
GLISTER: Generalization based Data Subset Selection for Efficient and Robust
Learning

Krishnateja Killamsetty1, Durga Sivasubramanian 2, Ganesh Ramakrishnan 2, Rishabh Iyer1,2

1 University of Texas at Dallas, 2 Indian Institute of Technology, Bombay
Krishnateja.Killamsetty@utdallas.edu, durgas@cse.iitb.ac.in, ganesh@cse.iitb.ac.in, rishabh.iyer@utdallas.edu

Abstract

Large scale machine learning and deep models are extremely
data-hungry. Unfortunately, obtaining large amounts of la-
beled data is expensive, and training state-of-the-art models
(with hyperparameter tuning) requires significant computing
resources and time. Secondly, real-world data is noisy and
imbalanced. As a result, several recent papers try to make the
training process more efficient and robust. However, most ex-
isting work either focuses on robustness or efficiency, but not
both. In this work, we introduce GLISTER, a GeneraLIzation
based data Subset selecTion for Efficient and Robust learn-
ing framework. We formulate GLISTER as a mixed discrete-
continuous bi-level optimization problem to select a subset
of the training data, which maximizes the log-likelihood on
a held-out validation set. We then analyze GLISTER for sim-
ple classifiers such as gaussian and multinomial naive-bayes,
k-nearest neighbor classifier, and linear regression and show
connections to submodularity. Next, we propose an iterative
online algorithm GLISTER-ONLINE, which performs data se-
lection iteratively along with the parameter updates, and can
be applied to any loss-based learning algorithm. We then show
that for a rich class of loss functions including cross-entropy,
hinge-loss, squared-loss, and logistic-loss, the inner discrete
data selection is an instance of (weakly) submodular optimiza-
tion, and we analyze conditions for which GLISTER-ONLINE
reduces the validation loss and converges. Finally, we propose
GLISTER-ACTIVE, an extension to batch active learning, and
we empirically demonstrate the performance of GLISTER on a
wide range of tasks including, (a) data selection to reduce train-
ing time, (b) robust learning under label noise and imbalance
settings, and (c) batch-active learning with a number of deep
and shallow models. We show that our framework improves
upon the state of the art both in efficiency and accuracy (in
cases (a) and (c)) and is more efficient compared to other state-
of-the-art robust learning algorithms in case (b). The code for
GLISTER is at: https://github.com/dssresearch/GLISTER.

Introduction
With the quest of achieving human-like performance for ma-
chine learning and deep learning systems, the cost of training
and deploying machine learning models has been signifi-
cantly increasing. The wasted computational and engineer-
ing energy becomes very clear in deep learning algorithms,
wherein extensive hyper-parameter tuning and network archi-
tecture search needs to be done. This results in staggering

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

compute costs and running times1.
As a result, efficient and robust machine learning is a very

relevant and important research problem. In this paper, we
shall focus on three goals: Goal 1: Train machine learning
and deep learning models on effective subsets of data, thereby
significantly reducing training time and compute, while not
sacrificing accuracy. Goal 2: To (iteratively) select effective
subsets of labeled data so as to reduce the labeling cost.
Goal 3: Select data subsets to remove noisy labels and class
imbalance, which is increasingly common in operational
machine learning settings.

Background and Related Work
A number of papers have studied data efficient training and
robust training of machine learning and deep learning mod-
els. However, the area of data efficient training of models
that are also robust is relatively under-explored. Below, we
summarize papers based on efficiency and robustness.
Reducing Training Time and Compute (Data Selection):
A number of recent papers have used submodular functions
as proxy functions (Wei, Iyer, and Bilmes 2014; Wei et al.
2014b; Kirchhoff and Bilmes 2014; Kaushal et al. 2019).
These approaches have been used in several domains in-
cluding speech recognition (Wei et al. 2014a,b), machine
translation (Kirchhoff and Bilmes 2014) and computer vi-
sion (Kaushal et al. 2019). Another common approach uses
coresets. Coresets are weighted subsets of the data, which ap-
proximate certain desirable characteristics of the full data (e.g.
the loss function) (Feldman 2020). Coreset algorithms have
been used for several problems including k-means clustering
(Har-Peled and Mazumdar 2004), SVMs (Clarkson 2010) and
Bayesian inference (Campbell and Broderick 2018). Coreset
algorithms however require specialized (and often very differ-
ent algorithms) depending on the model and problem at hand,
and have had limited success in deep learning. A very recent
coreset algorithm called CRAIG (Mirzasoleiman, Bilmes, and
Leskovec 2020), which tries to select representative subsets
of the training data that closely approximate the full gradient,
has shown promise for several machine learning models. The
resulting subset selection problem becomes an instance of
facility location problem (which is submodular). Another
data selection framework, which is very relevant to this work,
poses the data selection problem as that of selecting a subset

