
Representation Learning on Graphs by Integrating
Content and Structure Information

Ayush Maheshwari∗, Ayush Goyal∗, Amit Kumar†, Manjesh Kumar Hanawal∗, Ganesh Ramakrishnan∗
∗Indian Institute of Technology Bombay

Mumbai, India
{ayushm, ayushgoyal, ganesh}@cse.iitb.ac.in,

mhanawal@iitb.ac.in
†Adobe Systems
Bengaluru, India

scienceamit1@gmail.com

Abstract—The problem of representation learning on graph
can be difficult due to limited knowledge of training data and
large presence of missing edges. Real-world social networks do
not provide complete information about the network due to
hidden information and privacy constraints. In such scenarios,
typical representation learning methods are not able to capture
network information effectively. In order to make them more
useful, any available feature information can be used in addition
to the network structure. In this paper, we aim to learn
better representations by exploiting both content (or feature)
information of nodes and structural information of the network.
Our approach leverages generative adversarial networks to learn
embedding for generator and discriminator in a minimax game.
While the generator estimates the neighborhood of a node, the
discriminator distinguishes between the presence or absence of
a link for a pair of nodes. We demonstrate the effectiveness of
our approach on five real-world publicly available datasets on
the problems of link prediction and node classification. On both
tasks, we achieve significant gains, outperforming current state-
of-the-art methods by considerable margins. Our code is available
on Github1.

Index Terms—graph representation learning, node embedding,
link prediction, node classification

I. INTRODUCTION

Graphs are a ubiquitous data structure representing rela-
tional data from domains such as social networks, biologi-
cal networks, knowledge graphs, world wide web networks,
language networks, etc. Graphs can be used to analyse the
interconnection structure among the data. It has resulted in
tremendous advancements in tasks such as link prediction,
community discovery, node classification, etc. For instance,
in social networks analysis of connections between the users
reveal about their preferences and interactions.

Representation learning on graphs has received considerable
attention in recent years in many fields such as social net-
works, protein-protein interaction networks, recommendation
engines, etc. Graph Representation Learning aims to represent
higher dimension network structure into a lower dimensional
embedding. It represents vertex/node into a low-dimensional
space that can be used for prediction, classification and
clustering tasks. In many applications, in addition to the

1https://github.com/ayushbits/node-embeddings

network structure feature information about each node might
be available and can provide complementary information about
the network, especially in cases where full information about
the network structure is not available. In this paper, we study
graph representation methods that effectively use any feature
information available for generating better node embeddings.

Traditional approaches for graph representation use matrix
factorization based methods [1]–[3] to reduce the dimen-
sionality of the embeddings. These approaches construct a
similarity graph for the nodes such that distance between two
connected nodes is minimum. However, these approaches suf-
fer from scalability issues having time complexity of O(|E|)d2
where E is the set of edges in the graph and d is the number of
dimensions. LINE (Large-scale Information Network Embed-
ding) [4] preserves first-order and second-order proximity in
the graph. It considers immediate and shared neighbors of each
node to capture local and global information in the network.
Recent network representation techniques [5]–[8] use first
order proximity to approximate node embedding. They utilize
link structure (or neighborhood information) to represent a
node in a lower dimensional vector space. These methods fail
to perform when the network is small or only a sub-graph is
given [9]. Even when the training data contains large number
of missing edges, these methods do not perform as expected.
Deepwalk [7] uses short random walks to sample vertices. It
adopts neural language modeling technique Skip-Gram [10]
to maximize the likelihood of observing context vertices for a
given vertex. Node2vec [5] extends Deepwalk by introducing
biased random walk procedure providing flexibility while
sampling context vertices.

In real-world networks such as social networks, complete
information of a node is generally not available due to user
and privacy constraints. For example, in social networks users
tend to hide their information such as friendship networks,
user likes, etc. Therefore, to gain a proper understanding
of the network it is crucial to consider any available addi-
tional information. Moreover, within a limited data availability
setting such information play a critical role in generating
effective embeddings. There are a few attempts to generate
embeddings by integrating content [11]–[13]. Yang [11]

����������	
���
���
����
����
����
������
�����
�������������������������� !�"

�#$%�%&'$(%#���%�)��)*'�+���,�����	 88

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on July 03,2020 at 13:07:53 UTC from IEEE Xplore. Restrictions apply.

extends Deepwalk [7] by including text information as a
feature matrix. It factorizes adjacency matrix M into the
product of three matrices and concatenates text information
matrix to form embeddings. GraphSAGE [13] leverage node
features to learn an embedding function that can generalize on
unseen nodes. It learns aggregator functions that aggregates
feature information from neighborhood nodes and evaluated
results on node classification.

