. We do not use the Hoare triple notation for specifying correct-

ness of programs since our notation for annGCL programs {ϕ}S {ψ} conflicts with that

of a Hoare triple. Instead, to express that an annGCL program A is correct, we explicitly

state that “po(A) is valid”.

3.3 Annotated Program Transformation Rules

Definition 3.2 (Annotated program transformation rule). An annotated program trans-

formation rule (R) is a partial function from annGCL into itself which transforms a

source annGCL program {α}S {β} to a target annGCL program {α}T {β} with the

same precondition and postcondition.

Some of the transformation rules have associated applicability conditions (also called

17

as proviso). A rule can be applied only when the associated applicability condition is

satisfied.

Definition 3.3 (Correctness preserving transformation rule). An annotated program

transformation rule R is correctness preserving if for all the annGCL programs S for

which the rule is applicable, if S is correct then R(S) is also correct.

Nature of the transformation rules. In the stepwise refinement based approaches

[Mor90, BvW98], a formal specification is incrementally transformed into a concrete pro-

gram. A specification (pre- and post-conditions) is treated as an abstract program (called

a specification statement). At any intermediate stage during the derivation, a program

might contain specification statements as well as executable constructs. The traditional

refinement rules are transformations that convert a specification statement into another

program which may in turn contain specifications statements and the concrete constructs.

In the conventional approach, once a specification statement is transformed into a concrete

construct, its pre- and postconditions are not carried forward.

In contrast to the conventional approach, we maintain the specifications of all the

subprogram (concrete as well as unsynthesized). This allows us to provide rules which

transform any correct program (not just a specification statement) into another correct pro-

gram with minimal proof effort. These rules reuse the already derived program fragments

and the already discharged proof obligations to ensure correctness.

Tactic:
Weaken the Precondition.

Input:
R

Applicability condition:
P ⇒ R

{P}
unkprog1
{Q}

{P}
{P} skip {R} ;
{R} unkprog2 {Q}

{Q}

Tactic:
Take Conjuncts as Invariants.

Inputs:
Invariant conjuncts: R1

Applicability condition:
P ⇒ R1

{P}
unkprog1
{R1 ∧R2}

{P}
while {inv : R1}
¬R2 →
{R1 ∧ ¬R2}
unkprog2
{R1}

end
{R1 ∧R2}

Figure 3.3. Program transformation tactics.

18

The program transformation tactics are based on the refinement rules from the

refinement calculus [BvW98, Mor90] and the high level program derivation heuristics from

the literature on calculational program derivation [Kal90, Coh90]. For example, consider

the program transformation tactics shown in Fig. 3.3. The Weaken the Precondition tactic

captures the Hoare triple rule “{R}S {Q} and (P ⇒ R) implies {P}S {Q}” whereas the

Take Conjuncts as Invariants tactic captures the program derivation heuristics with the

same name in [Kal90].

3.4 Formula Transformations

As we saw in Section 2.3, program derivation often involves guessing the unknown pro-

gram fragments in terms of placeholders and then deriving program expressions for the

placeholders in order to discharge the correctness proof obligations. We use metavariables

to represent the placeholders.

Program and Formula modes. Some steps in the derivations involve transformation

of annGCL programs whereas others involve transformation of proof obligation formulas.

We call these two modes of the derivation as program mode and formula mode respectively.

In order to emulate this functionality in a tactic based framework, we devised a tactic called

StepIntoPO. On applying this tactic to an annGCL program containing metavariables, a

new formula node representing the proof obligations (verification conditions) is created in

the derivation tree. This formula is then incrementally transformed to a form, from which it

is easier to instantiate the metavariables. After successfully discharging the proof obligation

and instantiating all the metavariables, a tactic called StepOut is applied to get an annGCL

program with all the metavariables replaced by the corresponding instantiations.

Example. Fig. 3.4 shows a path in the derivation tree corresponding to the derivation

of the Integer Division program (compute the quotient (q) and the remainder (r) of the

integer division of x by y where x ≥ 0 and y > 0). Node n1 in the derivation tree

represents an assignment program which contains a metavariable q′. In order to discharge

the corresponding proof obligation, the user applies a StepIntoPO tactic resulting in a

formula node n2. The task for the user now is to derive an expression for q′ that will make

the formula valid. On further transformations, the user arrives at node n3 from which

19

{0 ≤ x ∧ 0 < y} q, r := q′, x {0 ≤ r ∧ q ∗ y + r = x}
n1

0 ≤ x ∧ 0 < y ⇒ wp (q, r := q′, x; , 0 ≤ r ∧ q ∗ y + r = x)

n2

0 ≤ x ∧ 0 < y ⇒ q′ = 0

n3

true

n4

{0 ≤ x ∧ 0 < y} q, r := 0, x {0 ≤ r ∧ q ∗ y + r = x}
n5

step into PO

simplify

Guess q′ to be 0

step out tactic

Figure 3.4. A path in the derivation tree for the Integer Division program. The StepIn-

toPO tactic is used to create a formula node corresponding to the proof obligation of the

program node.

F0

R { hint justifying F0 R F1 }
F1

R { hint justifying F1 R F2 }
.
R { hint justifying Fn−1 R Fn }

Fn

Figure 3.5. Calculation representation

it is easier to instantiate q′ as “0”. Finally, the application of StepOut tactic results in a

program node n5 where the metavariable q′ is replaced with the instantiated expression

“0”.

Formula Transformations. We adopt a transformational style of inference wherein a

formula F0 is transformed step by step while preserving a reflexive and transitive relation R.

Because of the transitivity of R, the sequence of transformations F0 R F1 R, ... R Fn

implies that F0 R Fn holds. This derivation is represented in the calculational notation as

shown in Fig. 3.5.

Note that the relation maintained at an individual step can be stronger than the

overall relation as the sequence of transformations F0 R0 F1 R1, . . . Rn−1 Fn implies

F0 R Fn, provided relation Ri is at least as strong as the relation R for all i from 0 to

n− 1.

20

Chapter 4

Theorem Prover Assisted Program

Derivation

Having explained our general program derivation methodology in the previous chapter, we

now turn our focus towards automating various program derivation tasks by employing

external theorem provers. With the help of simple examples, we show how the theorem

prover assisted tactics help in shortening and simplifying the derivations thereby taking

the drudgery out of the derivation process.

As we saw in Chapter 2, calculational proofs can be cumbersome and error-prone.

Manolios and Moore have even found errors in some of the calculational proofs in Dijkstra’s

work. In support of the case for mechanized checking of calculational proofs, they appeal:

“The calculational proof community has spent decades exploring the basic

issues, refining proof methods, settling on format, and so on. Our advice to the

community then is simple: implement a program to check your proofs.”[MM01]

Although the appeal is in the context of calculational proofs, the correctness concerns

discussed there are applicable to calculational derivations as well. We have addressed

these concerns by designing theorem prover assisted program derivation tactics. Proofs in

program derivations have an added complexity due to the presence of unsynthesized terms

(metavariables) in the formulas. Additionally, the task in discharging proofs is to prove

the proof obligation formulas valid whereas the task in program derivation is to find the

unknown terms (program fragments) to make the formulas valid. We have extended the

Structured Calculational Proof format [BGVW97] by making the transformation relation

21

explicit and by adding metavariable support.

4.1 Harnessing the Automated Theorem Provers

Readability of the calculational style comes from its ability to express all the important

steps in the derivation, and at the same time being able to hide the secondary steps.

By secondary steps, we mean the steps that are of secondary importance in deciding the

direction of the derivation. For example, the steps involved in the proof for the justifications

of the transformations do not change the course of the derivation. These justifications,

when obvious, are often stated as hints without explicitly proving them. However, when

the justifications are not obvious, it might take several steps to prove them. During the

pen-and-paper calculational derivations, the transformation steps are kept small enough to

be verifiable manually. Doing low level reasoning involving simple propositional reasoning,

arithmetic reasoning, or equality reasoning (replacing equals by equals), can get very long

and tedious if done in a completely formal way. Moreover, the lengthy derivations involving

the secondary steps often hamper the readability. In such cases, there is a temptation to

take long jumps while doing such derivations manually (without a tool support) resulting

in correctness errors. With the help of automated theorem provers(ATPs), however, we

can afford to take long jumps in the derivation without sacrificing the correctness.

Many common proof paradigms like proof by contradiction, case analysis, induction,

etc., are not easily expressed in a purely calculational style. Although, with some effort,

these proofs can be handled by the structured calculational approach [BGVW97], em-

ploying automated theorem provers greatly simplifies the proof process. We use ATP

assisted tactics to automate transformation steps that may not always be amenable to the

calculational style.

The template based program synthesis approaches [GJTV11], [SLTB+06], [SGF10]

take the specification and the syntactic template of the program as an input and auto-

matically generate the whole program. In contrast, we are interested not just in the final

program but also in the complete derivation as it helps in understanding the rationale

behind the introduction of the program constructs and the associated invariants. Therefore,

we employ the automated theorem provers at a much lower level in an interactive setting.

This choice gives users more control to explore alternative solutions since all the design

22

decisions are manifest in the derivation in the form of tactic applications.

To carry out various proof tasks, we have integrated automated theorem provers (Alt-

Ergo [CC], CVC3 [BT07], SPASS [WBH+02] and Z3 [DMB08]) with the CAPS system

(refer details about the integration in Section 7.8).

4.2 Theorem Prover Assisted Tactics

In order to integrate ATPs at local level, we first need to extract the context of the

subprogram/subformula under consideration. The extracted context can then be used as

assumptions while discharging the corresponding proof obligations.

4.2.1 Extracting Context of Subprograms

A partially derived program at some intermediate stage in the program derivation may

contain multiple unsynthesized subprograms. Users may want to focus their attention on

the derivation of one of these unknown subprograms. The derivation of a subprogram

is, for the most part, independent of the rest of the program. Hence it is desirable to

provide a mechanism wherein all the contextual information required for the derivation of

a subprogram is extracted and presented to users so that they can carry out the derivation

independently of the rest of the program. For example, in Fig. 2.1, the user has focused

on the fragment r := r′ in subfigure (c) and calculated r′ separately as shown in subfigure

(d).

The activity of focusing on a subprogram is error-prone if carried out without any

tool support. In Fig. 2.1(e), subprogram s := s′ is added to establish P2(n := n+ 1). We

do not recalculate r′ since the assumptions during the derivation of r′ (invariant P0 and

P1) still continue to hold since variables r and n are not modified by assignment to s. Users

have to keep this fact in mind while calculating s′ separately. Due care must be taken

during manual derivation to ensure that after any modification, the earlier assumptions

still continue to hold. With every program fragment, we associate its full specification

(precondition, postcondition) and the context. Since the precondition and postcondition of

each program construct are made explicit, users can focus on transforming a subprogram

in isolation.

23

Table 4.1. Contextual assumptions: The R-preserving transformation from F [f] to F [f ′]

under the assumptions Γ can be achieved by r-preserving transformation from f to f ′

under the assumptions Γ′. (It is assumed that Γ does not contain a formula with i as a

free variable. This is ensured during the derivation by appropriately renaming the bound

variables.)

F[f] R r Γ′

A ∧B
≡ ≡

Γ ∪ {B}⇒ ⇒
⇐ ⇐

A ∨B
≡ ≡

Γ ∪ {¬B}⇒ ⇒
⇐ ⇐

¬ A
≡ ≡

Γ⇒ ⇐
⇐ ⇒

A ⇒ B

≡ ≡
Γ ∪ {¬B}⇒ ⇐

⇐ ⇒

B ⇒ A

≡ ≡
Γ ∪ {B}⇒ ⇒

⇐ ⇐

F[f] R r Γ′

A ≡ B

≡ ≡
Γ⇒ ≡

⇐ ≡
(
∀i : R.i : T.i

) ≡ ≡
Γ ∪ {¬T.i}⇒ ⇐

⇐ ⇒
(
∃i : R.i : T.i

) ≡ ≡
Γ ∪ {T.i}⇒ ⇒

⇐ ⇐
(
∀i : R.i : T.i

) ≡ ≡
Γ ∪ {R.i}⇒ ⇒

⇐ ⇐
(
∃i : R.i : T.i

) ≡ ≡
Γ ∪ {R.i}⇒ ⇒

⇐ ⇐

4.2.2 Extracting Context of Subformulas

As the proof obligation formulas contain metavariables, it is important to provide a

functionality for focusing on subformulas, so that the focused subformulas can be simplified

with the help of theorem provers. Besides the obvious advantage of restricting attention

to the subformula, this functionality also makes the additional contextual information

available to the user which can be used for manipulating the subformula.

We adopt a style of reasoning similar to the window inference proof paradigm [Gru92],

[Gru93], [RS93]. Our implementation differs from the stack based implementation in

[Gru93] since we maintain the history of all the transformations.

Let F [f] be a formula with an identified subformula f and Γ be the set of current

assumptions. Now, we want to transform the subformula f to f ′ (keeping the rest of the

formula unchanged) such that F [f]RF [f ′] holds where R is a reflexive and transitive rela-

tion to be preserved. The relationship to be preserved (r) and the contextual assumptions

that can used (Γ′) during the transformation of f to f ′ are governed by the following

24

Frame Assumptions: Γ
Frame Relation: R
F [f]

R { Hint }
F [f ′]

Frame Assumptions: Γ
Frame Relation: R
F [f]

. {step into}
Frame Assumptions: Γ′

Frame Relation: r
f

r { Hint }
f ′

/ {step out }
F [f ′]

Figure 4.1. Focusing on a subformula.

inference pattern [vW98].

Γ′ ` f r f ′
Γ ` F [f]RF [f ′]

(4.1)

Table 4.1 lists the assumptions Γ′ and the relation r for a few combinations of F [f]

and R. The StepInTactic applications can be chained together. For example, if we want

to transform A ∧B ⇒ C while preserving implication (⇒) relation, we may focus on the

subformula A and preserve reverse implication (⇐) assuming ¬C and B.

Our representation is an extension of the Structured Calculational Proof format

[BGVW97]. In our representation, the transformations on the subformulas are indented

and contextual information is stored in the top row of the indented derivation. Each

indented derivation is called a frame. Besides the assumptions, a frame also stores the

relation to be maintained by the transformations in the frame. Tactic applications ensure

that the actual relation maintained is at least as strong as the frame relation. Fig. 4.1

shows two calculational derivations. In the first derivation, formula F [f] is transformed

into F [f ′] by preserving relation R. The same outcome is achieved in the second derivation

by focusing on the subformula f and transforming it to f ′ under the assumptions Γ′ while

preserving r provided F [], Γ, R, Γ′, and r are in accordance with Equation 4.1.

Fig. 4.2 shows application of this tactic in CAPS. The user focuses on a subformula

and manipulates it further while preserving the equivalence (≡) relation (which is stronger

than the frame relation ⇐). The assumptions extracted from the context can be used

during the transformation of the subformula.

25

Figure 4.2. Calculation of initialization assignment (q, r := 0, x) to establish invariant

0 ≤ r ∧ q ∗ y + r = x in the derivation of Integer Division program

4.2.3 Automation at Tactic Level

We now describe various program derivation tasks which are automated with the help of

ATPs

Tactic Applicability Conditions. Some of the tactics are purely syntactic manipula-

tions and are correct by construction whereas others have applicability conditions which

need to be verified. The Split Range Tactic and the Empty Range Tactic for the universal

quantifier are shown below.

26

Split Range Tactic

(∀ i : P.i ∨Q.i : T.i)

≡ { Split Range }
(∀ i : P.i : T.i) ∧ (∀ i : Q.i : T.i)

Empty Range Tactic

(∀ i : R.i : T.i)

≡ { Empty Range; R.i ≡ false}
true

The Split Range Tactic does not have any applicability condition whereas the Empty Range

Tactic has an additional applicability condition (∀i :: R.i ≡ false) (i.e. R.i is unsatisfiable).

Such conditions are automatically verified in the CAPS system using ATPs. Note that in

the absence of this integration, one way to accomplish this transformation – at the risk of

making the derivation lengthy – is to focus onto R.i and transform it to false and then

step out and transform the whole formula to true.

Proofs involving no metavariables. Proofs of formulas free of metavariables are good

candidates for full automation. In Section 2.3, we skipped the proof for preservation of

the loop invariant P1 : 0 ≤ n ≤ N . This invariance proof obligation does not involve any

metavariable, and hence is not of interest from the synthesis point of view. We automatically

prove such proof obligations with the help of ATPs. In case the automated provers fail to

discharge the proof obligation or prove it invalid, we have to revert back to the step-by-step

calculational way of proving.

Verifying the transformations. During the calculational derivations, it is sometimes

easier to directly specify the desired formula and verify it to be correct instead of deriving

the formula in a purely interactive way. We have a VerifiedTransformation tactic that

serves this purpose. This tactic takes the formula corresponding to the next step and the

relation to be maintained as an input and verifies if the relation holds. This functionality is

similar in spirit to the verified calculations functionality [LP14] in Dafny. The derivation in

Fig. 4.2 has three instances of application of this tactic (labeled by a hint “Replace formula

by an equivalent formula”). This tactic helps in reducing the length of the derivations.