1https://medium.com/syncedreview/the-staggering-cost-of-
training-sota-ai-models-e329e80fa82

of the training data such that the resulting model (trained on
the subset) perform well on the full dataset (Wei, Iyer, and
Bilmes 2015). (Wei, Iyer, and Bilmes 2015) showed that the
resulting problem is a submodular optimization problem for
Nearest Neighbor (NN) and Naive Bayes (NB) classifiers.
The authors empirically showed that these functions worked
well for other classifiers such as logistic regression and deep
models (Kaushal et al. 2019; Wei, Iyer, and Bilmes 2015).
Reducing Labeling Cost (Active Learning): Traditionally,
active learning techniques like uncertainty sampling (US)
and query by committee (QBC) have shown great promise
in several domains of machine learning (Settles 2009). How-
ever, with the emergence of batch active learning (Wei, Iyer,
and Bilmes 2015; Sener and Savarese 2018), simple US
and QBC approaches do not capture diversity in the batch.
Among the approaches to diversified active learning, one of
the first approaches was Filtered Active Submodular Selec-
tion (FASS) (Wei, Iyer, and Bilmes 2015) that combines the
uncertainty sampling method with a submodular data subset
selection framework to label a subset of data points to train
a classifier. Another related approach (Sener and Savarese
2018) defines active learning as a core-set selection prob-
lem and has demonstrated that the model learned over the
k-centers of the dataset is competitive with respect to the one
trained over the entire data. Very recently, an algorithm called
BADGE (Ash et al. 2020) was proposed, that samples groups
of points that have diverse and higher magnitude of hypothe-
sized gradients to incorporate both predictive uncertainty and
sample diversity into every selected batch.
Robust Learning: A number of approaches have been pro-
posed to address robust learning in the context of noise, dis-
tribution shift and class imbalance. Several methods rely on
reweighting training examples either by knowledge distilla-
tion from auxilliary models (Han et al. 2018; Jiang et al. 2018;
Malach and Shalev-Shwartz 2017) or by using a clean held
out validation set (Ren et al. 2018; Zhang and Sabuncu 2018).
In particular, our approach bears similarity to the learning to
reweight framework (Ren et al. 2018) wherein the authors
try to reweight the training examples using a validation set,
and solve the problem using a online meta-learning based
approach.
Submodular Functions: Since several of the data selection
techniques use the notion of submodularity, we briefly in-
troduce submodular functions and optimization. Let V =
{1, 2, · · · , n} denote a ground set of items (for example, in
our case, the set of training data points). Set functions are
functions f : 2V → R that operate on subsets of V . A set
function f is called a submodular function (Fujishige 2005)
if it satisfies the diminishing returns property: for subsets
S, T ⊆ V, f(j|S) , f(S ∪ j) − f(S) ≥ f(j|T). Several
natural combinatorial functions such as facility location, set
cover, concave over modular, etc., are submodular functions.
Submodularity is also very appealing because a simple greedy
algorithm achieves a 1− 1/e constant factor approximation
guarantee (Nemhauser, Wolsey, and Fisher 1978) for the
problem of maximizing a submodular function subject to a
cardinality constraint (which most data selection approaches
involve). Moreover, several variants of the greedy algorithm
have been proposed which further scale up submodular max-
imization to almost linear time complexity (Minoux 1978;
Mirzasoleiman et al. 2014, 2013).

Our Contribution
Most prior work discussed above, either study robustness
or efficiency, but not both. For example, the data selection
approaches such as (Wei, Iyer, and Bilmes 2015; Mirza-
soleiman, Bilmes, and Leskovec 2020; Shinohara 2014) and
others focus on approximating either gradients or perfor-
mance on the training sets, and hence would not be suitable
for scenarios such as label noise and imbalance. On the other
hand, the approaches like (Ren et al. 2018; Jiang et al. 2018)
and others, focus on robustness but are not necessarily effi-
cient. For example, the approach of (Ren et al. 2018) requires
3x the standard (deep) training cost, to obtain a robust model.
GLISTER is the first framework, to the best of our knowledge,
which focuses on both efficiency and robustness. Our work
is closely related to the approaches of (Wei, Iyer, and Bilmes
2015) and (Ren et al. 2018). We build upon the work of (Wei,
Iyer, and Bilmes 2015), by first generalizing their frame-
work beyond simple classifiers (like nearest neighbor and
naive bayes), but with general loss functions. We do this by
proposing an iterative algorithm GLISTER-ONLINE which
does data selection via a meta-learning based approach along
with parameter updates. Furthermore, we pose the problem
as optimizing the validation set performance as opposed to
training set performance, thereby encouraging generalization.
Next, our approach also bears similarity to (Ren et al. 2018),
except that we need to solve a discrete optimization prob-
lem instead of a meta-gradient update. Moreover, we do not
run our data selection every iteration, thereby ensuring that
we are significantly faster than a single training run. Finally,
we extend our algorithm to the active learning scenario. We
demonstrate that our framework is more efficient and accu-
rate compared to existing data selection and active learning
algorithms, and secondly, also generalizes well under noisy
data, and class imbalance scenarios. In particular, we show
that GLISTER achieves a 3x - 6x speedup on a wide range
of models and datasets, with very small loss in accuracy.

Problem Formulation
Notation: Denote U to be the full training set with in-
stances {(xi, yi}i∈U and V to be a held-out validation set
{(xi, yi}i∈V . Define L(θ, S) =

∑
i∈S L(θ, xi, yi) as the

loss on a set S of instances. Denote LT as the training loss,
and hence LT (θ,U) is the full training loss. Similarly, de-
note LV as the validation loss (i.e. LV (θ,V) as the loss on
the validation set V . In this paper, we study the following
problem:

argmin
S⊆U,|S|≤k

LV (argminθLT (θ, S),V) (1)

Equation (1) tries to select a subset S of the training set U ,
such that the loss on the set V is minimized. We can replace
the loss functions LV and LT with log-likelihood functions
LLV and LLT in which case, the argmin becomes argmax:

argmax
S⊆U,|S|≤k

LLV (argmaxθLLT (θ, S),V) (2)

Finally, we point out that we can replace LV (or LLV) with
the training loss LT (or log-likelihood LLT), in which case
we get the problem studied in (Wei, Iyer, and Bilmes 2015).
The authors in (Wei, Iyer, and Bilmes 2015) only consider
simple models such as nearest neighbor and naive bayes
classifiers.