In this paper, we leverage vertex neighborhood and content
information to learn node embedding that outperforms all
previous link-prediction benchmarks. We leverage Generative
Adversarial Nets (GAN) that unifies the generative and dis-
criminative approach for graph representation learning. We
train generative and discriminative models during the learn-
ing of GAN. 1) Generator G(v|vc, f) tries to maximize the
underlying true distribution, 2) Discriminator D(v, vc) tries
to distinguish between actual pairs and samples generated by
generator pairs. In this process, generator learns to identify
neighborhood of vertex v and discriminator learns to differ-
entiate between connected and non-connected pairs. In this
work, we use node features along with structural information
in the generator and discriminator model. Then, generator
and discriminator act as two players in the minimax game
improving their embeddings. The process is repeated until
the generator is indistinguishable from the true connectivity
distribution.

Inspired by GAN, GraphGAN [8] exploits structure in-
formation to learn graph representation. It outperformed all
previous approaches on link prediction tasks. However, it per-
forms poorly on node classification task on sparse networks.
We demonstrate their results for node classification in Section
IV-B. There has been a lack of consistency in evaluation
methods adopted by previous approaches. GraphGAN [8]
evaluates on equal samples of positive and negative edges. In
reality, positive samples are way less than negative samples.
Evaluation metrics are discussed in detail in Section IV-A.

We introduce content information in addition to the
structural information in both generator and discriminator.
We propose a random-walk based sampling strategy for
the generator, accounting for both structural and content
information. We achieve more than 20% gains over current
baselines on link prediction. On node classification, we obtain
20% improvement over state-of-the-art baselines. Again,
using the Wilcoxon signed-rank test, we notice that the sum
of the signed ranks is very clearly in favour of our approach
as against Node2Vec and GraphGAN.

Contributions : Our contributions are as follows:
• We motivate the use of content along with structure

information by evaluating results of previously proposed
approaches on link prediction and node classification.

• We propose a generator and discriminator based approach
to learn embeddings by incorporating features.

• We evaluate the performance of our proposed algorithms
on benchmark datasets with different training and testing
sizes for link prediction and node classification. The

Samples from
Generator

Samples from true
distribution

Discriminator

Real or Fake

Reward or Penalty

Fig. 1: Illustration of GAN framework

results are compared with various state-of-the-art embed-
ding algorithms to show the superiority of our approach.
We also discuss different evaluation methods adopted
in previous approaches and motivate the use of current
evaluation metrics.

II. PROBLEM FORMULATION

Let G = (V,E) be a given undirected graph, where V is
the vertex set V = v1, v2, . . . , vn and E is the associated
edge set E = (vi, vj) such that vi, vj ∈ V . For a given
vertex vc, we define neighborhood as N(vc) which are the
set of vertices directly connected to vc. We define content
information as fc which is the feature set for node vc. fc
is a vector containing binary values2 from the feature set
F . We denote the underlying true connectivity distribution
for a vertex vc as a conditional probability ptrue(v|vc, fc). It
specifies that v is conditionally dependent on all other vertices
in V and their respective features fc. In our setting, genera-
tor tries to approximate the true distribution ptrue(v|vc, fc)
whereas discriminator learns to differentiate between pair
of vertices (vi, vj). Generative Adversarial Networks (GAN)
[14] is an adversarial modeling framework that estimates
generative models. We simultaneously train both generator G
and discriminator D in an adversarial manner expecting G
to learn the data distribution. G maximizes the probability
of deceiving D whereas D maximizes its probability of
differentiating between generator samples and true samples.
Reward or penalty mechanism ensures that D’s output are
feed back to G to guarantee joint training. GAN framework
is illustrated in Figure 1.
Generator: It captures the data distribution and learns a
parameter θg such that G(v|vc, fc; θg) can approximate the
true distribution. It tries to generate vertices that are most
likely to be connected to vertex vc from vertex set V . In
addition to neighborhood information, generator considers
feature matrix fc for the vertex vc.

2Continuous valued feature can also be handled using an appropriate
distance metric

89

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on July 03,2020 at 13:07:53 UTC from IEEE Xplore. Restrictions apply.

Discriminator: It estimates a probability that the sample came
from the the training data. It learns a parameter θd such that
D(vi, vj ; θd) can discriminate between the presence or absence
of an edge. It outputs a score representing the probability of
existence of an edge between vi and vj .

The minimax game with objective function V (G,D) can be
formalised as follows:

min
θG

max
θD

V (G,D) =
V∑

c=1

(
Ev∼ptrue(·|vc)

[logD(v, vc; θD, wD)] + Ev∼G(·|vc,fvc ;θG,wG)

[log (1−D(v, vc; θD, wD))]
)

(1)

Eq. (1) explains our objective function wherein generator and
discriminator learns by alternately maximizing and minimizing
the objective function. Discriminator D is trained with equal
number of positive samples from ptrue(·|vc) and negative sam-
ples from generator G(·|vc; θg, wG). Discriminator D learns
to discriminate between positive and negative samples and
feedback its gradient to the generator G. Generator G receives
rewards/penalty from the discriminator D and therefore learns
to imitate the true distribution. We run generator until G is
indistinguishable from the true distribution.