The VerifiedTransformation tactic is also helpful in discharging proofs which are

not amenable to the calculational style. Many common proof paradigms (like proof by

contradiction, case analysis, induction, etc.) are difficult to express in a purely calculational

style [BGVW97]. Although, with some effort, these proofs can be discharged by using the

functionality for focusing on subcomponents (which is based on the structured calculational

27

〈 N ≥ 1 ∧ f [0] ≤ A < f [N] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y 6= x+ 1
Frame Relation: ≡

〉

f [x′] ≤ A < f [y] ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N
≡ { A < f [y]; Simplify }

f [x′] ≤ A ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N
≡ { y ≤ N ; Simplify }

f [x′] ≤ A ∧ 0 ≤ x′ < N ∧ x′ < y
. {step into}

〈 N ≥ 1 ∧ f [0] ≤ A < f [N] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y 6= x+ 1
f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y
Frame Relation: ≡

〉

x′ < N
≡ { x′ < y and y ≤ N ; Simplify }

true
/ { step out }

f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y
(a)

〈 N ≥ 1 ∧ f [0] ≤ A < f [N] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y 6= x+ 1
Frame Relation: ≡

〉

f [x′] ≤ A < f [y] ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N
≡ { SimplifyAuto }

f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y
(b)

Figure 4.3. (a) Excerpt from the derivation of the binary search program using mul-
tiple applications of the Simplify tactic, (b) The same derivation performed using the
SimplifyAuto tactic.

approach in [BGVW97]), employing the automated theorem provers greatly simplifies the

derivation. Note that this tactic is different from the earlier tactics; in all the other tactics

a formula is transformed in a specific way and only the applicability condition is proved

automatically, whereas in this tactic, users directly specify an arbitrary formula as the

transformed form of a given formula and the tactic application just verifies the correctness

of the transformation.

Automatic Simplification of Formulas. The SimplifyAuto tactic recursively focuses

on subformulas in bottom-up fashion and verifies – with the help of ATPs – if the sub-

formulas are valid/invalid. The same effect can be achieved by interactively focusing on

each subformula, proving/disproving the subformula under the modified assumptions, and

28

then simplifying the formula. The SimplifyAuto tactic automates this process resulting

in simpler derivations in many cases. Fig. 4.3(a) shows an excerpt from the derivation

of the binary search program whereas Fig. 4.3(b) shows how the same outcome can be

accomplished in a single step using the SimplifyAuto tactic.

4.3 Why3 Encoding

Why3 [FP13] is a framework for deductive program verification. The base logic of Why3

is an extension of first-order logic with polymorphism, algebraic data types, and inductive

predicates. The framework provides two languages: a logic language (Why) and a ML-like

programming language (WhyML). We use only the logic language since we are using the

framework only for the purpose of interfacing with the theorem provers. We assume basic

familiarity with the logic language (refer the Why3 reference manual [Why] for details).

We use the common interface provided by the Why3 framework to communicate with

various automated theorem provers (Alt-Ergo, CVC3, SPASS, and Z3). Using Why3 as an

interface saves us from dealing with the different logical languages and predefined theories

of various theorem provers.

We encode every proof obligation formula as a Why3 theory and invoke the Why3

framework in the background to prove the validity. A Why3 theory is a list of declarations

which introduce new functions and predicates, state axioms and goals. We have encoded the

arithmetic quantifiers (Max,Min, Sum, and Prod) as Why3 theories. The Why3 theory

for the Max quantifier is given in Appendix A.

In this section, we discuss the encoding of expressions involving the arithmetic quanti-

fiers. Encodings of quantifier-free expressions and expressions involving boolean quantifiers

(∀, ∃) is straightforward and not discussed here.

4.3.1 Encoding Scheme

Consider a quantified expression (OP i : R : T) where OP is the quantifier version of a

symmetric and associative binary operator op: int -> int -> int, i is a list of quantified

variables, R is the Range - a boolean expression involving the quantified variables, and T

is the Term - an integer expression.

The range R and the term T of the quantified expression are encoded as functions

29

with the following types.

constant r: int -> bool

constant t: int -> int

The quantifier OP is encoded as a function with the following declaration.

constant bigOp: (int -> bool) -> (int -> int) -> int

And finally, the quantified expression (OP i : R : T) is encoded as a function appli-

cation as shown below.

bigOp r t

The functions r and t are then defined inductively by encoding the expressions

R and T respectively and bigOp is axiomatized by a set of axioms. The final encoding

thus consists of two parts: the Why3 expression and the declarations for the introduced

functions.

4.3.2 Encoding Function (E)

We define an encoding function E : (f, bvs) 7→ (expr, decls) which transforms a tuple

of a first order expression (f) and a list of context bound variables (bvs) into a tuple

of corresponding expression (expr) and declarations (decls) in the Why3 language. The

context bound variables argument (bvs) comes into play for nested quantified terms. It

represents a list of accumulated bound variables from the context of a subexpression. For

example, in the quantified expression (Max p : 0 ≤ p ≤ n : (Max q : 0 ≤ p ≤ q ≤
n : (

∑
i : p ≤ i < q : arr[i]))), for the outermost Max term there are no context bound

variable, for the inner Max term, p is the only context bound variable, and for the
∑

term p and q are the context bound variables.

We now present the steps for encoding a quantified expression (OP i : R : T) where

OP with a single context bound variable bv. To simplify the presentation, we restrict to a

single bound variable.

30

Encode the range and the term.

We first encode the range R and the term T . When encoding the range and the term, we

need to add the bound variable i to the context bound variables.

Let (exprr, declr) = E(R, [bv, i]) and

(exprt, declt) = E(T, [bv, i]).

After encoding the R and T expressions, we declare the functions r and t as follows.

<declr>

<declt>

constant r: int -> int -> bool = (\bv: int, i: int. <exprr>)

constant t: int -> int -> int = (\bv: int, i: int. <exprt>)

Note that since the context bound variable can not declared globally, we add an extra

parameter of type int for both the functions r and t.

Encode the quantified expression.

We add the following statement to import the declaration and axioms for the bigOp

function.

use import bigOp.BigOp as BigOp

We encode the quantified operation as the following function application.

bigOp (r bv) (t bv)

The terms (r bv) and (t bv) are partially applied functions of type “int -> bool”

and “int -> int” respectively.

Combine the declarations and expressions

We combine the declaration from the previous steps to arrive at the following expression

and declarations.

Why3 Declarations:

31

use import bigOp.BigOp as BigOp

declr

declt

constant r: int -> int -> bool = (\bv: int, i: int. exprr)

constant t: int -> int -> int = (\bv: int, i: int. exprt)

Why3 Expression:

bigOp (r bv) (t bv)

4.3.3 Create a Why3 theory

To create a Why3 theory for a proof obligation formula f , we apply an encoding function

E to the formula f and an empty list of context bound variables.

Let (exprf , declf) = E(f, []) and declglobal be the declarations of free variables in f .

The resulting Why3 theory is given below.

theory Test

use import bool.Bool

use import int.Int

use import array.Array

<declglobal>

<declr>

<declt>

<declf>

goal G: <exprf>

end

4.3.4 Example

In this section we give example of encoding of the formula (n = 0) ⇒ (E = 0) where

expression E is defined as follows.

32

E , (Max p : (∃q : 0 ≤ p ≤ q ≤ n) :

(Max q : 0 ≤ p ≤ q ≤ n :

(
∑
i : p ≤ i < q : arr[i])))

We first encode E as shown below.

Step 1:

The result of E(E, []) is given below.

Why3 declarations :

constant r: int -> bool

= (\p: int. (\exists q: int. 0 <= p <= q <= n))

constant t: int -> int

= (\p: int. E((Max q : 0 ≤ p ≤ q ≤ n : (
∑
i : p ≤ i < q : arr[i]))))

Why3 expression:

bigMax r t

Step 2:

We expand the body of constant t as follows.

E((Max q : 0 ≤ p ≤ q ≤ n :
(∑

i : p ≤ i < q : arr[i]
)

), [p]) = (decl2, expr2)

where decl2 and expr2 are defined as given below.

decl2:

constant r1: int -> int -> bool

= (\p: int, \q: int. 0 <= p <= q <= n)

constant t1: int -> int -> bool

= (\p: int, \q: int. E((
∑
i : p ≤ i < q : arr[i])))

expr2:

bigMax (r1 p) (t1 p)

33

Step 3:

We expand the body of constant t1 as follows.

E(
(∑

i : p ≤ i < q : arr[i]
)

), [p, q]) = (decl3, expr3)

where decl3 and expr3 are defined as given below.

decl3:

constant r2: int -> int -> int -> bool

= (\p: int, \q: int, \i: int. p <= i < q)

constant t2: int -> int -> int -> bool

= (\p: int, \q: int, \i: int. arr[i]))

expr3:

bigSum (r2 p q)(t2 p q)

Step 4:

Finally, we import the basic theories, declare the free variables, collect the declarations

and expressions from the previous steps, and build a theory. Final theory for the formula

(n = 0) ⇒ (E = 0) is presented in Fig. 4.4. The expression corresponding to the proof

obligation formula becomes the goal statement in the theory. The theory can then be sent

to the Why3 tool to check validity of the proof obligation formula.

Our approach of integrating the automated theorem provers at a tactic level is effective

in automating the mundane tasks at the same time allowing users to decide the granularity

of the derivation. The tactics introduced in this chapter help in shortening the derivations

and also in carrying out derivations that are not amenable to the calculational style. We

have managed to keep the derivation style close to the pen-and-paper calculational style

thereby retaining the benefits of readability and rigour.

4.4 Related Work

The work that comes closest to our work in this chapter is the verified calculations [LP14]

functionality in Dafny. However, the primary focus of Dafny — and many other similar

34

theory Test

use import bool.Bool

use import int.Int

use import array.Array

use import bigPlus.BigPlus as BigPlus

use import bigMax.BigMax as BigMax

constant n: int

constant arr : array int

constant r2 : int -> int -> int -> bool

= (\p: int, q: int, i: int. p <= i < q)

constant t2 : int -> int -> int -> int

= (\p: int, q: int, i: int. arr[i])

constant r1 : int -> int -> bool

= (\p: int, q: int. 0 <= p <= q <= n)

constant t1 : int -> int -> int

= (\p: int, q: int. bigPlus (r2 p q) (t2 p q))

constant r : int -> bool

= (\p: int. (exists q: int.

0 <= p <= q <= n))

constant t : int -> int

= (\p: int. bigMax (r1 p) (t1 p))

goal G:

n = 0 ->

(bigMax r t) = 0

end

Figure 4.4. Why3 encoding of the formula (n = 0) ⇒ (Max p : (∃q : 0 ≤ p ≤ q ≤ n) :
(Max q : 0 ≤ p ≤ q ≤ n : (

∑
i : p ≤ i < q : arr[i]))) = 0

35

tools like Why3 [FP13], VCC [CDH+09] and VeriFast [JP08] — is on the verification

of already implemented programs. The template based program synthesis approaches

[GJTV11], [SLTB+06], [SGF10] are automatic in nature and require a syntactic template

of the solution to be provided by the user. Our focus, however, is on the calculational

derivation in an interactive setting.

36

Chapter 5

Assumption Propagation

5.1 Introduction

At an intermediate stage in a top down derivation, users may have to make certain

assumptions to proceed further. To ensure that the assumptions hold true at that point

in the program, certain other assumptions may need to be introduced upstream as loop

invariants or preconditions. Typically these other assumptions are made in an ad hoc

fashion. It is not always possible to come up with the right predicates on the first attempt.

Users often need to backtrack and try out different possibilities. The failed attempts,

however, often provide added insight which help, to some extent, in deciding the future

course of action. In the words of Morgan:

“excursions like the above ... are not fruitless...we have discovered that we

need the extra conjunct in the precondition, and so we simply place it in the

invariant and try again.” [Mor90]

Although the failed attempts are not fruitless, and provide some insight, the learnings

from these attempts may not be directly applicable; some guesswork is still needed to

determine the location for the required modifications and the exact modifications to be

made. For example, as we will see in the next section, simply strengthening the loop

invariant with the predicate required for the derivation of the loop body might not always

work. Moreover, the trying again results in rework. The derived program fragments (and

the discharged proof obligations) need to be recalculated (redischarged) during the next

attempt. The failed attempts also break the flow of the derivations making them difficult

37

to organize.

Tools supporting the refinement based formal program derivation (Cocktail [Fra99],

Refine [OXC04], Refinement Calculator [BL96a] and PRT [CHN+96a]) mostly follow the

top-down methodology. Not much emphasis has been given on avoiding the guesswork and

the unnecessary backtrackings. The refinement strategies cataloged by these tools help to

some extent in avoiding the common pitfalls. However, a general framework for allowing

users to assume predicates and propagating them to an appropriate location is missing.

In this chapter, we discuss the problems resulting from ad hoc reasoning involved

in propagation of assumptions made during a top-down derivation of programs. To ad-

dress these problems, we present correctness preserving rules for propagating assumptions

through annotated programs. We show how these rules can be integrated in a top-down

derivation methodology to provide a systematic approach for propagating the assump-

tions, materializing them with executable statements at a place different from the place of

introduction, and strengthening of loop invariants/preconditions with minimal additional

proof efforts. With the help of examples, we demonstrate how these rules help users in

avoiding unnecessary rework and also help them explore alternative solutions.

5.2 Maximum Segment Sum Revisited

In Section 2.3, we discussed derivation of the Maximum Segment Sum problem performed

without using any tool support. In this section, we revisit the problem, and present deriva-

tion sketch using our methodology.

5.2.1 Maximum Segment Sum Derivation

Fig. 5.1 depicts the derivation process for this program. As earlier, we start the derivation

by providing the formal specification (node A) of the program. For brevity, we show only

selected annotations. After applying a transformation rule (tactic) to a node, another node

is created as a child node in the tree. We can transition between program and formula

nodes using the functionality discussed in Section 3.4. Till node G, the derivation is similar

to the one discussed in Section 2.3.

At node G, we realize that we can not represent r′ in terms of the existing program

variables since the expression Q(n+ 1) involves quantifiers. After analyzing the derivation,

38

con N : int {N ≥ 0}; con A: array [0..N) of int;
var r: int;

S
R : {r = (Max p, q : 0 ≤ p ≤ q ≤ N : Sum(p, q))}

Replacing constant N by variable n

var n: int;
S




P0 : r = (Max p, q : 0 ≤ p ≤ q ≤ n : Sum(p, q))
∧ P1 : 0 ≤ n ≤ N
∧ E : n = N





Take conjuncts as invariants and increment n.

{invariant : P0 ∧ P1}
while (n 6= N)

S0:
r := r′;
n := n+ 1

end{
P0 ∧ P1 ∧ (n = N)

}

wp(r := r′, wp(n := n+ 1, P0))

≡ { Definition of P0 and wp }

r′ = (Max p, q : 0 ≤ p ≤ q ≤ n+ 1 : Sum(p, q))

r′ = rmaxQ(n+ 1)

r′ = rmax (Max p : 0 ≤ p ≤ n+ 1 : Sum(p, n+ 1))

Strengthen the invariant with
s = Q(n)

{
loop inv : P0 ∧ P1 ∧ (s = Q(n))

}

while n 6= N →
s := s′ ;

S0 : r := r′;
n := n+ 1

end
{
P0 ∧ P1 ∧ (s = Q(n)) ∧ (n = N)

}

...

Calculate r′

r′ = rmax s

r, n, s := 0, 0, 0;{
loop inv : P0 ∧ P1 ∧ (s = Q(n))

}

while n 6= N →
S2 : s := s′ ;
{ s = Q(n+ 1) }
r := rmax s;
{ P0(n := n+ 1) }
n := n+ 1;

end

...

Calculate s′

s′ = (s+A[n]) max 0

r, n, s := 0, 0, 0;{
loop inv : P0 ∧ P1 ∧ (s = Q(n))

}

while n 6= N →
s := (s+A[n])max 0;
{ s = Q(n+ 1) }
r := rmax s;
{ P0(n := n+ 1) }
n := n+ 1;

end

A

B

C

D

E

F

G

H

I

J

K

L

M

N

≡
{

Introduce predicate Q(n).

Q(n) , (Max p : 0 ≤ p ≤ n : Sum(p, n))

}

Figure 5.1. Sketch of the top-down derivation of the Maximum Segment Sum problem.

Sum(p, q) , (Σi : p ≤ i < q : A[i]); Q(n) , (Max p : 0 ≤ p ≤ n : Sum(p, n))

P0 , (r = (Max p, q : 0 ≤ p ≤ q ≤ n : Sum(p, q))); P1 , 0 ≤ n ≤ N

39

we speculate that if we introduce a fresh variable (say s) and maintain s = Q(n) as an

additional loop invariant then we might be able to express r′ in terms of the program

variables. In the informal derivation in Section 2.3, we assumed s = Q(n+1) and proceeded

further. However, there were some back-of-the-envelope arguments involved. We need to be

sure that adding s = Q(n) as an invariant makes the predicate s = Q(n+ 1) at the desired

location. In general, when some changes are made upstream (like strengthening invariants),

calculations from that point onward must be thoroughly checked for correctness.

