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Abstract

Multi-label classification is crucial to several practical ap-
plications including document categorization, video tagging,
targeted advertising etc. Training a multi-label classifier re-
quires a large amount of labeled data which is often unavail-
able or scarce. Labeled data is then acquired by consulting
multiple labelers—both human and machine. Inspired by en-
semble methods, our premise is that labels inferred with high
consensus among labelers, might be closer to the ground
truth. We propose strategies based on interaction and active
learning to obtain higher quality labels that potentially lead
to greater consensus. We propose a novel formulation that
aims to collectively optimize the cost of labeling, labeler re-
liability, label-label correlation and inter-labeler consensus.
Evaluation on data labeled by multiple labelers (both human
and machine) shows that our consensus output is closer to
the ground truth when compared to the “majority” baseline.
We present illustrative cases where it even improves over the
existing ground truth. We also present active learning strate-
gies to leverage our consensus model in interactive learning
settings. Experiments on several real-world datasets (publicly
available) demonstrate the efficacy of our approach in achiev-
ing promising classification results with fewer labeled data.

1 Introduction
Multi-label classification is a widely studied problem
(Zhang and Zhou 2014) and naturally manifests in sev-
eral real-world applications (Ueda and Saito 2002; Katakis,
Tsoumakas, and Vlahavas 2008; Qi et al. 2007) that in-
clude text categorization, image or video tagging, infor-
mation retrieval, recommendation systems, etc. Training of
these models typically requires large amounts of labeled
data which is often unavailable or scarce. Labeled data is
then generated either by an expert oracle, by multiple hu-
mans or by a semi-automatic human-in-the-loop approach.

We consider this problem of labeling a large (possibly
growing) multi-label data, beginning with the “cold start”
setting, in which, there is little or no labeled data. We
would like to label, with high confidence, all instances in
the dataset and additionally, limit the labeling cost as much
as possible. The problem poses several unique challenges.
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Inter-label correlation: Certain labels, especially in a large
label space (E.g. lake-water), might be mutually (semanti-
cally) correlated. This correlation may be exploited to mini-
mize labeling cost (Xie et al. 2013).
Labeler reliability: We assume the availability of multiple
labelers, not only humans, but also machine-learned multi-
label classification models. These labelers might have com-
plementary expertise, such that, the judgments by a labeler
might be more reliable on a subset of labels. Can the labelers
mutually benefit from their individual expertise (Raykar et
al. 2010)?
Collective prediction: How do we aggregate the judgments
from individual labelers, while accounting for inter-label
correlation and labeler reliability to generate high confi-
dence consensus label predictions for each instance? Table 1
shows an illustrative example from an image labeling task,
where a simple majority-based consensus falls short of ob-
taining the expected labeled output.
Labeling cost: Can we use the consensus output to “ac-
tively” train classification models in order to minimize the
overall labeling budget (Tong and Chang 2001)?

These challenges form the focus of our study. We argue
that in a problem like this involving multiple (i) instances,
(ii) labels and (iii) labelers, with varying degrees of noise or
confusion, it is the “consensus” along these three dimensions
that orients the labeling towards the desired ground truth.

2 Related Work
Active learning (Settles 2009; Tong and Koller 2002) is a
well researched area. Pool-based sampling (Tong and Chang
2001), a popular active learning strategy, assumes the avail-
ability of a small set of labeled data and a large pool of unla-
beled data. Two main measures used to evaluate informative-
ness for sampling instances are query by uncertainty (Tong
and Chang 2001) and query by committee (Seung, Opper,
and Sompolinsky 1992).