Figure 1: Main flowchart of the GLISTER-ONLINE frame-
work for Data Selection.

Special Cases: We start with the naive bayes and nearest
neighbor cases, which have already been studied in (Wei, Iyer,
and Bilmes 2015). We provide a simple extension here to
consider a validation set instead of the training set. First con-
sider the naive bayes model. Let mxj ,y(S) =

∑
i∈S 1[xij =

xj ∧ yj = y] and my(S) =
∑
i∈S 1[yj = y]. Also, de-

note Vy ⊆ V as a set of the validation instances with label
y. Furthermore, define w(i, j) = d − ||xi − xj ||22, where
d = maxi,j ||xi − xj ||22. We now define two submodular
functions. The first is the naive-bayes submodular function
fvNB(S) =

∑
j=1:d

∑
xj∈X

∑
y∈Y mxj ,y(V) logmxj ,y(S),

and the second is the nearest-neighbor submodular function:
fNNV (S) =

∑
y∈Y

∑
i∈Vy maxs∈S∩Vyi w(i, s).

The following Lemma analyzes Problem (2) in the case of
naive bayes and nearest neighbor classifiers.
Lemma 1. Maximizing equation (2) in the context of naive
bayes and nearest neighbor classifiers is equivalent to op-
timizing fNBV (S) and fNNV (S) under the constraint that
|S ∩ Vy| = k |V

y|
|V| with |S| = k, which is essentially a parti-

tion matroid constraint.

This result is proved in the Appendix, and follows a very
similar proof technique from (Wei, Iyer, and Bilmes 2015).
However, in order to achieve this formulation, we make a
natural assumption that the distribution over class labels in S
is same as that of U . Furthermore, the Lemma above implied
that solving equation (2) is basically a form of submodular
maximization, for the NB and NN classifiers. In the interest
of space, we defer the analysis of Linear Regression (LR) and
Gaussian Naive Bayes (GNB) to the appendix. Both these
models enable closed form for the inner problem, and the
resulting problems are closely related to submodularity.

GLISTER-ONLINE Framework
In this section, we present GLISTER-ONLINE, which per-
forms data selection jointly with the parameter learning. This
allows us to handle arbitrary loss functions LV and LT . A
careful inspection of equation (2) reveals that it is a nested
bi-level optimization problem:

outer−level︷ ︸︸ ︷
argmax
S⊆U,|S|≤k

LLV (argmax
θ

LLT (θ, S)︸ ︷︷ ︸
inner−level

,V) (3)

The outer layer, tries to select a subset from the training set
U , such that the model trained on the subset will have the best
log-likelihood LLV on the validation set V . Whereas in the
inner layer, we optimize the model parameters by maximizing
training log-likelihood LLT on the subset selected S. Due
to the fact that equation (3) is a bi-level optimization, it is
expensive and impractical to solve for general loss functions.
This is because in most cases, the inner optimization problem
cannot be solved in closed form. Hence we need to make
approximations to solve the optimization problem efficiently.

Algorithm 1 GLISTER-ONLINE Algorithm

Require: Training data U , Validation data V , Initial subset
S(0) of size=k, θ(0) model parameters initialization

Require: η: learning rate. T = total epochs, L = epoch
interval for selection, , r = No of Taylor approximations,
λ = Regularization coefficient

1: for all epoch t in T do
2: if t mod L == 0 then
3: S(t) = GreedyDSS(U ,V, θ(t−1), η, k, r, λ)
4: else
5: S(t) = S(t−1)

6: end if
7: Perform one epoch of batch SGD to update θt on LLT

and using the data subset S(t).
8: end for
9: Output final subset S(T) and parameters θ(T)

Online Meta Approximation Algorithm Our first ap-
proximation is that instead of solving the inner optimiza-
tion problem entirely, we optimize it by iteratively doing a
meta-approximation, which takes a single step towards the
training subset log-likelihood LLT ascent direction. This
algorithm is iterative, in that it proceeds by simultaneously
updating the model parameters and selecting subsets. Figure 1
gives a flowchart of GLISTER-ONLINE. Note that instead of
performing data selection every epoch, we perform data se-
lection every L epochs, for computational reasons. We will
study the tradeoffs associated with L in our experiments.

GLISTER-ONLINE proceeds as follows. We update the
model parameters θt on a subset obtained in the last subset
selection round. We perform subset selection only every L
epochs, which we do as follows. At training time step t, if we
take one gradient step on a subset S, we achieve: θt+1(S) =
θt + η∇θLLT (θt, S). We can then plug this approximation
into equation (3) and obtain the following discrete optimiza-
tion problem. Define Gθ(S) = LLV (θ+η∇θLLT (θ, S),V)
below:

St+1 = argmax
S⊆U,|S|≤k

Gθt(S) (4)

Next, we show that the optimization problem (equation (4))
is NP hard.
Lemma 2. There exists log-likelihood functions LLV and
LLT and training and validation datasets, such that equa-
tion (4) is NP hard.