Therefore, we backtrack to the program shown in node C, introduce a fresh variable s,

and envision a while program with the strengthened invariant. After the calculation of r′,

we proceed further with the derivation of s′ and arrive at the formula s′ = (s+A[n]) max 0

(node L to node M). To make this formula valid, we instantiate the metavariable s′ with

the expression (s+A[n]) max 0. After substituting s′ with the expression (s+A[n]) max 0

in the program shown in node K, we arrive at the final program shown in node N.

The methodology solves the problem of correctness, but the problem of ad hoc

reasoning remains.

5.2.2 Ad Hoc Decision Making

The above derivation involves two ad hoc decisions. First, at the time of introducing variable

n, we also introduced the upper and lower bounds for n. While the upper bound n ≤ N

is necessary to ensure that the expression P0 is well-defined, at that point in derivation,

there is no need to introduce the lower bound. The expression remains well-defined even

for negative values of n.

The second ad hoc decision was that, we did not select s = Q(n+ 1) as an invariant

even though that is the formula which is required at node F . Instead we selected s = Q(n)

as an additional invariant. Selection of this formula needs a foresight that the occurrences

of n are textually substituted by n + 1 during the derivation (step D-E), so we will get

the desired formula at node G, if we strengthen the invariant with s = Q(n).

These ad hoc decisions result in the problem of rework and premature reduction of

solution space.

Rework. After backtracking to program C and strengthening invariant, we try to calcu-

late r′ The steps from node I to node J correspond to the calculation of r′. These

40

steps are similar to the calculation of r′ in the failed attempt (node E to node F).

We need to carry out these steps again to ensure that the newly added invariant

does not violate the correctness of the existing program fragments.

Premature reduction of solution space. As shown later in Section 5.4.2, the above

two decisions prematurely reduced the solution space preventing us from arriving

at an alternative solution. The alternative solution (Fig. 5.20, node W) derived

using the assumption propagation rules initializes n with −1 and uses an invariant

involving the term s = Q(n+ 1).

5.2.3 Motivation for Assumption Propagation

As discussed above, having made an arbitrary choice of introducing the invariant 0 ≤ n,

when later faced with the problem of materializing the expression s = Q(n + 1), a loop

invariant s = Q(n) is introduced in an ad hoc fashion. The textbook by Cohen argues:

“The question might arise as to why the following was not chosen instead: s =

Q(n+1). The reason is that this invariant cannot be established initially...A[0]

is undefined when N = 0” 1[Coh90].

Similarly, the textbook by Kaldewaij does not consider strengthening the invariant with

s = Q(n+ 1) on the ground that

“... for n = N (which is not excluded by P1) this predicate is not defined.

Replacing all occurrences of n by n− 1 yields an expression that is defined for

all 0 ≤ n ≤ N .” [Kal90]

We find two justifications for the exclusion of an invariant involving the term s =

Q(n + 1); one on the ground of an initialization error while the other on the ground of

a termination related error. Whereas the real problem lies in the fact that one is trying

to make a guess without calculating the logically required expressions. The assumption

propagation technique proposed in Section 5.3 enables the users to make assumptions in

order to proceed and later propagate these assumptions to appropriate places where they

can be materialized by introducing executable program constructs.

1The notations in this quote have be adapted to match our notation.

41

5.3 Assumption Propagation

5.3.1 Assumption Propagation for Bottom up Derivation

Assumption propagation can be seen as a bottom-up derivation approach since we delay

certain decisions by making assumptions and then propagate the information upstream.

In order to incorporate the bottom-up approach in a primarily top-down methodology, we

need a way to accumulate assumptions made during the derivation and then to propagate

these assumptions upstream. After propagating the assumptions to appropriate location

in the derived program, user can introduce appropriate program constructs to establish

the assumptions.

This bottom-up phase has three main steps.

• Assume: To derive a program fragment with precondition α and postcondition β,

we start with the annGCL program {α}unkprog1 {β}. Now suppose that, in order

to proceed further, we decide to assume θ.

For example, we can envision a program construct in which the unknown program

expressions are represented by metavariables. We then focus our attention on the

correctness proof obligation of the envisioned program and try to guess suitable ex-

pressions for the metavariables with the objective of discharging the proof obligation.

While doing so, we might need to assume θ.

Instead of backtracking and figuring out the modifications to be done to the rest

of the program to make θ hold at the point of assumption, we just accumulate the

assumptions and proceed further with the derivation to arrive at program S. In the

resulting annGCL program (Fig. 5.2), assume(θ) establishes the assumed predicate

θ while preserving α. For brevity, we abbreviate the statement assume(θ) as A(θ).

• Propagate: We may not want to materialize the program to establish θ at the

current program location. We can propagate the assume(θ) statement upstream to

an appropriate program location. The assumed predicate θ is modified appropriately

depending on the program constructs through which it is propagated. The pre- and

postconditions of the intermediate program constructs are also updated to preserve

correctness.

42

{α}
{α}
A(θ)
{α ∧ θ}
S
{β}
{β}

Figure 5.2. Result of assuming precondition θ in the derivation of {α}unkprog1 {β}.

• Realize: Once the assume statement is at a desired location, we can materialize it by

deriving corresponding executable program constructs that establish the assumption.

Note that this might not be a single step process. We might replace the assume

statement with another partially derived program which might in turn have other

assume/unkprog statements in addition to some executable constructs.

We repeat the process till we eliminate all the assume and unkprog statements.

5.3.2 Precondition Exploration

We can propagate the assumptions made during the derivation all the way to the top.

Let us say, we arrive at a program shown in Fig. 5.2. If the overall precondition of the

program α implies the assumption θ then we can get rid of the assume statement and

arrive at a program {α}S {β}. If this is not the case, we can either go about materializing

the assumption or accept the assumption θ as an additional precondition. So we now have

an annGCL program {α ∧ θ}S {β} which is a solution for a different specification whose

precondition is stronger than the original precondition.

This could be called precondition exploration; where for the given the precondition

α and postcondition β, we would like to derive a program S and assumption θ such that

the annGCL program {α ∧ θ}S {β} is correct.

5.3.3 Rules for Propagating and Establishing Assumptions

The propagation step described in Section 5.3.1 is an important step in the bottom up

phase. We have developed correctness preserving transformation rules for propagating the

assumptions upstream through the annGCL program constructs. In the coming sections,

we present transformation rules for assumption propagation.

43

{α}
skip
{β}
A(θ)

{β ∧ θ}

{α}
A(θ)

{α ∧ θ}
skip
{β ∧ θ}

Figure 5.3. SkipUp rule

{α}
A(η)
{α ∧ η}
A(θ)

{α ∧ η ∧ θ}

{α}
A(θ)

{α ∧ θ}
A(η)
{α ∧ θ ∧ η}

Figure 5.4. AssumeUp rule

{α}
A(η)
{α ∧ η}
A(θ)

{α ∧ η ∧ θ}

{α}
A(η ∧ θ)

{α ∧ η ∧ θ}

Figure 5.5. AssumeMerge rule

Atomic Constructs

Atomic constructs are the program constructs that do not have subprograms. For every

atomic construct, there is a rule for up-propagating an assumption through the construct.

For atomic constructs that represent unsynthesized programs (assume and unkprog), there

are additional rules for merging statements or establishing the assumptions.

skip. The SkipUp rule (Fig. 5.3) propagates an assumption θ through a skip statement.

No change is required in the assumed predicate as it is propagated through the skip

statement.

assume. The AssumeUp rule (Fig. 5.4) propagates an assumption θ through an assume

program A(η). This transformation just changes the order of the assume statements.

Instead of propagating the assumption θ, we can choose to merge it into the statement

A(η) by applying the AssumeMerge rule (Fig. 5.5). Applying this rule results in a

single assume statement A(η ∧ θ).

unkprog. Fig. 5.6 shows the UnkProgUp rule which propagates an assumption up-

{α}
unkprog1
{β}
A(θ)

{β ∧ θ}

{α}
A(θ))

{α ∧ θ}
unkprog2
{β ∧ θ}

Figure 5.6. UnkProgUp rule

{α}
unkprog1
{β}
A(θ)

{β ∧ θ}

{α}
unkprog2

{β ∧ θ}

Figure 5.7. UnkProgEst rule

44

{α}
x := E
{β}
A(θ)

{β ∧ θ}

{α}
A(wp(x := E, θ))

{α ∧ wp(x := E, θ)}
x := E
{β ∧ θ}

Figure 5.8. AssignmentUp rule

{α}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}
A(θ)

{β ∧ θ}

{α}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}
{β}A(θ) {β ∧ θ}

{β ∧ θ}

Figure 5.9. CompositionIn rule

{α}
{ϕ}A(θ) {ϕ ∧ θ}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}

{α}
A(θ)

{α ∧ θ}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}

Figure 5.10. CompositionOut rule

ward through an unknown program fragment (unkprog1). Note that pre- and post-

conditions of unkprog2 are strengthened with θ. Here, we are demanding that

unkprog2 should preserve θ. We may prefer to establish θ instead of propagating.

The UnkProgEst rule (Fig. 5.7) can be used for this purpose.

assignment. Fig. 5.8 shows the AssignmentUp rule for propagating an assumption up-

wards through an assignment. The assumed predicate θ gets modified to wp(x :=

E, θ) as it is propagated through the assignment x := E.

Composition

We need to consider the following two cases for propagating assumptions through a com-

position program.

{α}
{ϕ}A(θ) {ϕ ∧ θ}
{ϕ ∧ θ}S {ψ}

{β}

{α}
if

| θ → {ϕ ∧ θ}S {ψ}
| ¬θ → {ϕ ∧ ¬θ}unkprog {ψ}
end

{β}

Figure 5.11. CompoToIf rule: Transforms a composition to an if program.

45

Case 1: The assume statement is immediately after the composition program.

Fig. 5.9 shows a composition program which is composed of another composition

and an assume(θ) statement. The CompositionIn rule can be used to propagate

the assumption θ inside the composition construct. The assumption can then be

propagated upwards through the subprograms of the composition (Sn to S1) using

appropriate rules.

Case 2: The assume statement is the first statement in the composition program.

The CompositionOut rule (Fig. 5.10) propagates the assume statement at a location

before the composition statement. The target program does not contain the predicate

ϕ since, from the correctness of the source program, ϕ is implied by the precondition

α.

We also provide the CompoToIf rule (Fig. 5.11) which establishes the assumption θ

by introducing an if program in which the assumed predicate θ appears as the guard

of the program. Another guarded command is added to handle the complementary

case. This rule has a proviso that θ is a valid program expression. This rule allows

users to delay the decision about the type of the program constructs. For example,

users may envision an assignment, which can be turned later into an if program if

required.

If the assume statement is at a location inside the composition program which does

not fall under these two cases, then appropriate rule should be selected based on the type of

the program immediately preceding the assume statement. Nested composition construct

can be collapsed to form a single composition. However, this construct is useful when we

want to apply a rule to a subcomposition.

If

We need to consider the following two cases for propagating assumptions through an if

program.

Case 1: The assume statement is immediately after the if program.

In order to make predicate θ available after the if program, θ must hold after the

execution of every guarded command. The IfIn rule (Fig. 5.12) propagates an assume

46

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gi → {ϕi}Si {ψi}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}
A(θ)

{β ∧ θ}

{α}
if
| G1 → {ϕ1}S1 {ψ1}A(θ){ψ1 ∧ θ}
. . .
| Gi → {ϕi}Si {ψi}A(θ){ψi ∧ θ}
. . .
| Gn → {ϕn}Sn {ψn}A(θ){ψn ∧ θ}
end
{β ∧ θ}

Figure 5.12. IfIn rule.

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ) {ϕm ∧ θ}Sm {ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

{α}
A(θ∗)

{α ∧ θ∗}
if
| G1 → {ϕ1 ∧ θ∗}S1 {ψ1}
. . .
| Gm → {ϕm ∧ θ}Sm {ψm}
. . .
| Gn → {ϕn ∧ θ∗}Sn {ψn}
end
{β}

Figure 5.13. IfOut rule. θ∗ , Gm ⇒ θ

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ){ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm ∧ θ → {ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
| Gm ∧ ¬θ → {α ∧Gm ∧ ¬θ}unkprog{β}
end
{β}

Figure 5.14. IfGrd rule

47

statement that appears immediately after an if construct in the source program

inside the if construct in the target program. In the target program, θ is assumed

at the end of every guarded command.

Case 2: The assume statement is the first statement in the body of one of the guarded

commands.

To make θ available as a precondition of the body of one of the guarded commands,

θ must hold as a precondition of the if program. (In fact, we can assume a weaker

predicate as discussed below.) Fig. 5.13 shows the IfOut rule corresponding to this

case. In the source program, θ is assumed before the subprogram Sm, whereas in the

target program, θ∗ is assumed before the if program. Note that θ∗ (which is defined

as (Gm ⇒ θ)) is weaker than θ. This weakening is possible since, by the semantics

of the if construct, the guard predicate Gm is already available as a precondition to

the program Sm.

As a result of assuming θ∗ before the if construct, we also strengthen the pre-

condition of the other guarded commands. Note that program fragments S1 to Sn

may contain yet to be synthesized unkprog fragments. This strengthening of the

preconditions by θ∗ might be helpful in the task of deriving these unknown program

fragments.

In this case, instead of propagating assumption θ, we can make it available as a

precondition to the body of the guarded command (Sm) by simply strengthening

the corresponding guard with θ. The IfGrd rule (Fig. 5.14) can be applied for this

purpose. Since we are strengthening the guard of one of the guarded commands (Gm)

with θ, an additional guarded command (with a guard Gm ∧ ¬θ) needs to be added

to ensure that all the cases are handled.

While

The assumption propagation rules involving the while construct are more complex than

those for the other constructs since strengthening an invariant strengthens the precondition

as well as the postcondition of the loop body. Depending on the location of the assume

statement with respect the while construct, we have the following two cases.

48

Case 1: The assume statement is immediately after the while program.

Fig. 5.15 shows the WhileIn rule applicable to this case. The source program has an

assumption after the while loop. In order to propagate the assumption θ upward, we

strengthen the invariant of the while loop with ¬G⇒ θ. This is the weakest formula

that will assert θ after the while loop. We add an assume statement after the loop

body to maintain the invariant and another assume statement before the loop to

establish the invariant at the entry of the loop.

Case 2: The assume statement is the first statement in the body of while program.

There are two options available to the user in this case depending on whether the

user chooses to strengthen the postcondition of the loop body by propagating the

assumed predicate forward through the loop body. The rules corresponding to these

two alternatives are given below.

WhileStrInv rule. In the source program (Fig. 5.16), the predicate θ is assumed

at the start of the loop body. To make θ valid at the start of the loop body S, we

strengthen the invariant with (G ⇒ θ). An assume statement A(G ⇒ θ) is added

after the loop body to ensure that invariant is preserved. Another assume statement

is added before the while loop to establish the invariant at the entry of the loop.

WhilePostStrInv rule. There are two steps in this rule (Fig. 5.17). In the first step,

the postcondition of the program S is strengthened with θ∗ which is the strongest

postcondition of θ with respect to S. In the second step, the invariant of the while

loop is strengthened with θ∗. An unknown program fragment is added before S to

establish θ. An assume statement is added before the while program to establish θ∗

at the entry of the loop.

Strongest postconditions involve existential quantifiers. To simplify the formulas,

these quantifiers should be eliminated whenever possible. In this rule, we have de-

fined θ∗ to be the sp(S, θ). However, any formula θw weaker than the strongest

postcondition will also work provided the program {ϕ ∧ θw} unkprog{ϕ ∧ θ} can be

derived.

49

{α}
while {Inv : ω}
G→
{ϕ}
S
{ψ}

end
{β}
A(θ)

{β ∧ θ}

{α}
A(¬G⇒ θ)

{α ∧ (¬G⇒ θ)}
while {Inv : ω ∧ (¬G⇒ θ)}
G→
{ϕ}
S
{ψ}
A(¬G⇒ θ)

{ψ ∧ (¬G⇒ θ)}
end
{β ∧ θ}

Figure 5.15. WhileIn rule: Strengthens the invariant with ¬G⇒ θ

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S
{ψ}

end
{β}

{α}
A(G⇒ θ)

{α ∧ (G⇒ θ)}
while {Inv : ω ∧ (G⇒ θ)}
G→
{ϕ ∧ θ}
S
{ψ}
A(G⇒ θ)

{ψ ∧ (G⇒ θ)}
end
{β}

Figure 5.16. WhileStrInv rule: Strengthens the invariant with G⇒ θ

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S
{ψ}

end
{β}

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S
{ψ ∧ θ∗}

end
{β}

{α}
A(θ∗)

{α ∧ θ∗}
while {Inv : ω ∧ θ∗}
G→
{ϕ ∧ θ∗}
unkprog

{ϕ ∧ θ}
S
{ψ ∧ θ∗}

end
{β}

Figure 5.17. WhilePostStrInv rule: Strengthens the loop invariant with θ∗ where θ∗ ,
sp(S, θ)

50

{α}
if

| G1 → {ϕ1}S1 {ψ1}
. . .

| Gm → {ϕm}A(θ){ϕm ∧ θ}Sm{ψm}
. . .

| Gn → {ϕn}Sn {ψn}
end

{β}

{α}
if

| G1 → {ϕ1}S1 {ψ1}
. . .

| Gm ∧ θ → {ϕm ∧ θ}Sm{ψm}
. . .

| Gn → {ϕn}Sn {ψn}
end

{β}

Proviso : α⇒
((∨

i∈[1,n]∧i 6=mGi

)
∨ θ
)

Figure 5.18. IfGrd2 rule: A variation of the IfGrd rule(Fig. 5.14).