Whereas the body of literature cited above targets single-
label classification problems, active learning for multi-label
classification has received some attention as well. Brinker
(2006) uses a one-vs-all approach to multi-label classifica-
tion and selects instances that minimize the smallest SVM
margin amongst all the one-vs-all binary classifiers. Li,
Wang, and Sung (2004) propose a mean max loss (MML)
strategy that samples instances that lead to the maximum re-



Image Judgments Majority Desired

• L1: temple
• L2: buildings castle nighttime plants reflection sky water window
• L3: buildings plants reflection
• L4: castle plants reflection sky
• L5: buildings castle lake plants reflection water
• L6: nighttime
• L7: buildings plants reflection sky water
• L8: buildings plants reflection water

• buildings
• plants
• reflection
• water

• buildings
• plants
• castle
• nighttime
• reflection
• sky
• water

Table 1: Illustrative example: Majority labels fall short of the expected output

duction in expected loss. Yang et al. (2009) also propose a
sampling strategy that aims to maximize the expected loss
reduction and uses the SVM version space to measure loss
reduction. Qi et al. (2008; 2009) proposed two-dimensional
active learning algorithms for image classification, that se-
lect instance-label pairs to minimize the Bayesian classifi-
cation error bound. Russakovsky, Li, and Fei-Fei (2015) re-
cently presented a Markov Decision Process-based frame-
work that seamlessly integrates computer vision models and
human feedback for an object annotation task. Griffith et al.
(2013) directly incorporate human feedback for policy shap-
ing in a Bayesian Q-learning RL formalism.

In contrast to relying on an omniscient oracle for label-
ing, there is also work in the active learning literature that
makes use of many imperfect labelers (Raykar et al. 2010;
Yan et al. 2011; Dekel and Shamir 2009) and accounts
for both labeler and model uncertainty (Sheng, Provost,
and Ipeirotis 2008). Donmez and Carbonell (2008) pro-
pose a proactive learning method that jointly selects the
optimal labeler and instance with a decision theoretic ap-
proach. Several consensus-based prediction combination al-
gorithms (Gao et al. 2009; Li and Ding 2008) exist that
combine multiple model predictions to counteract the effects
of data quality and model bias. Recently, Xie et al. (2013)
extended this to multi-label classification and proposed al-
gorithms to consolidate the predictions of base models
by maximizing model consensus and exploiting label-label
correlations. There also exist label embedding approaches
from the extreme classification literature (Yeh et al. 2017;
Bhatia et al. 2015) that exploit inter-label correlation. While
these approaches assume that the imperfect labeler’s knowl-
edge is fixed, Fang et al. (2012) recently presented a self-
taught active learning paradigm, where a crowd of imperfect
labelers learn complementary knowledge from each other.
However, they use instance-wise reliability of labelers to
query only the most reliable labeler without any notion of
consensus.

Our work differs from the aforementioned works in two
ways - (1) we consider a more general case of multi-label
active learning while generating consensus amongst mul-
tiple labelers—both human and machine; (2) the scope of
our problem poses the interesting research challenge of gen-
erating high-quality labeled data, while accounting for la-
beler reliability, model uncertainty and label-label correla-
tions. Whereas the literature attempts to address subsets of
this problem, to the best of our knowledge, there is no work

that has looked at this problem in its entirety.
Our Contributions: Using a carefully articulated interplay
of high consensus labeling of instances and reliable users,
we propose a novel interactive multi-label consensus label-
ing model. We also discuss how this model could be used
in active learning settings for multi-label classification with
multiple labelers. We propose an influence-based sampling
strategy that samples instances for labeling so as to maxi-
mize the expected consensus on unlabeled data. Addition-
ally, a computationally cheaper, yet effective uncertainty-
based sampling approach is proposed, so as to improve the
consensus on the most confused instances in the unlabeled
dataset.

3 Problem Definition

We are provided a set X = {xi}i∈{1···n} of data instances,
and a label set L = {yj}j∈{1···l}. Each xi is a feature vector
representing the corresponding instance. The task of multi-
label classification is to assign to each instance xi, a subset
of labels from L. Let the ground truth labelling for xi be
represented by a binary label vector zi = [z1i . . . z

l
i], where

zji ∈ {0, 1}. If Z = {0, 1}l denotes the set of all possible
label combinations, then the multi-label classification prob-
lem can be expressed as a decision function f : X→ Z .