The proof of this result is in the supplementary material.
While, the problem is NP hard in general, we show that for
many important log-likelihood functions such as the negative

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Top Row: Data Selection for Efficient Learning. (a) MNIST Accuracy vs Budgets, (b) CIFAR-10 Accuracy vs Budget ,
(c) CIFAR 10 Convergence plot, and (d) MNIST Accuracy vs Total time taken. Bottom Row: Data Selection in Class Imbalance
and Noise: Accuracy vs Budget (e) CIFAR-10 (Class Imb), (f) MNIST (Class Imb), (g) DNA (Class Imb), and (d) DNA (Noise).

cross entropy, negative logistic loss, and others, Gθt(S) is
submodular in S for a given θt.
Theorem 1. If the validation set log-likelihood functionLLV
is either the negative logistic loss, the negative squared loss,
negative hinge loss, or the negative perceptron loss, the op-
timization problem in equation (4) is an instance of cardi-
nality constrained submodular maximization. When LLV is
the negative cross-entropy loss, the optimization problem in
equation (4) is an instance of cardinality constrained weakly
submodular maximization.

The proof of this result, along with the exact forms of
the (weakly) submodular functions are in the supplementary
material. Except for negative squared loss, the submodu-
lar functions for all other losses (including cross-entropy)
are monotone, and hence the lazy greedy (Minoux 1978) or
stochastic greedy (Mirzasoleiman et al. 2014) give 1−1/e ap-
proximation guarantees. For the case of the negative squared
loss, the randomized greedy algorithm achieves a 1/e approx-
imation guarantee (Buchbinder et al. 2014). The lazy greedy
algorithm in practice is amortized linear-time complexity,
but in the worst case, can have a complexity O(nk). On the
other hand, the stochastic greedy algorithm is linear time,
i.e. it obtains a 1 − 1/e − ε approximation in O(n log 1/ε)
iterations.

Before moving forward, we analyze the computational
complexity of GLISTER-ONLINE. Denote m = |V (valida-
tion set size), and n = |U| (training set size). Furthermore, let
F be the complexity of a forward pass and B the complexity
of backward pass. Denote T as the number of epochs. The
complexity of full training with SGD is O(nTB). Using the
naive (or lazy) greedy algorithm, the worst case complexity
is O(nkmFT/L+ kTB). With stochastic greedy, we get a
slightly improved complexity ofO(nmFT/L+kTB). Since
B ≈ 2F , and m is typically a fraction of n (like 5-10% of n),
and L is a constant (e.g. L = 20), the complexity of subset
selection (i.e. the first part) can be significantly more than the
complexity of training (for large values of n), thereby defeat-
ing the purpose of data selection. Below, we study a number
of approximations which will make the subset selection more

efficient, while not sacrificing on accuracy.

Approximations: We start with a simple approximation of
just using the Last layer approximation of a deep model,
while computing equation (4). Note that this can be done in
closed form for many of the loss functions described in Theo-
rem 1. Denote f as the complexity of computing the function
on the last layer (which is much lesser than F), the complex-
ity of stochastic greedy is reduced to O(nmfT/L log 1/ε+
kTB). The reason for this is that GLISTER-ONLINE tries to
maximize LLV (θ + η

∑
j∈S ∇LLT (θ, j),V), and the com-

plexity of evaluating LLV is O(mf). Multiplying this by
the complexity of the stochastic or naive greedy, we get
the final complexity. While this is better than earlier, it
can still be slow since there is a factor nm being multi-
plied in the subset selection time. The second approxima-
tion we make is the Taylor series approximation, which
computes an approximation Ĝθ(S ∪ e) based on the Taylor-
series approximation. In particular, given a subset S, define
θS = θ+η

∑
j∈S ∇LLT (θ, j). The Taylor-series approxima-

tion Ĝθ(S ∪ e) = LLV (θS) + η∇θLLT (θ, e)TLLV (θS ,V).
Note that LLT (θ, e) can be precomputed before the (stochas-
tic) greedy algorithm is run, and similarly LLV (θS ,V) just
needs to be computed once before picking the best e /∈ S to
add. With the Taylor series approximation, the complexity
reduces to O(k[m+ n]fT/L+ kTB) with the naive-greedy
and O([km + n log 1/ε]fT/L + kTB) with the stochastic
greedy. Comparing to without using the Taylor series ap-
proximation, we get a speedup of O(m) for naive-greedy
and O(n log 1/ε/k) for the stochastic greedy, which can be
significant when k is much smaller than n (e.g., 10% of n).
With the Taylor series approximation, we find that the time
for subset selection (for deep models) is often comparable
in complexity to one epoch of full training, but since we are
doing subset selection only every L epochs, we can still get a
speedup roughly equal to n/k + 1/L. However, for shallow
networks or 2 layer neural networks, the subset selection
time can still be orders of magnitude slower than full training.
In this case, we do one final approximation, which we call