5.3.4 Adding New Transformation Rules

New rules can be introduced as long as they are correctness preserving. For example, we

can come up a IfGrd2 (Fig. 5.18) rule which is a variation of the IfGrd rule (Fig. 5.14)

where the rule is similar to the IfGrd except for the following differences.

1. This rule has a proviso α⇒
((∨

i∈[1,n]∧i 6=mGi

)
∨ θ
)

.

2. The target program in this case does not contain the guarded command with the

guard (Gm ∧ ¬θ).

In the next section we present some guidelines for selecting appropriate assumption prop-

agation rules that are likely to result in concrete programs.

5.3.5 Selecting Appropriate Rules

When encountered with an assume statement, we need to decide whether to establish

(materialize) the assumption at its current location or to propagate it upstream. In many

cases, this decision depends on the location of the assume statement. For example, if the

assume statement is inside the body of a while loop, and materializing it will result in an

inner loop, we may prefer to propagate it upstream and strengthen the invariant in order

to derive an efficient program.

51

For propagating assumptions, our choices are limited by the location of the assume

statement and the preceding program construct. For example, consider a scenario where

an assume statement comes immediately after an if program. Although there are four

rules for the if construct, only the IfIn rule is applicable in this case. In cases where

multiple rules are applicable, select a rule that results in a simpler program. For example,

if the assume statement is the first statement in the body of an if construct, there are two

choices namely the IfGrd rule and the IfGrd2 rule. In this case, it is desirable to apply

the IfGrd2 rule (provided the corresponding proviso is valid) since it results in a simpler

program.

Another choice that one has to make quite often is between the WhileStrInv rule

and the WhilePostStrInv rule. We select a rule that results in invariants that are easier to

establish at the entry of the loop. In some cases (as discussed later in Section 5.4.2), both

the paths may lead to concrete programs. One might have to proceed one or two steps and

decide if a particular line of derivation is worth trying. This is much simpler than the ad

hoc trial and error discussed in Section 5.2.2 where we had to guess the right predicates.

5.3.6 Down-propagating the Assertions

Note that dual to act of propagating assumptions upstream is the act of propagating

assertions downstream by computing the strongest postconditions. A typical derivation

involves interleaved instances of up-propagation of the assume statements and down-

propagation of the assertions. We present one such example in Section 5.4.1.

5.4 Derivation Examples

5.4.1 Evaluating Polynomials

To demonstrate the interleaving of up-propagation of the assumptions and down-propagation

of the assertions, we present some of the steps from the derivation of a program for eval-

uating a polynomial whose coefficients are stored in an array (also called Horner’s rule).

The program is specified as follows.

52

con A[0..N) array of int {N ≥ 0};
con x : int; var r : int;

S

{R : r = (
∑
i : 0 ≤ i < N : c[i] ∗ xi)}

We skip the initial rule applications and directly jump to the program shown in

Fig. 5.19(a). The user has already assumed predicate P2 : y = xn during the calculation of

r′ (not shown). We next apply the WhileStrInv rule to strengthen the invariant with P2

to arrive at program shown in the figure (b). We then propagate the assume statement

upwards through n := n+ 1 to arrive at the program shown in figure (c). We would like to

synthesize the assumption here but the precondition is not sufficient. Next, we strengthen

the postcondition of the assignment statement for r to arrive at program shown in the

figure (d). The assumption P2(n := n + 1) can now be easily established as y := y ∗ x.

Note that alternative solutions are also possible.

With the combinations of steps involving up-propagation of the assume statements

and down-propagation of the assertions, we can propagate the missing fragments to an

appropriate location and then synthesize them.

5.4.2 Back to the Motivating Example

Next, we derive the Maximum Segment Sum program using the assumption propagation

approach. The initial derivation up to node G in Fig. 5.1 will remain the same except

for the fact that we do not add 0 ≤ n as an invariant initially. For the purpose of this

example, P1 is just n ≤ N .

At node G, we are not able to express the formula Q(n+ 1) as a program expression.

Instead of speculating about what we should add at an upstream location so that we get

Q(n+ 1) at the current node, node G, we just assume the predicate that is needed at the

current location. Instead of backtracking, we introduce a fresh variable s and assume the

53

while {Inv : P}
n 6= N →
{P}
assume(P2);
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
n := n+ 1
{P}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
n := n+ 1
{P}
assume(P2)
{P ∧ P2}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1)}
assume(P2(n := n+ 1)){
P (n := n+ 1)
∧P2(n := n+ 1)

}

n := n+ 1
{P ∧ P2}

end {R}

while {Inv : P ∧ P2}
n 6= N →
{P ∧ P2}
r := r + c[n] ∗ y;
{P (n := n+ 1) ∧ P2}
assume(P2(n := n+ 1)){
P (n := n+ 1)
∧P2(n := n+ 1)

}

n := n+ 1
{P ∧ P2}

end {R}

Add P2 to invariant

Propagate assume up Strengthen post of r asgn

(a)
(b)

(c) (d)

P : r =
(∑

i : 0 ≤ i < n : c[i] ∗ xi
)
∧ 0 ≤ n ≤ N

P2 : y = xn

Figure 5.19. Some steps in the derivation of a program for the Horner’s rule. Invariant
initializations at the entry of the loop are not shown.

54

formula s ≡ Q(n+ 1) and proceed further with the calculation.

. . .

r′ = r max Q(n+ 1)

≡ { introduce variable s and assume s ≡ Q(n+ 1) }
r′ = r max s

. . .

After instantiating r′ to r max s, we arrive at a while program (node O in Fig. 5.20)

where the body of the loop contains the statement assume(s ≡ Q(n + 1)) as the first

statement. We can establish the assumption at the current location, however that would

be expensive since we would need to traverse the array inside the loop body. We therefore

decide to propagate the assumption upwards out of the loop body. We now have two

choices; we can apply the WhilePostStrInv rule or the WhileStrInv rule. We first show

application of the WhilePostStrInv rule.

Application of the WhilePostStrInv rule strengthens the invariant by s = Q(n) and

yields the program shown in node P in Fig. 5.20. We can now proceed further with the

derivation of the unkprog fragment and the initialization assume statement as usual. The

additional invariant 0 ≤ n is added later when another assume statement (in node R) is

propagated upwards. The final solution is shown in node S. This solution is derived in a

linear fashion without any backtracking, thus avoiding the unnecessary rework.

Alternative solution

We now apply the WhileStrInv rule at node O in Fig. 5.20. Application of this rule adds

n 6= N ⇒ s = Q(n + 1) as an invariant and results in the program shown in node T.

We can now materialize the assume statements by deriving the corresponding program.

The final solution is as shown in node W. (For brevity, we have not shown the guarded

command if the body of the guarded command contains only a skip statement.)

Remark. In section 5.2.2, we did not select s = Q(n+ 1) as an invariant since our informal

analysis warned us of an access to an undefined array element. As a result of this analysis,

we discarded a possible program derivation path. However, if we apply the WhileStrInv

rule, the array initialization problem does not occur as the term s = Q(n+ 1) is suitably

modified before adding it to the invariant. The rules are driven by logical necessity; program

constructs are added only when they are logically necessary to preserve correctness. In

55

{true}
unkprog1

{P0 ∧ P1}
while {inv : P0 ∧ P1}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N}
assume(s = Q(n+ 1)){
P0 ∧ P1 ∧ n 6= N
∧s = Q(n+ 1)

}

r, n := r max s, n+ 1
{P0 ∧ P1}

end{
P0 ∧ P1 ∧ n = N

}

{true}
unkprog1

{P0 ∧ P1}
assume(s = Q(n)){
P0 ∧ P1 ∧ s = Q(n)

}

while
{
inv : P0 ∧ P1 ∧ s = Q(n)

}

(n 6= N)→{
P0 ∧ P1 ∧ n 6= N ∧ s = Q(n)

}

unkprog2{
P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)

}

r, n := r max s, n+ 1{
P0 ∧ P1 ∧ s = Q(n)

}

end
{P0 ∧ P1 ∧ n = N}

{true}
unkprog3

{P0 ∧ P1 ∧ s = Q(n)}
while {inv : P0 ∧ P1 ∧ s = Q(n)}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n)}
unkprog2

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n)}

end
{P0 ∧ P1 ∧ n = N}

{true}
unkprog3

{P0 ∧ P1 ∧ s = Q(n)}
while {inv : P0 ∧ P1 ∧ s = Q(n)}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n)}
assume (0 ≤ n) ;
s := (s+A[n]) max 0

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n)}

end
{P0 ∧ P1 ∧ n = N}

{true}
r, n, s := 0, 0, 0;
{P0 ∧ P1 ∧ s = Q(n) ∧ 0 ≤ n}
while {inv : P0 ∧ P1 ∧ s = Q(n) ∧ 0 ≤ n}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n) ∧ 0 ≤ n}
s := (s+A[n]) max 0
{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1) ∧ 0 ≤ n}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n) ∧ 0 ≤ n}

end
{P0 ∧ P1 ∧ n = N}

{true}
unkprog1

{P0 ∧ P1}
assume(n 6= N ⇒ s = Q(n+ 1)){
P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))

}

while
{
inv : P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))

}

(n 6= N)→{
P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)

}

r, n := r max s, n+ 1
{P0 ∧ P1}

assume(n 6= N ⇒ s = Q(n+ 1))
{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}

end{
P0 ∧ P1 ∧ n = N

}

{true}
unkprog4

{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
while {inv : P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
(n 6= N)→

{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)}
r, n := r max s, n+ 1
{P0 ∧ P1}
assume(n 6= N ⇒ s = Q(n+ 1))
{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}

end{
P0 ∧ P1 ∧ n = N

}

{true}
unkprog4

{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
while {inv : P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
(n 6= N)→
{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1)}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n)}

assume (0 ≤ n) ;
if n 6= N → s := (s+A[n]) max 0 end

{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1))}
end{
P0 ∧ P1 ∧ n = N

}

{true}
r, n, s := −∞,−1, 0;
{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1)) ∧ 0 ≤ n+ 1}
while {inv : P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1)) ∧ 0 ≤ n+ 1}
(n 6= N)→
{P0 ∧ P1 ∧ n 6= N ∧ s = Q(n+ 1) ∧ 0 ≤ n+ 1}
r, n := r max s, n+ 1
{P0 ∧ P1 ∧ s = Q(n) ∧ 0 ≤ n}

if n 6= N → s := (s+A[n]) max 0 end
{P0 ∧ P1 ∧ (n 6= N ⇒ s = Q(n+ 1)) ∧ 0 ≤ n+ 1}

end{
P0 ∧ P1 ∧ n = N

}

WhilePostStrInv rule WhileStrInv rule

Merge unkprog and
assume, and materialize

Merge unkprog and
assume,
and materialize

O

P

Q

R

S

T

U

Materialize
the unkprog2

Materialize
the assume

V

W

Propagate assume;
Apply WhileStrInv ;
Materialize the
unkprog ;
and simplify

Apply WhileStrInv ;
Materialize the
unkprog ;
and simplify

Figure 5.20. Maximum Segment Sum derivations using the WhilePostStrInv and

WhileStrInv assumption propagation rules.

The following predicate definitions are same as those in Fig. 5.1 except for P1.

P0 , r = (Max p, q : 0 ≤ p ≤ q ≤ n : Sum(p, q)) ; P1 , n ≤ N

Q(n) , (Max p : 0 ≤ p ≤ n : Sum(p, n))

56

this case, the appropriate guards are automatically added to safeguard us from accessing

an undefined array element.

We have implemented the assumption propagation technique in the CAPS system

(refer Section 7.7 for the implementation details). The approach described here is gen-

eral enough to be adaptable for use in other formal program development environments

supporting invariant annotations.

5.5 Related Work

The work most closely related to our assumption propagation is that of [LvW97] and

[BvW98] on context assumptions. However, their main purpose in propagating assumptions

is to move them to another place in the program where the existing annotations would

imply the assumptions being made. In contrast, our focus is to propagate assumptions to a

suitable place where they can be materialized by introducing concrete program fragments.

The rule set given in [LvW97] and [BvW98] is weaker in that they do not have assumption

propagation rules related to loops. As Back et. al. say, “...there is no rule for loops, we

assume that whenever a loop is introduced, sufficient information about the loop is added

as an assertion after the loop”. As shown in the examples in Section 5.4, for the purpose of

our work, the assumption propagation rules related to loops are often the most important

ones in practice.

In the context of data refinement, Morgan [Mor90] introduces the concept of coercions

for making a formula true at a given point in a program. However, the focus of their work

is on refining abstract variables with concrete variables and has rules for adding variables

(augment coercion) and removing variables (diminish coercion). Groves uses in [Gro98]

the concept of coercions in the context of specification modifications. His purpose is to

modify a given implementation when the postcondition of the program is strengthened.

Various tools exist for refinement based formal program derivation. Refinement Cal-

culator [BL96a] provides a general mechanism for refinement based transformational rea-

soning on top of HOL. The PRT tool [CHN+96a] extends the Ergo theorem prover and

supports refinement based program development with a close integration of refinements

and proof support in a single tool. The Cocktail [Fra99] tool supports the derivation pro-

grams from specifications using the Hoare/Dijkstra method with support for interactive

proof construction as well as automatic theorem proving.

57

Chapter 6

Correctness of Assumption

Propagation Rules

To prove that a rule R : src 7→ target is correctness preserving, we need to prove that the

following formula A is valid.

A : [proviso(src)]⇒ [po(src)]⇒ [po(target)]

The square brackets denote universal quantification over the points in state space as

explained in Section 2.2.1.

In the following proofs, instead of proving validity of A, we will prove the validity of

the following formula B which is stronger than A.

B : [proviso(src)⇒ po(src)⇒ po(target)]

The proviso is optional and is assumed to be true if not mentioned. Let Γi be the

proof obligation of the src program and ∆i be the proof obligations of the target program.

To prove [
∧

i Γi ⇒
∧

i ∆i], we will assume the antecedents and prove the proof obligations

of the target programs (∆i) separately using the calculational style.

58

6.1 SkipUp Rule

Rule:

{α}
skip
{β}
A(θ)

{β ∧ θ}

{α}
A(θ)

{α ∧ θ}
skip
{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : po ({α} skip {β})
Γ2 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ) {α ∧ θ})
∆2 : po ({α ∧ θ} skip {β ∧ θ})

Theorem 6.1. SkipUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

po ({α}A(θ) {α ∧ θ})
≡ { definition of assume }
α ∧ θ ⇒ α ∧ θ
≡ { predicate calculus }
true

∆2 :

po ({α ∧ θ} skip {β ∧ θ})
≡ { definition of skip }
α ∧ θ ⇒ β ∧ θ
⇐ { predicate calculus }
α⇒ β

≡ { Γ1 }
true

59

6.2 AssumeUp Rule

Rule:

{α}
A(η)
{α ∧ η}
A(θ)

{α ∧ η ∧ θ}

{α}
A(θ)

{α ∧ θ}
A(η)
{α ∧ θ ∧ η}

po(src) =
∧

i Γi

Γ1 : po ({α}A(η) {α ∧ η})
Γ2 : po ({α ∧ η}A(θ) {α ∧ η ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ) {α ∧ θ})
∆2 : po ({α ∧ θ}A(η) {α ∧ θ ∧ η})

Theorem 6.2. AssumeUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

po ({α}A(θ) {α ∧ θ})
≡ { definition of assume }
α ∧ θ ⇒ α ∧ θ
≡ { predicate calculus }
true

∆2 :

po ({α ∧ θ}A(η) {α ∧ θ ∧ η})
≡ { definition of assume }
α ∧ θ ∧ η ⇒ α ∧ θ ∧ η
≡ { predicate calculus }
true

6.3 AssumeMerge Rule

Rule:

{α}
A(η)
{α ∧ η}
A(θ)

{α ∧ η ∧ θ}

{α}
A(η ∧ θ)

{α ∧ η ∧ θ}

po(src) =
∧

i Γi

Γ1 : po ({α}A(η) {α ∧ η})
Γ2 : po ({α ∧ η}A(θ) {α ∧ η ∧ θ})

po(target) = ∆1

∆1 : po ({α}A(η ∧ θ) {α ∧ η ∧ θ})

60

Theorem 6.3. AssumeMerge rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligation of

the target program(∆1).