Learning the decision function f requires large amounts
of labeled data and manually curating this labeled data in-
curs cost. Let DL be a (partially) labeled dataset and DU be
a large unlabeled dataset. Further, suppose that we have a
group of m independent labelers M = {wk}k∈{1···m}, both
human and machine, possibly noisy and untrained. We wish
to expand the labeled dataset DL by successively querying
for labels of unlabeled data points from DU . On querying a
labeler wk ∈ M , the response Y k is an n × l binary matrix
with Y kij ∈ {0, 1} denoting the class value of the ith instance
for the jth label by the kth labeler. Let g be a prediction
combination function that takes as input multiple label pre-
diction matrices Y k and outputs a final prediction matrix U .
Then our aim is to expand the labeled datasetDL by labeling
the unlabeled data points from DU using an efficient sam-
pling strategy, such that the cost of labeling is minimized,
and simultaneously train machine labelers wk ∈ M which
learn the prediction functions fk. In fact, from the perspec-
tive of the machine labeler, this interactive labeling approach
is very much related to active learning.



Figure 1: Bipartite Graph for MLCM-r

4 Our Approach

We assume the availability of a group of human/machine la-
belers with complementary knowledge sets such that, each
might be more reliable on a subset of labels. While a
majority-based voting scheme is popular in arriving at a
combined prediction, we propose a consensus-based predic-
tion combination model that also exploits the inter-label cor-
relation and label-wise labeler reliability. Later, we also dis-
cuss how our consensus model could be leveraged in interac-
tive settings and could be used to actively learn the machine
models, thereby progressively lowering the human labeling
cost. We present two active learning-based sampling strate-
gies.

4.1 Consensus-based Prediction Combination

Our prediction combination function g leverages the multi-
label consensus maximization for ranking (MLCM-r) ap-
proach proposed by (Xie et al. 2013) and we describe it
briefly here. Consider a bipartite graph of n instance nodes
x1, . . . ,xn and v = m× l group nodes, where a group node
represents a labeler-label combination. Matrix A encodes
the connection information in the bipartite graph, where an
ith instance is connected to a (k − 1)× l+ j-th group node
(encoded as 1 in the matrix), if the k-th model predicts that
the j-th label is relevant to the i-th instance (or Y k[i, j] = 1).
An instance node can be connected to more than one group
nodes from a single model, representing the multi-label pre-
dictions of that model. Fig. 1 shows a sample graph for two
instances, three labels and two labelers. A dashed rectangle
surrounds group nodes which belong to the same model. An-
other layer of nodes, called label nodes, represent the label
that a group node stands for. Connections between this layer
of nodes and the group nodes is encoded in the matrix B.
The matrices and notation used in MLCM-r are described in
Table 2.

MLCM-r maximizes model consensus while exploiting
label-label correlations. However, it assumes uniform la-
beler expertise and does not account for differential labeler
reliability. In our consensus maximization formulation, we
alter the original MLCM-r formulation in order to incorpo-
rate labeler reliability.

Explanation
v Number of groups (= m× l), with index c
A n × v matrix such that ai,c is the prediction of label (c

mod l) on instance xi by model bc/lc
B v × l matrix of probability distributions on label nodes
U n × l matrix such that ui,j is the probability that label

j is relevant to xi

Q v × l matrix such that qc,j is the probability of seeing
label j given the label corresponding to group node gc

Table 2: Notations for MLCM-r

4.2 Labeler Reliability
Labelers might have different expertise and therefore their
labeling might be more reliable on certain labels than oth-
ers. We propose a modified consensus model, referred to as
MLCMur, that incorporates labeler reliability in the MLCM-
r model. Let rkj (or rc) be the reliability score of labeler Mk

on label j (or group gc where, c = (k − 1)l + j). For each
iteration t′ > 0 we solve the following modified MLCM-r
optimization problem, with rc fixed

min
U,Q

n∑
i=1

v∑
c=1

rt
′−1
c ×aic‖ut

′

i −qt
′

c ‖2+α
v∑
c=1

‖qt
′

c −bc‖2 (1)

s.t.

ut
′

ij ≥ 0,

l∑
j=1

ut
′

ij = 1, i = 1, ..., n

qt
′

cj ≥ 0,

l∑
j=1

qt
′

cj = 1, c = 1, ..., v

The superscript t′ denotes the iteration index (r0c = 1). ut
′

i

and qt
′

c are obtained using equations (2) and (3).
The first term ensures that if an instance xi is linked to

group gc (aic = 1), then their conditional probability esti-
mates must be close. The second term ensures that the prob-
ability distribution on the group nodes after consensus does
not deviate much from its initial probability distribution. α
is the penalty for constraint violation. ui and qc are proba-
bility vectors and therefore each of their components must
be greater than or equal to 0 and their sum equals to 1.