the r-Greedy Taylor Approximation. In this case, we re-
compute the validation log-likelihood only r times (instead
of k). In other words, we use the stale likelihoods for k/r
greedy steps. Since we are using the same likelihood function,
this becomes a simple modular optimization problem where
we need to pick the top k/r values. While in principle, this
approximation can be used in conjunction with stochastic
greedy, we find that the accuracy degradation is considerable,
mainly because stochastic greedy picks the best item greedily
from O(n/k log 1/ε) random data instances, which can yield
poor sets if a large number of items are selected every round
of greedy (which is what happens in r-greedy). Rather, we
use this in conjunction with naive-greedy. The complexity
of the r-taylor approximation with naive-greedy algorithm
is O(r[m+ n]fT/L+ kTB). For smaller models (like one
or two layer neural network models), we set r = 0.03k (we
perform ablation study on r in our experiments), thereby
achieving 30x speedup to just the Taylor-series approxima-
tion. For deep models, since the complexity of the gradient
descent increases (i.e. B is high), we can use larger values of
r, and typically set r ≈ k. As we demonstrate in our exper-
iments, even after the approximations presented above, we
significantly outperform other baselines (including CRAIG
and Random), and is comparable to full training while being
much faster, on a wide variety of datasets and models.

Regularization with Other Functions Note that since the
optimization problem in equation (4) is an instance of sub-
modular optimization, we can also regularize this with an-
other data-selection approach. This can be particularly useful,
if say, the validation dataset is small and we do not want
to overfit to the validation loss. The regularized objective
function is (λ is a tradeoff parameter):

St+1 = argmaxS⊆U,|S|≤kGθt(S) + λR(S). (5)

We consider two specific kinds of regularization functions
R(S). The first is the supervised facility location, which is
basically NN-submodular function on the training set fea-
tures (Wei, Iyer, and Bilmes 2015), and the second is a ran-
dom function. The random function can be thought of as a
small perturbation to the data selection objective.

Implementation Aspects The detailed pseudo-code of the
final algorithm is in Algorithm 1. GreedyDSS in Algorithm 1
refers to the greedy algorithms and approximations discussed
above to solve equation (5). The parameters of GreedyDSS
are: a) training set U , validation set: V , current parameters
θ(t), learning rate η, budget k, the parameter r governing the
number of times we do taylor-series approximation, and fi-
nally the regularization coefficient λ. In the interest of space,
we defer the detailed algorithm to the supplementary mate-
rial. We use the PyTorch (Paszke et al. 2017) framework to
implement our algorithms. To summarize the implementation
aspects, the main hyper-parameters which govern the tradeoff
between accuracy and efficiency are r, L, the regularization
function R, coefficient λ and the choice of the greedy algo-
rithm. For all our experiments, we set L = 20. For our deep
models experiments (i.e. more than 2-3 layers), we use just
the Taylor-approximation with r = k and stochastic greedy,
while for shallow models, we use r ≈ 0.03k with the naive
greedy. We perform ablation studies in Section to under-
stand the effect of these parameters in experiments, and in

particular, the choices of r and L. We do not significantly
tune λ in the regularized versions and just set in a way so
both components (i.e. the GLISTER loss and regularizer) have
roughly equal contributions. See the supplementary material
for more details of the hyper-parameters used.

Convergence Analysis In this section, we study conditions
under which GLISTER-ONLINE reduces the objective value,
and the conditions for convergence. To do this, we first define
certain properties of the validation loss. A function f(x) :
Rd → R is said to be Lipschitz-smooth with constant L
if ‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖,∀x, y ∈ Rd. Next, we
say that a function f : Rd → R has σ-bounded gradients if
‖∇f(x)‖ ≤ σ for all x ∈ Rd

The following result studies conditions under which the
validation loss reduces with every training epoch l.
Theorem 2. Suppose the validation loss function LV is Lip-
schitz smooth with constant L, and the gradients of training
and validation losses are σT and σV bounded respectively.
Then the validation loss always monotonically decreases
with every training epoch l, i.e. LV (θl+1) ≤ LV (θl) if it
satisfies the condition that ∇θLV (θl,V)T∇θLT (θl, S) ≥
0 for 0 ≤ l ≤ T and the learning rate α ≤
minl

2‖∇θLV (θl,V)‖ cos(Θl)
LσT where Θl is the angle between

∇θLV (θl,V) and ∇θLT (θl, S).
The condition basically requires that for the subset se-

lected Si, the gradient on the training subset loss LT (θl, Si)
is in the same direction as the gradient on the validation loss
LV (θl,V) at every epoch l. Note that in our Taylor-series
approximation, we anyways select subsets Si such that the
dot product between gradients of subset training loss and
validation loss is maximized. So, as long as our training data
have some instances that are similar to the validation dataset,
our model selected subset Si should intuitively satisfy the
condition mentioned in Theorem 2. We end this section by
providing a convergence result.

The following theorem shows that under certain condi-
tions, GLISTER-ONLINE converges to the optimizer of the
validation loss in O(1/ε2) epochs.
Theorem 3. Assume that the validation and sub-
set training losses satisfy the conditions that
∇θLV (θl,V)T∇θLT (θl, S) ≥ 0 for 0 ≤ l ≤ T , and
for all the subsets encountered during the training. Also,
assume that δmin = minl

∇LT (θt)
σG

. Then, the following
convergence result holds:

min
l
LV (θl)− LV (θ∗) ≤ RσT

δmin

√
T

+
RσT

∑T
l=0

√
1− cos Θl

Tδmin

where cos Θl =
∇θLT (θl)

T · ∇θLV (θl)

‖∇θLT (θl)‖ ‖∇θLV (θl)‖

Since our Taylor approximation chooses a subset that max-
imizes the dot-product between the gradients of the training
loss and the validation loss, we expect that the angle between
the subset training gradient and validation loss gradients be
close to 0 i.e., cos θl ≈ 1. Finally, note that δmin needs to
be greater than zero, which is also reasonable, since having
close to zero gradients on the subset gradients would im-
ply overfitting to the training loss. In GLISTER-ONLINE we

(a) (b) (c) (d)

Figure 3: Active Learning Results: (a) SVM-Guide, (b) SVM Guide with Class Imbalance, (c) Letter, and (d) DNA Datasets.