∆1 :

po ({α}A(η ∧ θ) {α ∧ η ∧ θ})
≡ { definition of assume }
α ∧ η ∧ θ ⇒ α ∧ η ∧ θ
≡ { predicate calculus }
true

6.4 AssignmentUp Rule

Rule:

{α}
x := E
{β}
A(θ)

{β ∧ θ}

{α}
A(wp(x := E, θ))

{α ∧ wp(x := E, θ)}
x := E
{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : α⇒ β(x := E)
Γ2 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(wp(x := E, θ)) {α ∧ wp(x := E, θ)})
∆2 : po ({α ∧ wp(x := E, θ)}x := E {β ∧ θ})

Theorem 6.4. AssignmentUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

61

∆1 :

po ({α}A(wp(x := E, θ)) {α ∧ wp(x := E, θ)})
≡ { definition of assume }
α ∧ wp(x := E, θ)⇒ α ∧ wp(x := E, θ)

≡ { predicate calculus }
true

∆2 :

po ({α ∧ wp(x := E, θ)}x := E {β ∧ θ})
≡ { definition of assignment }
α ∧ wp(x := E, θ)⇒ (β ∧ θ)(x := E)

≡





definition of weakest precondition;

substitution distributes over

conjunction





α ∧ θ(x := E)⇒ β(x := E) ∧ θ(x := E)

⇐ { predicate calculus }
α⇒ β(x := E)

≡ { Γ1 }
true

6.5 UnkProgUp Rule

Rule:

{α}
unkprog1
{β}
A(θ)

{β ∧ θ}

{α}
A(θ))

{α ∧ θ}
unkprog2
{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : po ({α}unkprog1 {β})
Γ2 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ) {α ∧ θ})
∆2 : po ({α ∧ θ}unkprog2 {β ∧ θ})

Theorem 6.5. UnkProgUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

po ({α}A(θ) {α ∧ θ})
≡ { definition of assumption }
α ∧ θ ⇒ α ∧ θ
≡ { predicate calculus }
true

∆2

po ({α ∧ θ}unkprog2 {β ∧ θ})
≡ { definition of unkprog }
true

62

6.6 UnkProgEst Rule

Rule:

{α}
unkprog1
{β}
A(θ)

{β ∧ θ}

{α}
unkprog2

{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : po ({α}unkprog1 {β})
Γ2 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}unkprog2 {β ∧ θ})

Theorem 6.6. UnkProgEst rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

po ({α}unkprog2 {β ∧ θ})
≡ { definition of unkprog}
true

6.7 CompositionIn Rule

Rule:

{α}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}
A(θ)

{β ∧ θ}

{α}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}
{β}A(θ) {β ∧ θ}

{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : α⇒ ϕ1

Γ2 :
(∧

i∈[1,n] po ({ϕi}Si {ψi})
)

Γ3 :
(∧

i∈[1,n−1] ψi ⇒ ϕi+1

)

Γ4 : ψn ⇒ β
Γ5 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : α⇒ ϕ1

∆2 :
(∧

i∈[1,n] po ({ϕi}Si {ψi})
)

∆3 :
(∧

i∈[1,n−1] ψi ⇒ ϕi+1

)

∆4 : ψn ⇒ β
∆5 : po ({β}A(θ) {β ∧ θ})
∆6 : β ∧ θ ⇒ β ∧ θ

63

Theorem 6.7. CompositionIn rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

α⇒ ϕ1

≡ { Γ1 }
true

∆2 :
(∧

i∈[1,n] po ({ϕi}Si {ψi})
)

≡ { Γ2 }
true

∆3 :
(∧

i∈[1,n−1] ψi ⇒ ϕi+1

)

≡ { Γ3 }
true

∆4 :

ψn ⇒ β

≡ { Γ4 }
true

∆5 :

po ({β}A(θ) {β ∧ θ})
≡ { Γ5 }
true

∆6 :

β ∧ θ ⇒ β ∧ θ
≡ { predicate calculus }
true

64

6.8 CompositionOut Rule

Rule:

{α}
{ϕ}A(θ) {ϕ ∧ θ}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}

{α}
A(θ)

{α ∧ θ}
{ϕ1}S1 {ψ1}
. . .
{ϕn}Sn {ψn}

{β}
po(src) =

∧
i Γi

Γ1 : α⇒ ϕ
Γ2 : po ({ϕ}A(θ) {ϕ ∧ θ})
Γ3 : ϕ ∧ θ ⇒ ϕ1

Γ4 :
∧

i∈[1,n] po ({ϕi}Si {ψi})
Γ5 :

∧
i∈[1,n−1] (ψi ⇒ ϕi+1)

Γ6 : ψn ⇒ β

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ) {α ∧ θ})
∆2 : α ∧ θ ⇒ ϕ1

∆3 :
∧

i∈[1,n] po ({ϕi}Si {ψi})
∆4 :

∧
i∈[1,n−1] (ψi ⇒ ϕi+1)

∆5 : ψn ⇒ β

Theorem 6.8. UnkProgUp rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target programs(∆i) separately.

∆1 :

po ({α}A(θ) {α ∧ θ})
≡ { definition of assume }
α ∧ θ ⇒ α ∧ θ
≡ { predicate calculus }
true

∆2 :

α ∧ θ ⇒ ϕ1

⇐ { Γ1; Γ3 }
true

∆3 :

∧
i∈[1,n] po ({ϕi}Si {ψi})

≡ { Γ4 }
true

∆4 :

∧
i∈[1,n−1] (ψi ⇒ ϕi+1)

≡ { Γ5 }
true

∆5 :

ψn ⇒ β

≡ { Γ6 }
true

65

6.9 CompoToIf Rule

Rule:

{α}
{ϕ}A(θ) {ϕ ∧ θ}
{ϕ ∧ θ}S {ψ}

{β}

{α}
if
| θ → {ϕ ∧ θ}S {ψ}
| ¬θ → {ϕ ∧ ¬θ}unkprog {ψ}
end
{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ϕ
Γ2 : po ({ϕ}A(θ) {ϕ ∧ θ})
Γ3 : po ({ϕ ∧ θ}S {ψ})
Γ4 : ψ ⇒ β

po(target) =
∧

i ∆i

∆1 : α⇒ θ ∨ ¬θ
∆2 : α ∧ θ ⇒ ϕ ∧ θ
∆3 : po ({ϕ ∧ θ}S {ψ})
∆4 : α ∧ ¬θ ⇒ ϕ ∧ ¬θ
∆5 : po ({ϕ ∧ ¬θ}unkprog {ψ})
∆6 : ψ ⇒ β

Theorem 6.9. CompoToIf rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

α⇒ θ ∨ ¬θ
≡ { predicate calculus }
α⇒ true

≡ { predicate calculus }
true

∆2 :

α ∧ θ ⇒ ϕ ∧ θ
⇐ { predicate calculus }
α⇒ ϕ

≡ { Γ1 }
true

∆3 :

po ({ϕ ∧ θ}S {ψ})
≡ { Γ3 }
true

∆4 :

α ∧ ¬θ ⇒ ϕ ∧ ¬θ
⇐ { predicate calculus }
α⇒ ϕ

≡ { Γ1 }
true

66

∆5 :

po ({ϕ ∧ ¬θ}unkprog {ψ})
≡ { definition of unkprog }
true

∆6 :

ψ ⇒ β

≡ { Γ4 }
true

6.10 IfIn Rule
Rule:

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gi → {ϕi}Si {ψi}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}
A(θ)

{β ∧ θ}

{α}
if
| G1 → {ϕ1}S1 {ψ1}A(θ){ψ1 ∧ θ}
. . .
| Gi → {ϕi}Si {ψi}A(θ){ψi ∧ θ}
. . .
| Gn → {ϕn}Sn {ψn}A(θ){ψn ∧ θ}
end
{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : α⇒ ∨
i∈[1,n]Gi

Γ2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

Γ3 :
∧

i∈[1,n] po ({ϕi}Si {ψi})
Γ4 :

∧
i∈[1,n] ψi ⇒ β

Γ5 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : α⇒ ∨
i∈[1,n]Gi

∆2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

∆3 :
∧

i∈[1,n]

(
po ({ϕi}Si {ψi})
∧po ({ψi}A(θ) {ψi ∧ θ})

)

∆4 :
∧

i∈[1,n] ψi ∧ θ ⇒ β ∧ θ

Theorem 6.10. IfIn rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

α⇒ ∨
i∈[1,n]Gi

≡ { Γ1 }
true

∆2 :

∧
i∈[1,n] α ∧Gi ⇒ ϕi

≡ { Γ2 }
true

67

∆3 :

∧
i∈[1,n]


 po ({ϕi}Si {ψi})
∧po ({ψi}A(θ) {ψi ∧ θ})




≡ { definition of assume }
∧

i∈[1,n]


 po ({ϕi}Si {ψi})
∧ (ψi ∧ θ ⇒ ψi ∧ θ)




≡ { predicate calculus }
∧

i∈[1,n] po ({ϕi}Si {ψi})
≡ { Γ3 }
true

∆4 :

∧
i∈[1,n] ψi ∧ θ ⇒ β ∧ θ

⇐ { predicate calculus }
∧

i∈[1,n] ψi ⇒ β

≡ { Γ4 }
true

6.11 IfOut Rule
Rule:

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ) {ϕm ∧ θ}Sm {ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

{α}
A(θ∗)

{α ∧ θ∗}
if
| G1 → {ϕ1 ∧ θ∗}S1 {ψ1}
. . .
| Gm → {ϕm ∧ θ}Sm {ψm}
. . .
| Gn → {ϕn ∧ θ∗}Sn {ψn}
end
{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ∨
i∈[1,n]Gi

Γ2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

Γ3 :
∧

i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})
Γ4 :

po ({ϕm}A(θ) {ϕm ∧ θ})
∧ po ({ϕm ∧ θ}Sm {ψm})

Γ5 :
∧

i∈[1,n] ψi ⇒ β

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ∗) {α ∧ θ∗})
∆2 : α ∧ θ∗ ⇒ ∨

i∈[1,n]Gi

∆3 :
∧

i∈[1,n]∧i 6=m α ∧ θ∗ ∧Gi ⇒ ϕi ∧ θ∗
∆4 : α ∧ θ∗ ∧Gm ⇒ ϕm ∧ θ
∆5 :

∧
i∈[1,n]∧i 6=m po ({ϕi ∧ θ∗}Si {ψi})

∆6 : po ({ϕm ∧ θ}Sm {ψm})
∆7 :

∧
i∈[1,n] ψi ⇒ β

IfOut rule. θ∗ , Gm ⇒ θ

Theorem 6.11. IfOut rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

68

∆1 :

po ({α}A(θ∗) {α ∧ θ∗})
≡ { definition of assume }
α ∧ θ∗ ⇒ α ∧ θ∗

≡ { predicate calculus }
true

∆2 :

α ∧ θ∗ ⇒ ∨
i∈[1,n]Gi

⇐ { predicate calculus }
α⇒ ∨

i∈[1,n]Gi

≡ { Γ1 }
true

∆3 :

∧
i∈[1,n]∧i 6=m α ∧ θ∗ ∧Gi ⇒ ϕi ∧ θ∗

⇐ { predicate calculus }
∧

i∈[1,n]∧i 6=m α ∧Gi ⇒ ϕi

⇐ { Γ2 }
true

∆4 :

α ∧ θ∗ ∧Gm ⇒ ϕm ∧ θ
⇐ { definition of θ∗ }
α ∧ (Gm ⇒ θ) ∧Gm ⇒ ϕm ∧ θ
≡ { predicate calculus }
α ∧Gm ∧ θ ⇒ ϕm ∧ θ
⇐ { predicate calculus }
α ∧Gm ⇒ ϕm

⇐ { Γ2 }
true

∆5 :

∧
i∈[1,n]∧i 6=m po ({ϕi ∧ θ∗}Si {ψi})

⇐ { ϕi ∧ θ∗ ⇒ ϕi }
∧

i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})
≡ { Γ3 }
true

∆6 :

po ({ϕm ∧ θ}Sm {ψm})
⇐ { Γ4 }
true

∆7 :

∧
i∈[1,n] ψi ⇒ β

≡ { Γ5 }
true

69

6.12 IfGrd Rule
Rule:

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ){ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm ∧ θ → {ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
| Gm ∧ ¬θ → {α ∧Gm ∧ ¬θ}unkprog{β}
end
{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ∨
i∈[1,n]Gi

Γ2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

Γ3 :
∧

i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})
Γ4 : po ({ϕm}A(θ) {ϕm ∧ θ})
Γ5 : po ({ϕm ∧ θ}Sm {ψm})
Γ6 :

∧
i∈[1,n] ψi ⇒ β

po(target) =
∧

i ∆i

∆1 : α⇒
(
G1 ∨ . . . ∨ (Gm ∧ θ) ∨ . . . ∨Gn

∨ (Gm ∧ ¬θ)

)

∆2 :
∧

i∈[1,n]∧i 6=m (α ∧Gi ⇒ ϕi)

∆3 : α ∧Gm ∧ θ ⇒ ϕm ∧ θ
∆4 : α ∧Gm ∧ ¬θ ⇒ α ∧Gm ∧ ¬θ
∆5 :

∧
i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})

∆6 : po ({ϕm ∧ θ}Sm {ψm})
∆7 : po ({α ∧Gm ∧ ¬θ}unkprog {β})
∆8 :

∧
i∈[1,n] (ψi ⇒ β)

Theorem 6.12. IfGrd rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

α⇒


 G1 ∨ . . . ∨ (Gm ∧ θ) ∨ . . .
∨Gn ∨ (Gm ∧ ¬θ)




≡ { (Gm ∧ θ) ∨ (Gm ∧ ¬θ) ≡ Gm }
α⇒ (G1 ∨ . . . ∨Gm ∨ . . . ∨Gn)

≡ { Γ1 }
true

∆2 :

∧
i∈[1,n]∧i 6=m (α ∧Gi ⇒ ϕi)

≡ { Γ2 }
true

∆3 :

α ∧Gm ∧ θ ⇒ ϕm ∧ θ
⇐ { predicate calculus }
α ∧Gm ⇒ ϕm

≡ { Γ2 }
true

∆4 :

α ∧Gm ∧ ¬θ ⇒ α ∧Gm ∧ ¬θ
≡ { predicate calculus }
true

70

∆5 :

∧
i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})

≡ { Γ3 }
true

∆6 :

po ({ϕm ∧ θ}Sm {ψm})
≡ { Γ5 }
true

∆7 :

po ({α ∧Gm ∧ ¬θ}unkprog {β})
≡ { definition of unkProg }
true

∧
i∈[1,n] (ψi ⇒ β)

≡ { Γ6 }
true

6.13 IfGrd2 Rule
Rule:
{α}

if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm → {ϕm}A(θ){ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

{α}
if
| G1 → {ϕ1}S1 {ψ1}
. . .
| Gm ∧ θ → {ϕm ∧ θ}Sm{ψm}
. . .
| Gn → {ϕn}Sn {ψn}
end
{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ∨
i∈[1,n]Gi

Γ2 :
∧

i∈[1,n] α ∧Gi ⇒ ϕi

Γ3 :
∧

i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})
Γ4 : po ({ϕm}A(θ) {ϕm ∧ θ})
Γ5 : po ({ϕm ∧ θ}Sm {ψm})
Γ6 :

∧
i∈[1,n] ψi ⇒ β

po(target) =
∧

i ∆i

∆1 : α⇒ (G1 ∨ . . . ∨ (Gm ∧ θ) ∨ . . . ∨Gn)
∆2 :

∧
i∈[1,n]∧i 6=m (α ∧Gi ⇒ ϕi)

∆3 : α ∧Gm ∧ θ ⇒ ϕm ∧ θ
∆4 :

∧
i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})

∆5 : po ({ϕm ∧ θ}Sm {ψm})
∆6 :

∧
i∈[1,n] (ψi ⇒ β)

Proviso : α⇒
((∨

i∈[1,n]∧i 6=mGi

)
∨ θ
)

IfGrd2 rule: A variation of the IfGrd rule(Fig. 5.14).

Theorem 6.13. IfGrd2 rule is correctness preserving.

Proof. We assume the correctness of the src program and the proviso, and prove the proof

obligations of the target program(∆i) separately.