The solution is obtained by block co-ordinate descent,
where at every iteration t:

qtc =

∑n
i=1 r

t′−1
c × aicut−1i + αbc∑n
i=1 r

t′−1
c × aic + α

(2)

uti =

∑v
c=1 r

t′−1
c × aicqtc∑v

c=1 r
t′−1
c × aic

(3)

Upon convergence, the final probability distributions are
given in the rows of U and the Q matrix captures the inter-
label correlation probabilities. The labeler reliability is then
updated in the following manner

rt
′

c ← rt
′−1
c + γ(κt

′

c − rt
′−1
c ) (4)



where, κc is an agreement measure that captures the agree-
ment between the k-th labeler and the consensus model on
label j across all labeled instances and γ < 1 is a con-
stant. The iterative procedure is repeated until convergence,
‖κt′c − κt

′−1
c ‖2 ≤ δ, for some constant δ (we set it to 0.01).

Both δ and γ are empirically tuned to maximize κc over cur-
rently labeled instances on a held-out dataset. As agreement
measure, we use Cohen Kappa (Cohen 1968), which is a
standard metric for inter-rater agreement.

5 Active Learning
Active learning aims to acquire labels for instances from
an unlabeled pool, so as to train an underlying classifier,
while incurring minimum labeling cost. It is an iterative pro-
cedure where at every successive iteration, it samples the
most informative instance, gathers its label and trains the
underlying classification model with the updated labeled in-
stance pool. Here, we propose two strategies for sampling
the most informative instance - (1) Uncertainty-based sam-
pling and (2) Influence-based sampling. We then acquire
its labels from the labelers and use our labeler reliability-
weighted MLCMur model to arrive at the consensus labels
for the instance.

5.1 Uncertainty-based Sampling
Let gL be the consensus model obtained using m machine
labelers, that are trained with the labeled dataset DL. We
also define an agreement function κ that measures agree-
ment between label sets, where a label set could be an out-
put fkL(xi) of a kth prediction function, output gL(xi) of the
consensus model or the ground truth zi. Overall inter-labeler
agreement for an instance x is computed as

κx =
1

m

m∑
k=1

κ(fkL(x), gL(x)) (5)

We then sample that instance from the unlabeled pool
which has minimum overall agreement. That is, x∗ =
minx∈DU

κx. Low inter-labeler agreement is an indication
of confusion (or uncertainty) among machine labelers and
therefore inclusion of this instance in the labeled pool (after
human labeling) might lead to better trained machine label-
ers. The output of the consensus model, gL(x) = ux, is a
probability distribution across the labels. We obtain a binary
label prediction from it, such that ujx = 1, if ujx > τ , 0
otherwise, for some threshold 0 < τ < 1. The threshold is
selected such that it maximizes the overall agreement on that
instance, that is, τ = argmax0<τ<1 κx.

5.2 Influence-based Sampling
The expected agreement on the unlabeled dataset DU , for a
consensus model obtained from DL, is given by

σL =
1

|DU |
∑

x∈DU

∑
z∈Z

κ(gL(x), z)P (z|x) (6)

After sampling an instance x∗ ∈ DU , letDL′ = DL∪x∗ be
the new labeled dataset and the expected agreement on DU

based on DL′ is given by

σL′ =
1

|DU |
∑

x∈DU

∑
z∈Z

κ(gL′(x), z)P (z|x) (7)

We wish to sample x∗ that offers maximum improvement in
the expected agreement.

x∗ = arg max
x∈DU

∑
x∈DU

∑
z∈Z

(κ(gL(x), z)−κ(gL′(x), z))P (z|x)

Assuming that all instances in DU \ {x∗} have an equal im-
pact on the learners (Yang et al. 2009), we have

x∗ = arg max
x∈DU

∑
z∈Z

(κ(gL(x), z)− κ(gL′(x), z))P (z|x)

(8)
The solution to the above equation requires us to estimate the
improvement in expected agreement and estimate the condi-
tional probability P (z|x). We will discuss these below.