(a) (b)

Figure 4: Ablation study comparing the effect of L and r on
DNA dataset. In our experiments, we choose L = 20, and
for our smaller datasets, we set r = 0.03k. The x-axis is log
scale to the base e.

only train on the subset for L epochs, ensuring the training
gradients on the subset do not go to zero.

GLISTER-ACTIVE Framework
In this section we extend GLISTER to the active learning
setting. We propose GLISTER-ACTIVE for the mini-batch
adaptive active learning where we select a batch of B samples
to be labeled for T rounds. This method is adaptive because
samples selected in the current round are affected by the pre-
viously selected points, as the model gets updated. The goal
here is to select a subset of size B from the pool of unlabeled
instances such that the subset selected has as much informa-
tion as possible to help the model come up with appropri-
ate decision boundary. GLISTER-ACTIVE is very similar to
GLISTER-ONLINE except for three critical differences. First,
the data-selection in Line 6 of Algorithm 1 is only on the
unlabeled instances. Second, we use the hypothesized labels
instead of the true labels in the greedy Taylor optimization
(since we do not have the true labels). This is very similar to
existing active learning approaches like BADGE and FASS,
which also use hypothesized labels (i.e., predictions from the
current model). Thirdly, instead of selecting k examples every
time and running only on that subset, GLISTER-ACTIVE se-
lects a batch of B instances over the unlabeled examples and
adds it to the current set of labeled examples (after obtaining
the labels). Similar to GLISTER-ONLINE, we consider both
the unregularized and regularized data selection objectives.
In the interest of space, we defer the algorithm, along with
other details to the supplementary material.

Experimental Results
Our experimental section aims to showcase the stability and
efficiency of GLISTER-ONLINE and GLISTER-ACTIVE on
a number of real world datasets and experimental settings.

We try to address the following questions through our ex-
periments: 1) How does GLISTER-ONLINE tradeoff accu-
racy and efficiency, compared to the model trained on the
full dataset and other data selection techniques? 2) How
does GLISTER-ONLINE work in the presence of class imbal-
ance and noisy labels? 3) How well does GLISTER-ONLINE
scale to large deep learning settings? and 4) How does
GLISTER-ACTIVE compare to other active learning algo-
rithms?
Baselines in each setting: We compare the following base-
lines to our GLISTER framework. We start with data selection
for efficient training. 1. Random: Just randomly select k
(budget size) training examples. 2. CRAIG: We compare
against CRAIG (Mirzasoleiman, Bilmes, and Leskovec 2020)
which tries to approximate the gradients of the full training
sets. 3. SS + FNN: This is the KNN submodular function
from (Wei, Iyer, and Bilmes 2015), but using the training set.
We do not compare to the NB submodular function, because
as demonstrated in (Wei, Iyer, and Bilmes 2015) the KNN
submodular function mostly outperformed NB submodular
for non Naive-Bayes models. For the case of class imbal-
ance and noisy settings, we assume that the training set is
imbalanced (or noisy), while the validation set is balanced
(or clean). For data selection experiments in this setting, we
consider the baselines 1-3 above, i.e. CRAIG, Random and
SS + FNN, but with some difference. First, we use a stronger
version of the random baseline in the case of class imbalance,
which ensures that the selected random set is balanced (and
hence has the same class distibution as the validation set). For
SS + FNN baseline, we select a subset from the training data
using KNN submodular function, but using the validation
set instead of the training set. In the case of noisy data, we
consider 1, 2 and 4 as baselines for data selection. Finally, we
consider the following baselines for active learning. 1. FASS:
FASS algorithm (Wei, Iyer, and Bilmes 2015) selects a sub-
set using KNN submodular function by filtering out the data
samples with low uncertainty about predictions. 2. BADGE:
BADGE algorithm (Ash et al. 2020) selects a subset based on
the diverse gradient embedding obtained using hypothesized
samples. 3. Random: In this baseline, we randomly select
a subset at every iteration for the data points to be added in
the labeled examples. For data selection, we consider two
variants of GLISTER, one with the Facility Location as a
regularized (F-GLISTER), and the second with random as a
regularizer (R-GLISTER). In the case of active learning, we
add one more which is diversity regularized (D-GLISTER),
where the diversity is the pairwise sum of distances.
Datasets, Model Architecture and Experimental Setup:
To demonstrate effectiveness of GLISTER-ONLINE on