71

∆1 :

α⇒ (G1 ∨ . . . ∨ (Gm ∧ θ) ∨ . . . ∨Gn)

≡ { distributivity }
α⇒

(∨
i∈[1,n]Gi

)
∧
((∨

i∈[1,n]∧i 6=mGi

)
∨ θ
)

≡ { Γ1 }
α⇒

(∨
i∈[1,n]∧i 6=mGi

)
∨ θ

≡ { proviso }
true

∆2 :

∧
i∈[1,n]∧i 6=m (α ∧Gi ⇒ ϕi)

≡ { Γ2 }
true

∆3 :

α ∧Gm ∧ θ ⇒ ϕm ∧ θ
⇐ { predicate calculus }
α ∧Gm ⇒ ϕm

≡ { Γ2 }
true

∆4 :

∧
i∈[1,n]∧i 6=m po ({ϕi}Si {ψi})

≡ { Γ3 }
true

∆5 :

po ({ϕm ∧ θ}Sm {ψm})
≡ { Γ5 }
true

∆6 :

∧
i∈[1,n] (ψi ⇒ β)

≡ { Γ6 }
true

72

6.14 WhileIn Rule
Rule:

{α}
while {Inv : ω}
G→
{ϕ}
S
{ψ}

end
{β}
A(θ)

{β ∧ θ}

{α}
A(¬G⇒ θ)

{α ∧ (¬G⇒ θ)}
while {Inv : ω ∧ (¬G⇒ θ)}
G→
{ϕ}
S
{ψ}
A(¬G⇒ θ)

{ψ ∧ (¬G⇒ θ)}
end
{β ∧ θ}

po(src) =
∧

i Γi

Γ1 : α⇒ ω
Γ2 : ω ∧G⇒ ϕ
Γ3 : po ({ϕ}S {ψ})
Γ4 : ψ ⇒ ω
Γ5 : ω ∧ ¬G⇒ β
Γ6 : po ({β}A(θ) {β ∧ θ})

po(target) =
∧

i ∆i

∆1 : po ({α}A(¬G⇒ θ) {α ∧ (¬G⇒ θ)})
∆2 : α ∧ (¬G⇒ θ)⇒ ω ∧ (¬G⇒ θ)
∆3 : ω ∧ (¬G⇒ θ) ∧G⇒ ϕ
∆4 : po ({ϕ}S {ψ})
∆5 : po ({ψ}A(¬G⇒ θ) {ψ ∧ (¬G⇒ θ)})
∆6 : ψ ∧ (¬G⇒ θ)⇒ ω ∧ (¬G⇒ θ)
∆7 : ω ∧ (¬G⇒ θ) ∧ ¬G⇒ β ∧ θ

Theorem 6.14. WhileIn rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

po ({α}A(¬G⇒ θ) {α ∧ (¬G⇒ θ)})
≡ { definition of assume}
α ∧ (¬G⇒ θ)⇒ α ∧ (¬G⇒ θ)

≡ { predicate calculus}
true

∆2 :

α ∧ (¬G⇒ θ)⇒ ω ∧ (¬G⇒ θ)

≡ { predicate calculus }
α ∧ (¬G⇒ θ)⇒ ω

⇐ { predicate calculus }
α⇒ ω

≡ { Γ1 }
true

73

∆3

ω ∧ (¬G⇒ θ) ∧G⇒ ϕ

⇐ { predicate calculus }
ω ∧G⇒ ϕ

≡ { Γ2 }
true

∆4 :

po ({ϕ}S {ψ})
≡ { Γ3 }
true

∆5 :

po ({ψ}A(¬G⇒ θ) {ψ ∧ (¬G⇒ θ)})
≡ { definition of assume }
ψ ∧ (¬G⇒ θ)⇒ ψ ∧ (¬G⇒ θ)

≡ { predicate calculus }
true

∆6 :

ψ ∧ (¬G⇒ θ)⇒ ω ∧ (¬G⇒ θ)

≡ { predicate calculus }
ψ ∧ (¬G⇒ θ)⇒ ω

⇐ { Γ4 }
true

∆7 :

ω ∧ (¬G⇒ θ) ∧ ¬G⇒ β ∧ θ
≡ { predicate calculus }
ω ∧ ¬G ∧ θ ⇒ β ∧ θ
⇐ { predicate calculus }
ω ∧ ¬G⇒ β

≡ { Γ5 }
true

74

6.15 WhileStrInv Rule
Rule:

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S
{ψ}

end
{β}

{α}
A(G⇒ θ)

{α ∧ (G⇒ θ)}
while {Inv : ω ∧ (G⇒ θ)}
G→
{ϕ ∧ θ}
S
{ψ}
A(G⇒ θ)

{ψ ∧ (G⇒ θ)}
end
{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ω
Γ2 : ω ∧G⇒ ϕ
Γ3 : po ({ϕ}A(θ) {ϕ ∧ θ})
Γ4 : po ({ϕ ∧ θ}S {ψ})
Γ5 : ψ ⇒ ω
Γ6 : ω ∧ ¬G⇒ β

po(target) =
∧

i ∆i

∆1 : po ({α}A(G⇒ θ) {α ∧ (G⇒ θ)})
∆2 : α ∧ (G⇒ θ)⇒ ω ∧ (G⇒ θ)
∆3 : ω ∧ (G⇒ θ) ∧G⇒ ϕ ∧ θ
∆4 : po ({ϕ ∧ θ}S {ψ})
∆5 : po ({ψ}A(G⇒ θ) {ψ ∧ (G⇒ θ)})
∆6 : ψ ∧ (G⇒ θ)⇒ ω ∧ (G⇒ θ)
∆7 : ω ∧ (G⇒ θ) ∧ ¬G⇒ β

Theorem 6.15. WhileStrInv rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

po ({α}A(G⇒ θ) {α ∧ (G⇒ θ)})
≡ { definition of assume }
α ∧ (G⇒ θ)⇒ α ∧ (G⇒ θ)

≡ { predicate calculus }
true

∆2 :

α ∧ (G⇒ θ)⇒ ω ∧ (G⇒ θ)

≡ { predicate calculus }
α ∧ (G⇒ θ)⇒ ω

≡ { Γ1 }
true

75

∆3 :

ω ∧ (G⇒ θ) ∧G⇒ ϕ ∧ θ
≡ { predicate calculus }
ω ∧G ∧ θ ⇒ ϕ ∧ θ
⇐ { preciate calculus }
ω ∧ θ ⇒ ϕ

≡ { Γ2 }
true

∆4 :

po ({ϕ ∧ θ}S {ψ})
≡ { Γ4 }
true

∆5 :

po ({ψ}A(G⇒ θ) {ψ ∧ (G⇒ θ)})
≡ { definition of assume }
ψ ∧ (G⇒ θ)⇒ ψ ∧ (G⇒ θ)

≡ { predicate calculus }
true

∆6 :

ψ ∧ (G⇒ θ)⇒ ω ∧ (G⇒ θ)

⇐ { predicate calculus }
ψ ⇒ ω

≡ { Γ5 }
true

∆7 :

ω ∧ (G⇒ θ) ∧ ¬G⇒ β

≡ { predicate calculus }
ω ∧ ¬G⇒ β

≡ { Γ6 }
true

76

6.16 WhilePostStrInv Rule
Rule:

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S
{ψ}

end
{β}

{α}
while {Inv : ω}
G→
{ϕ}
A(θ)

{ϕ ∧ θ}
S
{ψ ∧ θ∗}

end
{β}

{α}
A(θ∗)

{α ∧ θ∗}
while {Inv : ω ∧ θ∗}
G→
{ϕ ∧ θ∗}
unkprog

{ϕ ∧ θ}
S
{ψ ∧ θ∗}

end
{β}

po(src) =
∧

i Γi

Γ1 : α⇒ ω
Γ2 : ω ∧G⇒ ϕ
Γ3 : po ({ϕ}A(θ) {ϕ ∧ θ})
Γ4 : po ({ϕ ∧ θ}S {ψ})
Γ5 : ψ ⇒ ω
Γ6 : ω ∧ ¬G⇒ β

po(target) =
∧

i ∆i

∆1 : po ({α}A(θ∗) {α ∧ θ∗})
∆2 : α ∧ θ∗ ⇒ ω ∧ θ∗
∆3 : ω ∧ θ∗ ∧G⇒ ϕ ∧ θ∗
∆4 : po ({ϕ ∧ θ∗}unkprog {ϕ ∧ θ})
∆5 : po ({ϕ ∧ θ}S {ψ ∧ θ∗})
∆6 : ψ ∧ θ∗ ⇒ ω ∧ θ∗
∆7 : ω ∧ θ∗ ∧ ¬G⇒ β

Theorem 6.16. WhilePostStrInv rule is correctness preserving.

Proof. We assume the correctness of the src program and prove the proof obligations of

the target program(∆i) separately.

∆1 :

po ({α}A(θ∗) {α ∧ θ∗})
≡ { definition of assume }
α ∧ θ∗ ⇒ α ∧ θ∗

≡ { predicate calculus }
true

∆2 :

α ∧ θ∗ ⇒ ω ∧ θ∗

⇐ { predicate calculus }
α⇒ ω

≡ { Γ1 }
true

77

∆3 :

ω ∧ θ∗ ∧G⇒ ϕ ∧ θ∗

⇐ { predicate calculus }
ω ∧G⇒ ϕ

≡ { Γ2 }
true

∆4 :

po ({ϕ ∧ θ∗}unkprog {ϕ ∧ θ})
≡ { definition of unkProg }
true

∆5 :

po ({ϕ ∧ θ}S {ψ ∧ θ∗})
≡ { po is conjunctive in postcondition }
po ({ϕ ∧ θ}S {ψ}) ∧ po ({ϕ ∧ θ}S {θ∗})
≡ { Γ4 }
po ({ϕ ∧ θ}S {θ∗})
≡ { definition of θ∗ }
true

∆6 :

ψ ∧ θ∗ ⇒ ω ∧ θ∗

⇐ { predicate calculus }
ψ ⇒ ω

≡ { Γ5 }
true

∆7 :

ω ∧ θ∗ ∧ ¬G⇒ β

⇐ { predicate calculus }
ω ∧ ¬G⇒ β

≡ { Γ6 }
true

78

Chapter 7

CAPS

7.1 Introduction

We have implemented our methodology in the CAPS system 1. In building CAPS, our aim

has been to build an easy to use IDE that automates the mundane tasks while retaining

the calculational flavor of the derivations. In this chapter, we discuss main features of the

system, the GUI design, the overall architecture of the CAPS system, and the various

design trade-offs involved. We discuss how various features of the system address the issues

identified in Section 2.4.

7.2 Graphical User Interface

The Graphical User Interface of the CAPS system has three main panels (Fig. 7.1). The

bottom panel, called the input panel, is used for selecting a tactic (from a list of available

tactics) to be applied next and for providing the corresponding input parameters. There is

a special tactic called InitTactic which is used for starting a new derivation by providing

a specification. The left panel, also called the tactics panel, shows the list of the tactics

applied so far. It corresponds to a path the derivation tree. Users can navigate back to

an earlier point in the derivation by clicking on the corresponding node in the left panel.

The central panel is called the contents panel. It shows a partially derived program (or a

formula) at the current stage of the derivation.

1The CAPS system is available at http://www.cse.iitb.ac.in/~damani/CAPS

79

http://www.cse.iitb.ac.in/~damani/CAPS

1
2 Init4
3 RTVInPost
4 StepIntoUnknownProgIdx>
5 DeleteConjunct

arr: ArrayBool N: Int r: Bool n: Int

N≥ 0

n = 0

UnknownProg(11)

r ≡ ∃p : 0 ≤ p ∧ p ≤ n : ∀i : 0 ≤ i∧ i < p : arr [i] ∧ ∀i : p ≤ i∧ i < n : ¬ arr [i] ∧ 0 ≤ n ∧ n ≤ N

while

r ≡ ∃p : 0 ≤ p ∧ p ≤ n : ∀i : 0 ≤ i ∧ i< p : arr [i] ∧ ∀i : p ≤ i∧ i < n : ¬ arr [i] ∧ 0 ≤ n ∧ n ≤ N

¬ n = N ——→
UnknownProg(12)

r ≡ ∃p : 0 ≤ p ∧ p ≤ n : ∀i : 0 ≤ i ∧ i < p : arr [i] ∧ ∀i : p ≤ i ∧ i < n : ¬ arr [i] ∧ 0 ≤ n ∧ n ≤ N ∧ n = N

Tactic: DeleteConjunct

n=N
N−n

conjunct =

variant =

Apply

Input Panel

File View Derivations Actions Settings user1@company.com

Contents Panel

Input Panel

Tactics Panel

Figure 7.1. CAPS GUI

Figure 7.2. Structured representation of a formula in normal mode and selection mode.
Users can select a subformula by simply clicking on it.

7.3 Textual vs Structured Representation

One important decision in developing an IDE is the choice between a textual representation

and a structural one. While the tools like Dafny [Lei10] and Why3 [FP13] use textual

representations, the structural representation is more suitable for a tactic based framework

like CAPS. An annGCL program in CAPS has a hierarchical structure consisting of nested

programs and formulas. By structured representation, we mean that such hierarchical

elements are identifiable in the GUI. As discussed later, this allows the user to select

and focus on a subprogram or a subformula. Note that doing the same in a text based

representation will require extra processing [BKSS97].

80

Figure 7.3. Input Panel: On selection of a tactic to be applied, the corresponding input

form is dynamically generated.

Direct editing of the annGCL program may destroy the structure and is disallowed in

CAPS; the only way to generate/modify a program is through a tactic application. This

discipline allows us to capture all the design decisions taken during the derivation. However,

to allow some informality, we do have tactics to directly guess a program fragment (or

the next formula). In such cases, the role of a tactic application is just to ensure - with

the help of theorem provers - that the transformation is correct, and that the structure is

maintained.

The contents panel in Fig. 7.1 shows the structured representation of an annGCL

program. Fig. 7.2 shows the structured representation of a formula in the normal and

the selection mode. The binary logical operators are shown using the infix notation. Only

necessary parentheses are displayed assuming the usual precedence. We put more space

around the lower precedence operators (like ≡) to improve readability.

For inputting the tactic parameters, we prefer a dynamically generated GUI instead of

a static textual input form. On selecting a tactic to be applied next, the corresponding input

form is dynamically generated. Users need not remember the input parameters required

for the tactic. Fig. 7.3 shows the tactic input panel for the Init4 tactic which is used

for specifying the program. Since CAPS is a web-based application, the hypertext-based

display enables providing a help menu for input parameters in a user-friendly way.

For entering formulas, however, we prefer textual input. The formulas are entered in

the LATEX format. The formula input box is responsive; as soon as a LATEX expression is

81

typed, it converts the expression into the corresponding symbol immediately. We use the

MathQuill [Mat] library for this purpose.

7.4 Focusing on Subcomponents

During the program derivation process, an annotated program is nothing but a partially

derived program containing multiple unsynthesized subprograms. The derivation of these

unsynthesized subprograms is, for the most part, independent of the rest of the program.

Hence the CAPS system provides a facility to extract all the contextual information

required for the derivation of a subprogram so that users can focus their attention on the

derivation of one of these unknown subprograms. A subprogram can be selected by simply

clicking on it. On selecting a subprogram, only the extracted context of the subprogram,

and its precondition and postcondition are shown whereas the rest of the program is

hidden.

Similar to the subprogram extraction, users can choose to restrict attention to a

subformula of the formula under consideration. On focusing on a subformula, the system

extracts and presents the contextual information necessary for manipulating the subfor-

mula. Our subformula representation is an extension of the Structured Calculational Proof

format [BGVW97].

The derivation is displayed in a nested fashion. Fig. 7.4 shows a snapshot of the

formula transformations from the derivation of the binary search program. Whenever

a user focuses on a subformula, an inner frame is created inside the outer frame. The

assumptions available in each frame are displayed on the top of the frame. In the figure,

as the user focuses on the consequent of the implication, the antecedent is added to the

assumptions. On successful derivation of all the metavariables, users can step out from the

formula mode. The system then creates a program where the metavariables are replaced

with the corresponding derived expressions.

Unlike the hierarchical program structure, the hierarchical formula structure is not

explicitly shown in the GUI. This is done to reduce the clutter as the hierarchical formula

structure can get very large. It is only displayed when we intend to select a subformula.

This user interaction mode, called a selection mode, is used to select subformulas to be

focused on. Fig. 7.2 shows a formula in the normal mode and in the selection mode.

82

Figure 7.4. Formula transformations from the derivation of the Binary Search program.

7.5 Selective Display of Information

In the annGCL representation, all the subprograms are annotated with the respective

precondition and postcondition. Although this creates a nice hierarchical structure, it

results in a cluttered display which places higher cognitive demand on the attention and

mental resources of the users. An effective way to keep the cognitive load low, is to hide

the irrelevant information in a given context. For example, the annotations that can be

inferred easily from the other annotations should be hidden to reduce the clutter. CAPS

provides a Minimal Annotations mode which displays only the following annotations.

• Precondition and postcondition of the outermost program

• Loop invariants

83

1
2 Init4
3 DeleteConjunct
4 StepIntoUnknownProgIdx>
5 IntroAssignment
6 StepOutTactic
7 StepIntoUnknownProgIdx>
8 IntroAssignment
9 StepOutTactic

StepOutTactic

x: Int y: Int q: Int r: Int

x ≥ 0
y > 0

true

true

q 0

r x
:=

0 ≤ r ∧ q * y + r = x

0 ≤ r ∧ q * y + r = x

while
0 ≤ r ∧ q * y + r = x

¬ r < y ——→

0 ≤ r ∧ q * y + r = x ∧ ¬ r < y

r r − y

q q + 1
:=

0 ≤ r ∧ q * y + r = x

0 ≤ r ∧ r < y ∧ q * y + r = x

0 ≤ r ∧ r < y ∧ q * y + r = x

File View Derivations Actions Settings user1@company.com

1
2 Init4
3 DeleteConjunct
4 StepIntoUnknownProgIdx>
5 IntroAssignment
6 StepOutTactic
7 StepIntoUnknownProgIdx>
8 IntroAssignment
9 StepOutTactic

StepOutTactic

x: Int y: Int q: Int r: Int

x ≥ 0
y > 0

true

q 0

r x
:=

0 ≤ r ∧ q * y + r = x

while
0 ≤ r ∧ q * y + r = x

¬ r < y ——→

r r − y

q q + 1
:=

0 ≤ r ∧ r < y ∧ q * y + r = x

File View Derivations Actions Settings user1@company.com

(a) (b)

Figure 7.5. Final annGCL for the Integer Division problem: a) Full annotations mode,
b) Minimal annotation mode.