Improvement in Expected Agreement (Dong et al.
2015) proposed an online consensus model that achieves on-
line updates to the MLCM model by reformulating the iter-
ative update equations as closed form solutions.

Q∗A = (I −DλSA)
−1D1−λB (9)

UQ?
A
= D−1n AQ∗A (10)

where,
Dv = diag{

∑n
i=1 aic}v×v , Dn = diag{

∑v
c=1 aic}n×n,

Kv = diag{
∑l
j=1 bcj}v×v , Dλ = (Dv + αKv)

−1Dv ,
D1−λ = (Dv + αKv)

−1(αKv), SA = D−1v A′D−1n A.
Consensus prediction for a new instance is then:

gL(x) =
AL(x)Q

?
A

1TAL(x)
and gL′(x) =

AL(x)Q
?
Ãx

1TAL(x)
(11)

where, AL(x) = [f1L(x)f
2
L(x) · · · fkL(x)] is a 1 × v ma-

trix represents output of all prediction functions fL and

Ãx =

[
A

AL(x)

]
. Q?

Ãx
can be efficiently computed from Q?A

by using the method proposed by Dong et al. This makes
it possible to efficiently compute gL′(x) and thereby the
agreement improvement κ(gL(x), z)− κ(gL′(x), z).

Estimate Conditional Probability Estimating P (z|x) for
all possible z ∈ Z is intractable due to the exponential
search space (Z = {0, 1}l). This is particularly harder in an
active learning setting due to limited training data. We there-
fore relax the search space by considering a subset Zx ⊂ Z
that represents the most possible label combinations for the
instance x. We expect the agreement to have maximum im-
provement on this subset Zx, as the correct label combina-
tion might most likely belong to this subset. Next, we de-
scribe our relaxation approach to arrive at Zx.

Assuming the labels to be independent, we have,
P (z|x) =

∏
j P (z

j |x). We model P (zj |x) as h(〈wj ,x′j〉+
wj0), where, x′j ∈ Rm is a feature vector corresponding to
x, comprising m labelers’ output for the j-th label, wj0 and
wj are model parameters trained on the labeled data DL. In



order to learn these weights, we train l logistic regression
classifiers, using as features the m labelers’ outputs in the
labeled data. Next, we set zj as given below.

zj =

 0, if P (zj |x) < 0.5− δ
1, if P (zj |x) ≥ 0.5 + δ
{0, 1}, if 0.5− δ ≤ P (zj |x) < 0.5 + δ


It is this subset Zx of label combinations on which we com-
pute the expected agreement. That is, we relax the Equa-
tion (8) to:

x∗ = arg max
x∈DU

∑
z∈Zx

(κ(gL(x), z)− κ(gL′(x), z))P (z|x)

6 Evaluation
We describe the experimental setup and present an ablation
study of various components of our approach.

6.1 Experimental Setup
We evaluated our approach on multiple publicly available1

datasets for multi-label classification (Table 3).