real-world datasets, we performed experiments on DNA,
SVMGuide, Digits, Letter, USPS (from the UCI machine
learning repository), MNIST, and CIFAR-10. We ran exper-
iments with shallow models and deep models. For shallow
models, we used a two-layer fully connected neural network
having 100 hidden nodes. We use simple SGD optimizer for
training the model. The shallow model experiments were run
on the first five datasets, while on MNIST and CIFAR-10 we
used a deep model. For MNIST, we use LeNet model (LeCun
et al. 1989), while for CIFAR-10, we use ResNet-18 (He et al.
2016). Wherever the datasets do not a validation set, we split
the training set into a train (90%) and validation set (10%).
Data Selection for Efficient Learning: We begin by study-
ing the effect of data selection for efficiency (i.e. to reduce
the amount of training time and compute). For this purpose,
we compare for different subset sizes of 10%, 30%, 50% in
the shallow learning setting. We demonstrate the results on
MNIST and CIFAR-10 (for deep learning). In the supplemen-
tary material, we show results on the other datasets (i.e. the
UCI datasets). The results are shown in Figure 2 (top row).
The first two plots (i.e. a and b) show that GLISTER and its
variants, significantly outperform all other baselines (includ-
ing CRAIG and Random). To make CRAIG comparable to
GLISTER, we run the data selection with L = 20 (i.e. ev-
ery 20 epochs). This is mainly due to computational reasons
since when run every epoch, our implementation of CRAIG
was much slower than full training, effectively defeating the
purpose of data selection. We also observe that with just 50%
of the data, GLISTER achieves comparable accuracy to full
training. We also note that the regularization offered by facil-
ity location and random selection helps, particularly for larger
subsets by avoiding the over-fitting to the validation set. What
is also encouraging that GLISTER-ONLINE performs well
even at very small subset sizes, which is important for data
selection (e.g. for doing hyper-parameter turnings several
times on very small subsets). Perhaps surprisingly, CRAIG
performs very poorly at small data-sizes. Plots c and d, show
the timing results on CIFAR-10 and MNIST. We see that on
CIFAR-10, GLISTER achieves a 6x speedup at 10%, 2.5x
speedup at 30%, and 1.5x speedup at 50%, while loosing
3%, 1.2% and 0.2% respectively in accuracy. Similarly,
for MNIST, we see a 3x speedup at 10% subset, with a
loss of only 0.2% in accuracy. This timing also includes the
subset selection time, thereby making the comparison fair.
Robust Data Selection: To check our model’s generaliza-
tion performance when adversaries are present in training
data, we run experiments in class imbalance and Noisy la-
bel settings for the datasets mentioned above. We artificially
generate class-imbalance for the above datasets by removing
90% of the instances from 30% of total classes available.
Whereas for noisy data sets, we flip the labels for a randomly
chosen subset of the data where the noise ratio determines
the subset’s size. In our experimental setting, we use a 30%
noise ratio for the noisy experiments. The results for the
class imbalance setting is shown in Figure 2 e,f and g for
CIFAR-10, MNIST and DNA. The results demonstrate that
GLISTER-ONLINE again, significantly outperforms the other
baselines. We note that two of the baselines (random with
prior and KNN-submodular with validation set information)
actually have knowledge about the imbalance. It is also worth
noting that for CIFAR-10, R-GLISTER achieves a significant
improvement over the other baselines (by around 7%) for

subset sizes 30% and 50%. Figure 2 h, shows the results
on noisy setting in the DNA dataset. On the smaller dataset
DNA, GLISTER and its variants outperform even full training,
which is again not surprising because the full data has noise,
whereas our approach essentially filters out the noise through
its data selection. GLISTER and its variants outperform other
baselines by more than 10% which is very significant. In
the supplementary material, we provide additional results for
both the class imbalance and noisy settings, and show similar
gains on the other 5 smaller datasets.
Active Learning: Next, we compare GLISTER-ACTIVE to
state-of-the-art active learning algorithms including FASS
and BADGE. The results are shown in Figure 3 (right two
plots) on SVM-Guide, Letter, and DNA datasets. Again, we
see that GLISTER and its variants (particularly, with diver-
sity) outperform the existing active learning baselines, in-
cluding BADGE, which is currently the state-of-the-art batch
active learning algorithm. Since BADGE and FASS have
been shown to outpeform techniques like uncertainty Sam-
pling (Settles 2009) and Coreset based approaches (Sener
and Savarese 2018), we do not compare them in this work. In
our supplementary material we compare our algorithms on
many more datasets and also consider active learning in the
class imbalance scenario.
Ablation study on the approximations and Speedups on
Smaller Datasets: We conclude the experimental section
of this paper, by studying the different approximations. We
compare the different versions of Taylor approximations in
Figure 4, and study the effect of L and r on DNA dataset. In
the supplementary material, we provide the ablation study
for a few more datasets. For the ablation study with L, we
study L = 20, 35 and 50. For smaller valueds of L (e.g.
below 20, we see that the gains in accuracy are not worth
the reduction in effciency), while for larger values of L, the
accuracy gets affected. Similarly, we vary r from 1 to 20
(which is 5% of k on DNA dataset). We observe that L =
20 and r = 3% of k generally provides the best tradeoff
w.r.t time vs accuracy. Thanks to this choice of r and L,
we see significant speedups through our data selection even
with smaller neural networks. For example, we see a 6.75x
speedup on DNA, 4.9x speedup on SVMGuide, 4.6x on
SatImage, and around 1.5x on USPS and Letter. Detailed
ablation studies on SVMGuide, DNA, SatImage, USPS and
Letter are in the supplementary.