• The intermediate-assertion of Composition constructs

All other annotations can be inferred from these annotations without performing a

textual substitution required for computing the weakest precondition with respect to an

assignment statement. Fig. 7.5 shows the Integer Division program with full annotations

and with minimal annotations. All the hidden annotations can be easily inferred from the

displayed annotations. The minimal annotations reduce the clutter to a great extent.

In addition to the annotations, there are lots of other details that can be hidden. For

example, the discharge status of various proof obligations for the SimplifyAuto tactic can

run into several pages, and is hidden by default (The ProofInfo link in the Fig. 7.4). The

annotated programs can also be collapsed by double clicking on them.

84

7.6 Maintaining Derivation History

Loop invariants and other assertions help in understanding and verifying a program.

However, they provide little clue about how the program designer might have discovered

them. For example, at node G in the derivation in Fig. 5.1, we are unable to express

the expression under consideration in terms of the program variables. This guides us to

introduce a fresh variable s and strengthen the invariant with s = Q(n). This crucial

information is missing from the final annotated program. It is therefore desirable to

preserve the complete derivation history to fully understand the derivation of the program.

CAPS maintains the derivation history in the form a derivation tree. Maintaining history

also facilitates backtracking and branching if users want to try out alternative derivation

strategies.

Backtracking and Branching.

In CAPS, we do not allow programmers to directly edit the program; users have to

backtrack and branch to try out different derivation strategies. This restriction ensures

that the derivation tree contains all the information necessary to reconstruct the program

from scratch. All the design decisions are manifest in the derivation tree which helps in

understanding the rationale behind the introduction of various program constructs and

invariants. Using the branching functionality, users can also explore multiple solutions for

the given programming task.

Navigating the Derivation tree

The conventional tree interface is not suitable for displaying the derivation tree. At any

point during a derivation, we are mostly interested in the active branch of the derivation

tree. This active branch is shown in the left panel in the GUI. To make it easy to navigate

to other branches, we show the sibling nodes of every node in the active branch. Users

can navigate across the branches by clicking the sibling markers as shown in Fig. 7.6. If

there are multiple branches under the selected sibling node, then the rightmost branch is

selected.

85

(a) (b) (c)

Figure 7.6. Navigating the derivation tree: Fig. (a) shows schematic diagram of a deriva-

tion tree. Fig. (b) shows the path in the derivation tree containing the currently selected

node (node 12). A marker (a filled circle) to the right of node 12 indicates the presence of

a right-sibling node (node 34) in the derivation tree. Users can click on this sibling marker

to switch to the branch containing node 34. The resulting path is shown in Fig. (c).

7.7 Implementing Assumption Propagation

Assumptions are typically made in the formula mode after stepping into the proof obliga-

tion. After stepping out of the formula mode, they are added as assume statements to the

resulting annGCL programs. The assumption propagation tactics available in the program

mode can then be used to move these assume statements.

For the ease of derivation, the CAPS system provides a metatactic called Propagate-

Assumption which can propagate a selected assumption from its current location to any

desired upstream location, provided there are no intermediate loops in the path. When

multiple rules are applicable during this propagation, the metatactic chooses certain prede-

fined default rules. For propagating assumptions through loops, WhileIn, WhileStrInv, and

WhilePostStrInv rules are implemented. Assertions can also be propagated downwards

when needed. We have implemented heuristics for simplifying the formulas by eliminating

the existential quantifiers in the strongest postconditions.

86

Core Library
Data Structures
* AnnotatedProgram
* Formula
* Derivation Tree
* Frame
...

Derivation
Tactics

PO Generator

Application Server
Model(State)
* Derivation Tree Object
* Head Node
* Selected Node

Tactic
Parser

Web Client
Tactics
View

Content
View

Model(State)
* Derivation Tree Object
* Head Node
* Selected Node Input View

Theorem prover
interface
(Why3) Alt-Ergo

CVC3

SPASS

Z3

Theorem
Provers

Figure 7.7. CAPS Architecture

7.8 System Architecture

The CAPS system is designed as a web application so that it can be deployed easily. The

system is divided into following 3 main components (Fig. 7.7).

Core Library. The core library implements the main tactic application functionality and

the underlying data structures (annGCL, Formula, DerivationTree, DerivationTactic,

Frame, etc.). It also contains a repository of the program and the formula manip-

ulation tactics. The library is integrated with various automated theorem provers

(Alt-Ergo, CVC3, SPASS, and Z3) via the common interface provided by the Why3

framework [FP13]. The library is implemented in Scala and uses the Kiama library

[Slo11] for rewriting.

Application Server. The server stores the current state of the derivation. The appli-

87

cation also implements a tactic parser which parses the tactic request. The server

component is implemented using the Scala play web framework [Pla].

Web Client. The CAPS application is implemented as a single-page web application

based on the Backbone.js framework [Bac]. The client also maintains a state of

the derivation in order to reduce server trips for navigational purpose to increase

responsiveness of the application. The in-browser functionality is implemented in

the Typescript language [Typ] (which complies to Javascript). The GUI module has

different views to display the current state of the derivation.

7.9 Using the CAPS System

In this section, we discuss the use of the CAPS system in the classroom setting. We

introduced the CAPS system in class during the last offering of the course. In Section 2.4,

based on our experience during several offerings of the Program Derivation course, we

have presented common difficulties faced by students in deriving programs without using

any tool support. We discuss how various features of the system helped in addressing these

difficulties.

Tactic Based Methodology. Students incrementally transform a formal specification

into a fully derived program by applying Derivation Tactics. For example, two of the

tactics that we employed in derivation in Figure 2.1 are Replace constant by a variable,

and Range Split. To apply a tactic, one needs to select a tactic from a list and provide the

required input parameters, and the tool automatically performs the corresponding formula

manipulations. By forcing students to enter the required parameters, errors such as CD4

are prevented. The tool ensures correctness after application of every tactic.

Derivation History and Backtracking. As the CAPS tool maintains the entire deriva-

tion history in the form a derivation tree, users can branch off from any point in the

derivation to explore different derivation strategies. This helps take care of the errors

resulting from CD4 and CD6.

Focusing on Subcomponents. The functionality of stepping into subcomponents al-

lows users to focus on the subprograms or subformulas of interest. With this functionality,

88

users need not drag along the context - which remains unchanged - while manipulat-

ing a subformula or subprogram thereby simplifying the derivations (CD2). This helps

take care of the errors resulting from CD6 as the derivation steps for manipulating the

subcomponent are nested and can be collapsed while browsing the proofs.

Automating Formula Transformations. In the manual calculations, all the steps are

kept small enough to be manually verified by the user. This is the main reason why the

program derivations are long even for simple problems, and formal methods are hated by

several students. With a tool support, however, we can afford to take large steps, as long

as the readability is maintained. In general, small steps are good for readability. However,

there are situations where certain calculation is not important from the derivation point of

view. We would like to automate such calculations. We employ a backend theorem prover

to perform required proofs. This makes the program calculations flexible and reduces the

derivation length. This helps with the observed errors CD2 and CD5.

Calculations not involving any metavariables should be automated to the extent

possible. For example, in Fig. 2.1, we skipped the proof of preservation of the invariant

P1 : 0 ≤ n ≤ N . As no metavariable is involved this proof obligation, it is uninteresting

from the derivation viewpoint. Students resent doing such proofs. We, however, still need

to discharge them to ensure correctness. The proof obligation for P1 can be directly

transformed to true by applying the VerifiedTransformation tactic which uses backend

theorem provers. The introduction of this tactic takes care of the errors CD1 and CD3.

In case of failure of external theorem provers in automatically discharging a proof

obligation, we have to carry out the detailed interactive step-by-step proof. A failed

calculational proof often provides clues about how to proceed further with the derivation.

Automated formula transformations take care of the most of the common logic related

errors (CD0).

Assumption Propagation. The functionality of assumption propagation reduces the

ad hoc reasoning and the resulting trial and error by allowing users to propagate assump-

tions to appropriate places. As seen in Section 5.4.2, this simplifies the derivations by

avoiding unnecessary backtrackings. This feature helps in reducing the errors CD2 and

CD6.

89

7.9.1 Evaluation

The CAPS system received very enthusiastic response from the students. We did an

anonymous survey to get specific feedback about the system. There were a total of fourteen

responses. Ten students felt that the use of the tool increased their confidence in the

correctness of the derived program, while three did not feel so, and one student was unsure.

Same pattern was observed for the question whether the tool simplifies or complicates the

task of the derivation. To the question of how would they like to derive the programs in

future, five said using the tool alone, six said that they would like to use the tool along

with paper and pencil, and three students commented that they would not use the tool.

Eight out of the fourteen students also felt that the tool should have been introduced right

from the beginning of the semester, while three suggested introduction around the middle

of the semester, and three students felt that the tool should not be introduced at all but

they did not write any comments. Due to the anonymity of the survey, we are unable to

determine why three students did not like the tool at all.

Overall, we are quite happy with the use of tool in the course. The biggest advantage

was that the students could not submit incorrect derivation. They could only submit either

correct or partially correct answers; since programs were correct-by-construction at all

stages (although they may have been incomplete). We could look at the derivation history

of partial submissions and identify the problems because of which they were stuck at a

particular point. Students were happy about the fact that they knew that their solution

was correct before making the submission. Note that this adds a completely new dimension

to the concept of automatic grading of assignments [ER09].

One unexpected downside of the introduction of the tool was the increase in ad-

hocism in some of the derivations. In the class, we teach various derivation heuristics and

the associated proof obligations, and students are supposed to follow them in the manual

derivation. However, with the tool trying to automatically discharge proof obligations,

some students make wild guesses about the required program constructs, resulting in very

inelegant programs. For example, rather than deriving the value of s′ in Figure 2.1(f), many

students introduce several if statements enumerating different cases involving positive

and negative values of s and A[n]. In comparison, max operator in our derivation can

be implemented using a single if. Note that these programs were inelegant compared to

what is possible with the derivation methodology, and not compared to what is achieved

90

in the standard guess and test methodology. Essentially, these students use the tool as a

program verification system and not as a program derivation system.

7.10 Related Work

All the publicly available IDEs lack in one respect or another with respect to the features

important for our purpose (for example, structured calculations, integration with multiple

theorem provers, backtracking and branching, assumption propagation, etc.). Tools like

Why3 [FP13], Dafny [Lei10], VCC [CDH+09] and VeriFast [JP08] generate the proof

obligations and try to automatically discharge these proof obligations. Although the failed

proof obligations provide some hint, there is no structured help available to the users in

the actual task of implementing the programs. Users often rely on ad hoc use cases and

informal reasoning to guess the program constructs.

Systems like Cocktail [Fra99], Refine [OXC04], Refinement Calculator [BL96b] and

PRT [CHN+96b] provide tool support for the refinement based formal program derivation.

Cocktail offers a proof-editor for first-order logic which is partially automated by a tableau

based theorem prover. However, the proof style is different from the calculational style.

Refine has a plug-in called Gabriel which allows users to create tactics using a tactic

language called ArcAngel. Refine and Gabriel are not integrated with theorem provers

and do not support discharging of proof obligations. In case of Refinement Calculator

and PRT, the program constructs need to be encoded in the language of the underlying

theorem prover. In CAPS, our goal has been to be theorem-prover agnostic, so that we

can exploit the advances made in different theorem provers.

The KIDS [Smi90] and the Specware [SJ95] systems provide operations for the trans-

formational development of programs and have been very successful in synthesizing effi-

cient scheduling algorithms. However, these systems are targeted towards expert users.

Jape [BS97] is a proof calculator for interactive and step-by-step construction of proofs

in natural-deduction style. Although Jape supports Hoare logic, it is mainly intended for

proof construction whereas CAPS is focused on program derivation and has many tactics

specific to program calculations.

91

Chapter 8

Conclusion and Future Work

In this thesis, we set out to address the problem of cumbersome and error-prone derivations

in the context of calculational program derivation. We also aimed at developing a theory

for propagating assumptions in order to reduce the ad hoc reasoning and associated

rework. Towards these goals, we have developed a tool and a methodology for calculational

derivation of imperative programs. We have developed automated theorem prover assisted

tactics, which when coupled with the functionality of extracting context of subcomponents,

significantly reduce human efforts and simplify the derivations. We have filled a gap

in the program derivation literature by developing correctness preserving assumption

propagation rules which help in reducing guesswork and associated rework. We have

designed and implemented a program derivation system called CAPS and demonstrated

the utility of the proposed techniques in the system. The system was used in the Program

Derivation class at IIT Bombay, and the overall feedback was encouraging. The system

avoided, reduced, or otherwise managed most of the common errors we had identified in

the previous offerings of the course.

Although the contributions of the thesis were discussed in the context of the calcula-

tional style and the CAPS system, they are applicable to broader settings. For example,

the automatic simplification of formulas can be useful in any interactive system that deals

with large formulas. The assumption propagation rules we proposed can be adapted for

use in other formal program construction systems. We give one application in the next

section where these rules can be used for formal refactoring of programs. Apart from the

theoretical contributions, other practical details like the interface for carrying out struc-

tured proofs, tactic mechanism for transitioning between program and formula modes,

92

and the integration with theorem provers can be useful to other researchers interested in

building similar systems. We have open-sourced the system for others to use and improve

upon.

Future Work

Expanding the Scope of the Methodology. In the current work, the target program-

ming language we have chosen is very simple. To expand the scope of the methodology,

we can extend the methodology to handle richer programming language constructs like

function calls, recursion, algebraic data types and polymorphic types. This work will in-

volve development of transformation rules for these constructs and encoding the advanced

data types in the external theorem provers.

Integrating Synthesis Solvers. Automated theorem provers help in automatically

discharging the applicability conditions. The theorem provers however are of not much

help during application of rules involving instantiation of metavariables. The syntax guided

synthesis solvers (SyGuS solvers) [ABJ+13] can be used to find appropriate expressions

for the metavariables. This will enable us to develop powerful meta-tactics to handle

quantifiers in the program calculations. We can also employ a SyGuS solver to synthesize

loop-free subprograms during an interactive derivation. The focus of SyGuS is on theories

T for which satisfiability modulo T decision procedures are available. In CAPS, we do not

want to restrict the specification language to certain theories. We can, however, employ

a SyGuS solver during the derivation when the specification of the subprogram under

consideration is in a theory for which a SyGuS solver is available. This has the potential

of significantly simplifying the program calculations.

Formal Code Refactoring. Code refactoring involves restructuring existing computer

code without changing its external behavior. It typically involves incrementally applying

small transformations to the code. Before refactoring, one must have a comprehensive test

suite so that after the refactoring, it can be verified that the refactored code is behaving as

expected. However, there is always a chance of introducing errors as the test suite does not

capture the complete functional behavior. In this thesis, we focused on annotated program

transformation rules for synthesizing programs and propagating assumptions. Similar rules

93

can be developed for transforming a concrete annotated program to another functionally

equivalent annotated program. Such rules can be used for refactoring the code while

ensuring correctness. This functionality would be helpful in development environments

that support invariant annotations.

Calculational Methodology for the Design of Reactive Systems. In [CD11], we

have proposed a methodology for generating a hierarchical representation of the system

for visualizing Event-B [Abr10] models. We use Hierarchical Abstract State Transition

Machine (HASTM) representation, which uses the concepts of hierarchical states and

guarded transitions similar to those in statechart diagrams. This representation makes

the pre- and postconditions of the transitions explicit. Each transition is labeled with a

guard and an action. The HASTM representation can be used to devise a calculational

methodology for the design of discrete transition systems. Given a partial description

of a transition, the missing constituents can be calculated systematically. For example,

users can guess the precondition, the postcondition, and the action for a transition, and

then calculate the guard of a transition by adopting the calculational methodology. This

functionality would be beneficial in reducing the ad hoc steps in the system construction.

94

Appendix A

BigMax Theory in Why3

module CapsUtil

use import int.Int

use HighOrd as HO

predicate non_empty_range(r: int -> bool) = (exists i: int. r i)

predicate empty_range(r: int -> bool) = not(non_empty_range r)

predicate one_point(r: int -> bool)(x: int) =

r x /\ (forall i: int. r i -> i = x)

predicate is_union_of(u p q: int -> bool) =

forall x: int. u x <-> p x \/ q x

predicate is_union_of_v (ru r: int -> bool)(v: int) =

forall x: int. ru x <-> (r x \/ x = v)

predicate disjoint(p q: int -> bool) =

forall x: int. not(p x /\ q x)

predicate are_same(t1 t2: int -> int) =

forall x: int. t1 x = t2 x

end

95

module BigMax

use import int.Int

use HighOrd as HO

use import capsUtil.CapsUtil as CapsUtil

constant bigMax: (int -> bool) -> (int -> int) -> int

function max(x y: int): int = if (x > y) then x else y

axiom onePointMax:

forall r: int -> bool, t: int -> int, x: int.

one_point r x ->

bigMax r t = t x

axiom splitRangeMax:

forall r r1 r2: int -> bool, t t1 t2: int -> int.

non_empty_range r -> non_empty_range r1 -> non_empty_range r2 ->

is_union_of r r1 r2 ->

are_same t t1 -> are_same t t2 ->

bigMax r t = max (bigMax r1 t1) (bigMax r2 t2)

axiom splitRangeRightMax:

forall r r1: int -> bool, t t1 t2: int -> int, v: int.

non_empty_range r -> non_empty_range r1 ->

is_union_of_v r r1 v ->

are_same t t1 -> are_same t t2 ->

bigMax r t = max (bigMax r1 t1) (t2 v)

end

96

Bibliography

[ABJ+13] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-

ina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In Proceedings of

the IEEE International Conference on Formal Methods in Computer-Aided

Design (FMCAD), 2013.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.