Dataset #Instances #Features #Labels
Scene† 500 128 33
Flags† 194 19 7
Medical* 978 1,449 45
Enron* 1,672 1,001 53
Slashdot* 3,782 1,101 22
Corel5k* 5,000 499 374
Mediamill* 43,907 120 101
*Simulated labelers †Human labelers

Table 3: Datasets

Human labeler judgments: Multiple human labelers’ judg-
ments are obtained by setting up labeling tasks on crowd-
flower2 for two of the datasets viz. Flags and Scene (Chua et
al. July 8 10 2009). We received human judgments from 8
labelers. For other datasets, we simulated labelers using an
approach similar to that used by (Li, Jiang, and Zhou 2015)
and describe it briefly next.
Simulation of human labelers with varied reliability: We
simulated 6 human labelers with different expertise (relia-
bility). For each dataset and for each label j, a logistic re-
gression model is trained using all the instances and features
in the dataset. The probability output of the model on the
dataset is then used to obtain 6 clusters using k-means clus-
tering. Each simulated human labeler wm,m ∈ {1, . . . , 6},
is assumed to be an expert on the m-th cluster and provides
the ground truth label for instances in that cluster. For the
remaining data in the other clusters, it provides the ground
truth label with probability 0.75 (or flips the ground truth la-
bel with probability 0.25).
Modeling machine labelers: We use a one-vs-all SVM as
our choice of machine model. In order to simulate multi-
ple machine models (we simulate 6 machine models) with

1https://goo.gl/E49amv
2https://www.crowdflower.com/

differential behavior on label subsets, we use an approach
similar to the one for simulating human labelers.

6.2 Evaluation Measure
We use micro-averaged F1, a standard measure for evaluat-
ing multi-label classifiers (Yang et al. 2009).

F1 = Fmicro1 =
2
∑l
j=1

∑n
i=1 y

j
i z
j
i∑l

j=1

∑n
i=1 y

j
i +

∑l
j=1

∑n
i=1 z

j
i

(12)

Dataset Judgments Majority MLCM-r MLCMur

κ F1 κ F1 κ F1 κ F1

Flags .6 - .8 .83-.9 .874 .934 .874 .934 .873 .933
Scene .32 - .6 .35 - .65 .637 .675 .645 .682 .641 .679
Scene* .34 - .79 .37 - .81 .824 .846 .851 .869 .894 .907
*Corrected ground truth

Table 4: How good is the consensus output
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Figure 2: User reliability scores - Scene Dataset

6.3 How Good is Our Consensus Model?
We obtained consensus labels over the human judgments
collected on the Flags and Scene datasets. The human judg-
ments were subjected to three consensus models viz. (1)
baseline majority-based consensus; (2) MLCM-r (without
labeler reliability); (3) our MLCMur. Table 4 shows these
results in comparison to the min-max κ (and F1) obtained
from labeler judgments. The consensus output is clearly bet-
ter than any of the individual labeler judgments, thereby es-
tablishing the merit of consensus in general. Further, both
MLCM-r and MLCMur, by virtue of modeling label-label
correlations (Refer to Fig. 4), seem to outperform the base-
line majority-based model. Although, both MLCM-r and
MLCMur seem to show comparable performance, a closer
inspection of the Scene ground truth revealed several dis-
crepancies. We therefore, manually corrected this ground
truth3 (Scene* in the table) and evaluated the model out-
puts against this. Our MLCMur seems to benefit from the
labeler reliability-based weighting and the consensus labels

3Shared at https://goo.gl/ZG3gfF
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Figure 3: Average Micro-F1 (with standard error) for different learning strategies on different datasets
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Figure 4: Label-label correlation in Scene dataset

indeed seem much closer to the ground truth. Further im-
provements in recall (8%) could be achieved by giving feed-
back to the labelers in cases where highly reliable labelers
contradict with each other and prompting them to reconsider
their judgments.

Image Majority MLCM-r MLCMur

• buildings
• plants
• reflection
• water

• buildings
• nighttime
• reflection
• sky
• water

• buildings
• castle
• nighttime
• reflection
• sky
• water

Table 5: Model comparison: Illustrative example
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Figure 5: Effect of varying active learning batch size

6.4 Effect of Labeler Reliability
Fig. 2 shows the label-wise reliability scores (for a subset of
labels) for each labeler computed by our MLCMur model on
the Scene dataset. As can be seen, labeler reliability indeed
seems to vary across labels. A few high reliability labelers
for a label seem to influence the consensus output of the
model (Refer to Table 5).
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Figure 6: Effect of labeler reliability
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Figure 7: Effect of size of unlabeled instance space (iteration) on running time
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6.5 Evaluation of Active Learning
We leverage our consensus model in active learning settings
using multiple human and machine labelers. The consensus
output over multiple human judgments on a small subset of
data is used to bootstrap cold-start scenarios. Using this la-
beled data to train the machine models, subsequent instances
are sampled for labeling either at random (Rand-R) (for pas-
sive learning) or actively using (i) uncertainty-based sam-
pling (Unc-R) or (ii) influence-based sampling (Inf-R).