Conclusion

We present GLISTER, a novel framework that solves a
mixed discrete-continuous bi-level optimization problem
for efficient training by subset selection on the train data
while pivoting on a held-out validation set log-likelihood
for model robustness. We study the submodularity of
GLISTER for simpler classifiers and extend the analysis to
our proposed iterative and online data selection algorithm
GLISTER-ONLINE, that can be applied to any loss-based
learning algorithm. We also extend the model to batch active
learning (GLISTER-ACTIVE). For these variants of GLISTER,
on a wide range of tasks, we empirically demonstrate im-
provements (and associated trade-offs) over state-of-the-art
in terms of efficiency, accuracy and robustness.

References
Ash, J. T.; Zhang, C.; Krishnamurthy, A.; Langford, J.; and
Agarwal, A. 2020. Deep Batch Active Learning by Diverse,
Uncertain Gradient Lower Bounds. In ICLR.

Buchbinder, N.; Feldman, M.; Naor, J.; and Schwartz, R.
2014. Submodular maximization with cardinality constraints.
In Proceedings of the twenty-fifth annual ACM-SIAM sympo-
sium on Discrete algorithms, 1433–1452. SIAM.

Campbell, T.; and Broderick, T. 2018. Bayesian Coreset
Construction via Greedy Iterative Geodesic Ascent. In Inter-
national Conference on Machine Learning, 698–706.

Clarkson, K. L. 2010. Coresets, sparse greedy approxima-
tion, and the Frank-Wolfe algorithm. ACM Transactions on
Algorithms (TALG) 6(4): 1–30.

Feldman, D. 2020. Core-Sets: Updated Survey. In Sampling
Techniques for Supervised or Unsupervised Tasks, 23–44.
Springer.

Fujishige, S. 2005. Submodular functions and optimization.
Elsevier.

Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I.; and Sugiyama, M. 2018. Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In
Advances in neural information processing systems, 8527–
8537.

Har-Peled, S.; and Mazumdar, S. 2004. On coresets for
k-means and k-median clustering. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing,
291–300.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.

Jiang, L.; Zhou, Z.; Leung, T.; Li, L.-J.; and Fei-Fei, L. 2018.
Mentornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels. In International Confer-
ence on Machine Learning, 2304–2313.

Kaushal, V.; Iyer, R.; Kothawade, S.; Mahadev, R.; Doctor,
K.; and Ramakrishnan, G. 2019. Learning from less data: A
unified data subset selection and active learning framework
for computer vision. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), 1289–1299. IEEE.

Kirchhoff, K.; and Bilmes, J. 2014. Submodularity for data
selection in machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 131–141.

LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard,
R. E.; Hubbard, W.; and Jackel, L. D. 1989. Backpropaga-
tion applied to handwritten zip code recognition. Neural
computation 1(4): 541–551.

Malach, E.; and Shalev-Shwartz, S. 2017. Decoupling” when
to update” from” how to update”. In Advances in Neural
Information Processing Systems, 960–970.

Minoux, M. 1978. Accelerated greedy algorithms for maxi-
mizing submodular set functions. In Optimization techniques,
234–243. Springer.

Mirzasoleiman, B.; Badanidiyuru, A.; Karbasi, A.; Vondrák,
J.; and Krause, A. 2014. Lazier than lazy greedy. arXiv
preprint arXiv:1409.7938 .
Mirzasoleiman, B.; Bilmes, J.; and Leskovec, J. 2020. Core-
sets for Data-efficient Training of Machine Learning Models.
In Proc. ICML .
Mirzasoleiman, B.; Karbasi, A.; Sarkar, R.; and Krause, A.
2013. Distributed submodular maximization: Identifying
representative elements in massive data. In Advances in
Neural Information Processing Systems, 2049–2057.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978. An
analysis of approximations for maximizing submodular set
functions—I. Mathematical programming 14(1): 265–294.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A.
2017. Automatic differentiation in PyTorch .
Ren, M.; Zeng, W.; Yang, B.; and Urtasun, R. 2018. Learn-
ing to Reweight Examples for Robust Deep Learning. In
International Conference on Machine Learning, 4334–4343.
Sener, O.; and Savarese, S. 2018. Active Learning for Con-
volutional Neural Networks: A Core-Set Approach. In Inter-
national Conference on Learning Representations.
Settles, B. 2009. Active learning literature survey. Techni-
cal report, University of Wisconsin-Madison Department of
Computer Sciences.
Shinohara, Y. 2014. A submodular optimization approach to
sentence set selection. In 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
4112–4115. IEEE.
Wei, K.; Iyer, R.; and Bilmes, J. 2014. Fast multi-stage
submodular maximization. In International conference on
machine learning, 1494–1502. PMLR.
Wei, K.; Iyer, R.; and Bilmes, J. 2015. Submodularity in
data subset selection and active learning. In International
Conference on Machine Learning, 1954–1963.
Wei, K.; Liu, Y.; Kirchhoff, K.; Bartels, C.; and Bilmes, J.
2014a. Submodular subset selection for large-scale speech
training data. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 3311–
3315. IEEE.
Wei, K.; Liu, Y.; Kirchhoff, K.; and Bilmes, J. 2014b. Un-
supervised submodular subset selection for speech data. In
2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 4107–4111. IEEE.
Zhang, Z.; and Sabuncu, M. 2018. Generalized cross entropy
loss for training deep neural networks with noisy labels. In
Advances in neural information processing systems, 8778–
8788.