Cambridge University Press, 2010.

[ADG+01] Vicki L. Almstrum, C. Neville Dean, Don Goelman, Thomas B. Hilburn, and

Jan Smith. Support for teaching formal methods. SIGCSE Bull., 33(2):71–88,

June 2001.

[Bac] Backbonejs javascript library. http://backbonejs.org/.

[BGVW97] Ralph Back, Jim Grundy, and Joakim Von Wright. Structured calculational

proof. Formal Aspects of Computing, 9(5-6):469–483, 1997.

[BKSS97] Yves Bertot, Thomas Kleymann-Schreiber, and Dilip Sequeira. Implementing

proof by pointing without a structure editor. Technical Report ECS-LFCS-

97-368, University of Edinburgh, 1997.

[BL96a] Michael Butler and Thomas L̊angbacka. Program derivation using the re-

finement calculator. In Theorem Proving in Higher Order Logics: 9th Inter-

national Conference, volume 1125 of LNCS, pages 93–108. Springer Verlag,

1996.

[BL96b] Michael Butler and Thomas L̊angbacka. Program derivation using the re-

finement calculator. In Theorem Proving in Higher Order Logics: 9th Inter-

97

national Conference, volume 1125 of LNCS, pages 93–108. Springer Verlag,

1996.

[BM06] Roland Backhouse and Diethard Michaelis. Exercises in quantifier manipula-

tion. In Mathematics of program construction, pages 69–81. Springer, 2006.

[BS97] Richard Bornat and Bernard Sufrin. Jape: A calculator for animating proof-

on-paper. In Automated DeductionCADE-14, pages 412–415. Springer, 1997.

[BT07] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger

Hermanns, editors, CAV, volume 4590 of LNCS, pages 298–302. Springer,

2007.

[BvW98] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Sys-

tematic Introduction. Graduate Texts in Computer Science. Springer-Verlag,

Berlin, 1998.

[CC] Sylvain Conchon and Evelyne Contejean. The alt-ergo automatic theorem

prover, 2008.

[CD11] Dipak L Chaudhari and Om P Damani. Generating hierarchical state based

representation from event-b models. Proceedings of the B 2011 Workshop,

Electronic Notes in Theoretical Computer Science, 280:35–46, 2011.

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l

Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. Vcc: A prac-

tical system for verifying concurrent c. In Theorem Proving in Higher Order

Logics. Springer, 2009.

[CGG12] Guido Caso, Diego Garbervetsky, and Daniel Goŕın. Integrated program

verification tools in education. Software: Practice and Experience, 2012.

[CHN+96a] David Carrington, Ian Hayes, Ray Nickson, G. N. Watson, and Jim Welsh. A

tool for developing correct programs by refinement. Technical report, 1996.

[CHN+96b] David Carrington, Ian Hayes, Ray Nickson, G. N. Watson, and Jim Welsh. A

tool for developing correct programs by refinement. Technical report, 1996.

98

[Coh90] Edward Cohen. Programming in the 1990s - An Introduction to the Calcu-

lation of Programs. Texts and Monographs in Computer Science. Springer,

1990.

[Cow10] A. J. Cowling. Stages in teaching formal methods. In 23rd IEEE Conference

on Software Engineering Education and Training, 2010.

[DF88] Edsger W. Dijkstra and W. H. Feijen. A Method of Programming. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-

tion of programs. Commun. ACM, 18(8):453–457, 1975.

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DLC06] Isabelle Dony and Baudouin Le Charlier. A tool for helping teach a program-

ming method. In Proc. of the 11th Annual SIGCSE Conference on Innovation

and Technology in Computer Science Education, ITiCSE, 2006.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools

and Algorithms for the Construction and Analysis of Systems. Springer, 2008.

[DS90] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program

Semantics. Springer-Verlag, Berlin, 1990.

[ER09] J. English and T. Rosenthal. Evaluating students’ programs using automated

assessment - a case study. In Proc. of the Conference on Integrating Technology

into Computer Science Education, ITiCSE, 2009.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – Where Programs

Meet Provers. In ESOP’13 22nd European Symposium on Programming,

volume 7792 of LNCS, Rome, Italie, 2013. Springer.

[Fra99] Michael Franssen. Cocktail: A tool for deriving correct programs. In Workshop

on Automated Reasoning, 1999.

[GJTV11] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan.

Synthesis of loop-free programs. In Mary W. Hall and David A. Padua,

99

editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June

4-8, 2011, pages 62–73. ACM, 2011.

[Gri87] David Gries. The Science of Programming. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1st edition, 1987.

[Gro98] Lindsay Groves. Adapting program derivations using program conjunction. In

International Refinement Workshop and Formal Methods Pacific, volume 98,

pages 145–164. Citeseer, 1998.

[Gru92] Jim Grundy. A window inference tool for refinement. In 5th Refinement

Workshop, pages 230–254. Springer, 1992.

[Gru93] Jim Grundy. A Method of Program Refinement. PhD thesis, University of

Cambridge Computer Laboratory, Cambridge, England, 1993.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. CACM:

Communications of the ACM, 12, 1969.

[JP08] Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical

Report CW-520, Dept. of Computer Science, Katholieke Universiteit Leuven,

2008.

[Kal90] Anne Kaldewaij. Programming: The Derivation of Algorithms. Prentice-Hall,

Inc., NJ, USA, 1990.

[Lau04] Kung-Kiu Lau. A beginner’s course on reasoning about imperative programs.

In C.Neville Dean and RaymondT. Boute, editors, Teaching Formal Methods,

volume 3294 of LNCS. Springer Berlin Heidelberg, 2004.

[Lei10] K Rustan M Leino. Dafny: An automatic program verifier for functional

correctness. In Logic for Programming, Artificial Intelligence, and Reasoning.

Springer, 2010.

[LP14] K Rustan M Leino and Nadia Polikarpova. Verified calculations. In Verified

Software: Theories, Tools, Experiments, pages 170–190. Springer, 2014.

100

[LvW97] Linas Laibinis and Joakim von Wright. Context handling in the refinement

calculus framework. Technical Report TUCS-TR-118, Turku Centre for Com-

puter Science, Finland, August 21, 1997.

[Mat] Mathquill: a javascript library for latex, http://mathquill.com/.

[MM01] Panagiotis Manolios and J. Strother Moore. On the desirability of mechanizing

calculational proofs. Inf. Process. Lett., 77(2-4):173–179, February 2001.

[Mor90] Carroll Morgan. Programming from Specifications. Prentice-Hall, Inc., 1990.

[OXC04] Marcel Oliveira, Manuela Xavier, and Ana Cavalcanti. Refine and gabriel:

support for refinement and tactics. In Software Engineering and Formal Meth-

ods, 2004. SEFM 2004. Proceedings of the Second International Conference

on, pages 310–319. IEEE, 2004.

[Pla] Play: A web framework for java and scala. http://www.playframework.com/.

[RS93] Peter J Robinson and John Staples. Formalizing a hierarchical structure of

practical mathematical reasoning. Journal of Logic and Computation, 3(1):47–

61, 1993.

[SGF10] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program

verification to program synthesis. In POPL 2010, pages 313–326, New York,

NY, USA, 2010.

[SJ95] Yellamraju V. Srinivas and Richard Jüllig. Specware: Formal support for com-

posing software, pages 399–422. Springer Berlin Heidelberg, Berlin, Heidelberg,

1995.

[Slo11] Anthony M. Sloane. Lightweight language processing in kiama. In JooM.

Fernandes, Ralf Lmmel, Joost Visser, and Joo Saraiva, editors, Generative

and Transformational Techniques in Software Engineering III, volume 6491 of

Lecture Notes in Computer Science, pages 408–425. Springer Berlin Heidelberg,

2011.

101

[SLTB+06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and

Vijay Saraswat. Combinatorial sketching for finite programs. ACM SIGARCH

Computer Architecture News, 34(5):404–415, 2006.

[Smi90] Douglas R. Smith. Kids: A semiautomatic program development system.

IEEE transactions on software engineering, 16(9):1024–1043, 1990.

[Sol86] Elliot Soloway. What to d0 next: Meeting the challenge of programming-in-

the-large. In Empirical Studies of Programmers: First Workshop, volume 1,

page 263. Intellect Books, 1986.

[SW14] M. Sitaraman and B.W. Weide. Special session: “hands-on” tutorial: Teaching

software correctness with resolve. In SIGCSE 2014 - Proc. of the 45th ACM

Technical Symposium on Computer Science Education, 2014.

[Typ] Typescript: a language for application-scale javascript development,

http://www.typescriptlang.org/.

[vW98] Joakim von Wright. Extending window inference. In Theorem Proving in

Higher Order Logics, pages 17–32. Springer, 1998.

[WBH+02] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrand, Enno Keen, Chris-

tian Theobalt, and Dalibor Topic. SPASS version 2.0. In Andrei Voronkov,

editor, Automated Deduction – CADE-18, volume 2392 of Lecture Notes in

Computer Science, pages 275–279. Springer-Verlag, 2002.

[Why] The why3 platform reference manual. http://why3.lri.fr/doc-0.85/.

102

List of Publications

Journals

• Chaudhari, D. L. and Damani, O. Assumption Propagation through Annotated

Programs. Formal Aspects of Computing (Accepted with minor revisions).

Conferences

• Chaudhari, D. L. and Damani, O. Combining Top-down and Bottom-up Techniques

in Program Derivation. 25th International Symposium on Logic-Based Program

Synthesis and Transformation, LOPSTR 2015.

• Chaudhari, D. L. and Damani, O. Introducing Formal Methods via Program Deriva-

tion. 20th Annual Conference on Innovation and Technology in Computer Science

Education, ITiCSE 2015.

• Chaudhari, D. L. and Damani, O. Automated Theorem Prover Assisted Program

Calculations. The 11th International Conference on Integrated Formal Methods,

iFM 2014.

Workshops

• Chaudhari, D. L. and Damani, O. Building an IDE for the Calculational Derivation

of Imperative Programs. Workshop on Formal-IDE, 2015.

• Chaudhari, D. L. and Damani, O. Generating Hierarchical State Based Representa-

tion From Event-B Models. B Workshop, 2011.

103

Acknowledgments

I would like to thank my advisor, Prof. Om Damani, for his guidance, support and en-

couragement throughout my years of study. He has been an excellent advisor, mentor,

and friend. He has always been available and willing to discuss various issues be they

technical, administrative, or personal. He believed in my abilities and gave me the freedom

to pursue the topic of my interest. The five offerings of his Program Derivation course, for

which I was a teaching assistant, have been instrumental in building the foundations and

in shaping my research interests and thesis goals.

I am thankful to my research progress committee members Prof. Supratik Chakraborty,

Prof. Abhiram Ranade, and Prof. Amitabha Sanyal who have all been very supportive,

encouraging, and challenging. With their expertise in diverse fields such as formal methods,

algorithms, and functional programming, they brought diverse perspectives which enriched

my educational and research experience.

I am grateful to Prof. Claude Marché for hosting me at Toccata research group,

INRIA Saclay. He along with Jean-Christophe Filliâtre, Andrei Paskevich helped me in

integrating the Why3 framework and in coming up with the theories for the arithmetic

quantifiers.

I thank Prof. Ralph-Johan Back for hosting me at the Åbo Akademy, Finland and

giving my valuable feedback on my work. I thank Dr. Johannes Eriksson for explaining the

workings of the SOCOS environment and Dr. Viorel Preoteasa for the insightful discussions

on theorem prover integration.

I thank Prof. Dominique Méry for giving valuable feedback at the FIDE workshop. I

thank Prof. Reiner Hähnle, Dr. Richard Bubel, and Dr. Martin Hentschel for helping me

with the Key Verification framework during my stay at TU Darmstadt, Germany. Special

thanks to Dr. Stijn de Gouw for explaining the verification of Tim Sort algorithm in the

Key framework.

Many thanks to my friends and colleagues for their support and encouragement.

Special thanks to Nikhil Hooda, Pratik Jawanpuria, Anindya Sen, Naveen Nair, Mitesh

Khapra, Devendra Bhave, Abhisekh Sankaran, Hrishikesh Karmarkar, Ramesh Gopalakr-

ishnan, Vaibhao Tatte, Dhaval Bonde, Dhritiman Das, Aditya Joshi, Balamurali A R. I

always turned to them for advice on various issues. I would also like to thank my friend

Avinash Mane who is my go-to man for practical advice in times of uncertainty.

Further thanks go to the students of the Program Derivation class who participated

in the surveys and gave constructive feedback on the program derivation system. I would

also like to thank the office staff of the Computer Science Department at IIT Bombay for

their assistance. In particular, I would like to thank Vijay Ambre for prompt handling of

all the requests.

I would like to thank Mrs. Seema Periwal for all the help and making my family feel

at home during our stay in the campus.

I thank the Ministry of Human Resource Development (MHRD), Government of

India for the PhD assistantship, the Tata Consultancy Services (TCS) for supporting the

work through a research fellowship, IIT Bombay and Google India for the conference travel

grants.

Finally, I can never thank enough my family: my mother Mrs. Usha Chaudhari and

my sister Mrs. Bimba Chaudhari for their unconditional love and support; my wife Deepa

for single handedly managing the household in addition to a full time job; my son Pinak,

who is now five, for being quite understanding for his age. Without your support I would

never have been able to achieve my goals. Thank you!

Date: Dipak Liladhar Chaudhari

105

	Title Page
	Dedication
	Declaration
	Abstract
	Contents
	List of Tables
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Organization of the Thesis

	2 Calculational Style of Programming
	2.1 Calculational Style
	2.2 Preliminaries
	2.2.1 Hoare Triple, Weakest Precondition, and Strongest Postcondition
	2.2.2 Eindhoven Notation

	2.3 Motivating Example
	2.4 Teaching Calculational Style of Programming

	3 Derivation Methodology
	3.1 Derivation Process
	3.2 Annotated Programs
	3.3 Annotated Program Transformation Rules
	3.4 Formula Transformations

	4 Theorem Prover Assisted Program Derivation
	4.1 Harnessing the Automated Theorem Provers
	4.2 Theorem Prover Assisted Tactics
	4.2.1 Extracting Context of Subprograms
	4.2.2 Extracting Context of Subformulas
	4.2.3 Automation at Tactic Level

	4.3 Why3 Encoding
	4.3.1 Encoding Scheme
	4.3.2 Encoding Function (E)
	4.3.3 Create a Why3 theory
	4.3.4 Example

	4.4 Related Work

	5 Assumption Propagation
	5.1 Introduction
	5.2 Maximum Segment Sum Revisited
	5.2.1 Maximum Segment Sum Derivation
	5.2.2 Ad Hoc Decision Making
	5.2.3 Motivation for Assumption Propagation

	5.3 Assumption Propagation
	5.3.1 Assumption Propagation for Bottom up Derivation
	5.3.2 Precondition Exploration
	5.3.3 Rules for Propagating and Establishing Assumptions
	5.3.4 Adding New Transformation Rules
	5.3.5 Selecting Appropriate Rules
	5.3.6 Down-propagating the Assertions

	5.4 Derivation Examples
	5.4.1 Evaluating Polynomials
	5.4.2 Back to the Motivating Example

	5.5 Related Work

	6 Correctness of Assumption Propagation Rules
	6.1 SkipUp Rule
	6.2 AssumeUp Rule
	6.3 AssumeMerge Rule
	6.4 AssignmentUp Rule
	6.5 UnkProgUp Rule
	6.6 UnkProgEst Rule
	6.7 CompositionIn Rule
	6.8 CompositionOut Rule
	6.9 CompoToIf Rule
	6.10 IfIn Rule
	6.11 IfOut Rule
	6.12 IfGrd Rule
	6.13 IfGrd2 Rule
	6.14 WhileIn Rule
	6.15 WhileStrInv Rule
	6.16 WhilePostStrInv Rule

	7 CAPS
	7.1 Introduction
	7.2 Graphical User Interface
	7.3 Textual vs Structured Representation
	7.4 Focusing on Subcomponents
	7.5 Selective Display of Information
	7.6 Maintaining Derivation History
	7.7 Implementing Assumption Propagation
	7.8 System Architecture
	7.9 Using the CAPS System
	7.9.1 Evaluation

	7.10 Related Work

	8 Conclusion and Future Work
	Appendix A BigMax Theory in Why3
	Bibilography
	List of Publications
	Acknowledgments