Comparison of Passive and Active Learning Starting
with an initial set of 20 labeled instances, we perform 100
iterations of learning, sampling a batch of 5 (15 for Corel)
instances at every iteration. At every iteration, we evaluate
the model on an independent test set (30% of dataset). The
consensus output over the label prediction from multiple ma-
chine models is used for evaluation. We report average re-
sults (with standard error) over three runs with random ini-
tialization of the training data (Refer to Fig. 3). We see that
the model does benefit from active learning and achieves
higher accuracy with fewer number of training instances
than those required for passive learning. As expected, Inf-
R outperforms Unc-R in most cases due to its sampling of
instances that lead to maximum improvement in expected
agreement. The performance of Unc-R depends on the accu-
racy of trained models and might suffer if the models are not
well trained. With less initial training data, the three policies
seem to show a comparable performance. Practical applica-
tions could take benefit of faster Rand-R (Refer to Fig. 8) in
the initial iterations and switch to Unc-R or Inf-R in the later
iterations when the models are well trained.

Effect of Batch Size on Active Learning We also var-
ied the sampling batch size and evaluated its impact on the
performance of the active leaner. Starting from 50 labeled
instances, we ran active learning iterations until the labeled
data size reached 350. The sampling batch size was set to
2, 5, 10, 25, 50 and 100. We observe (Refer to Fig. 5) that
a smaller batch size generally results in better performance.
Smaller batch sizes offer more opportunities to evaluate the
unlabeled data on continuously improving models, thereby
sampling the most informative instances. However, smaller
batch sizes also result in higher run times. We study this
trade-off in the next section.

Comparison of MLCM-r and MLCMur in Active Learn-
ing We compare the no reliability (NR) MLCM-r model

with our reliability (R) weighted MLCMur consensus model.
Combined with the three sampling policies, this leads to six
settings presented in Fig. 6. Reliability weighted model in-
corporating labeler reliability indeed leads to a better con-
sensus and more accurate labeling.

Run-Time Analysis We profiled the impact of batch size
on running time for each of three sampling strategies. All ex-
periments were executed on a 38 core, 2.2 GHz server with
64 GB RAM. We started with 50 labeled instances of the
medical dataset and then for different batch sizes, we ran
the learning iterations until we had 350 labeled instances.
We observe that as the batch size increases, running time
decreases for each strategy (Refer to Fig. 8). As expected,
Inf-R takes significantly more time as it involves evaluation
of the impact of labeling of each unlabeled instance on the
expected agreement.

In addition, we study the run-time of each iteration for
a fixed sampling batch size. Starting with 1000 labeled in-
stances, we run 75 iterations of learning, sampling five in-
stances in each iteration. We report time t1 taken for search-
ing the unlabeled instance space and time t2 for updating
the consensus model for the selected batch of instances (Re-
fer to Fig. 7). As expected, t1 decreases as the number of
unlabeled instances progressively reduce with each learning
iteration. In the case of Inf-R, t1 dominates the total run-
ning time and hence the total running time for an iteration
progressively decreases. In case of Rand-R and Unc-R, t1
is much lower than t2 (t2 overlaps with total time) and we
therefore see a gradual rise in their total running time.

7 Conclusion
We considered the problem of multi-label classification in
the absence of training data and oracles, and proposed an
approach involving an interplay of consensus maximization
and active learning. We may envisage a system that evolves
in three phases (i) bootstrapping, using consensus of human
labelers for initial unlabeled data (ii) active learning of ma-
chine labelers (iii) transitioning into an automatic system
with minimal dependence on human labelers.
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