A. Discriminator

Objective function of discriminator D maximizes log prob-
ability of assigning correct labels to positive samples from true
distribution and negative samples from generator. We define D
as a sigmoid function of the inner product of two input vertices
and element-wise XNOR of two input feature vectors3.

D(v, vc) =σ(dTv , dvc
, fv, fvc

, w)

=
1

1 + exp(−dTv dvc
+ [w ◦ w](fv � fvc

))
(2)

where dv, dvc
∈ R

m are the m-dimensional representation
vectors of vertices v and vc, respectively, and fv, fvc ∈ F
are their associated feature vectors. w is the weight vector and
fv�fvc

denotes the element-wise XNOR between fv and fvc
.

w◦w denotes a Hadamard product [15] of weight vectors w. It
refers to element-wise multiplication of two vectors. The union
of all dvs represents the parameter θD of the discriminator.

We perform element-wise XNOR of feature vectors in the
discriminator optimization while retaining structural properties
of network. Gradient computation can be solved by stochastic
gradient ascent if D is differentiable with respect to θD.
Gradient ascent update equation with respect to dv and dvc

can be written as :

∇θDV (G,D) =

{∇θD log D(v, vc), if v ∼ ptrue;

∇θD

(
1− log D(v, vc)

)
, if v ∼ G

(3)

3When the features are continuous, element-wise absolute distance can be
used

Gradient ascent update equation for w can be written as :

∇wD
V (G,D) =

{∇wD
logD(v, vc), ifv ∼ ptrue;

∇wD

(
1− log D(v, vc)

)
, if v ∼ G

(4)

B. Generator

Generator G tries to approximate the true connectivity
distribution and aims to minimize the log-probability that
discriminator correctly assigns negative labels to the samples
generated by G. We define generator as a softmax function
over all the vertices in V and element-wise XNOR of two
input feature vectors. The equation can be written as:

G(v|vc) =
exp

(
(gTv gvc

) + [w ◦ w](fv � fvc
)
)

∑
v �=vc

exp
(
(gTv gvc

) + [w ◦ w](fv � fvc
)
) (5)

where gv, gvc ∈ R
m are the m-dimensional representation

vectors of vertex v and vc for generator G, fv, fvc
∈ F are

the feature vectors for the vertices v and vc respectively. The
union of all gvs represents the parameter θG of the generator.
The calculation of softmax in the equations considers all
vertices in V thereby calculating gradient θG for all vertices
at each step. Gradient computation may become inefficient
for large networks wherein a large number of nodes exist. In
graph networks, immediate vertices or neighboring vertices
are of interest for retaining structural properties. Moreover,
this function does not assign higher weights to neighboring
connections but assigns equal weights to all nodes in the graph.
It is computationally inefficient to calculate softmax over all
the vertices in the graph. As in [8], we may modify Eq (5) to
compute gradient over neighboring vertices only. GraphGAN
[8] provides detailed explanation of choosing normalized,
graph-structure-aware, and computationally efficient softmax
function.

p(vi|v) =
exp

(
(gTvigv) + [w ◦ w](fvi

� fv)
)

∑
vj∈Nc(v)

exp
(
(gTvjgv) + [w ◦ w](fvj

� fv)
)
(6)

Eq (6) is a softmax function over all neighboring vertices of
v. We can compute the gradient of V (G,D) with respect to
θG as :

∇θGV (G,D) =
V∑

c=1

Ev∼G(·|vc)
[
∇θG logG(v|vc) log

(
1−D(v, vc)

)]
(7)

Similarly, we can compute the gradient with respect to w as :

∇wG
V (G,D) =

V∑
c=1

Ev∼G(·|vc)
[
∇wG

logG(v|vc) log
(
1−D(v, vc)

)]
(8)

The above equation suggests that vertices with larger proba-
bility of negative samples will be penalised by the generator

90

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on July 03,2020 at 13:07:53 UTC from IEEE Xplore. Restrictions apply.

due to feedback from discriminator. Inspired by GraphGAN
[8], pseudo-code of our approach is described in Algorithm 1.

Algorithm 1 Proposed approach for generating embeddings

Require: Number of vertices to sample from G and D
Ensure: Embedding matrix for G and D

1: Initialize G and D with pre-trained or random initializa-
tions;

2: Construct BFS tree Bv for all vc ∈ V ;
3: while G does not converge do
4: for G-steps do
5: Generate g vertices for each vertex vc using Algo-

rithm 2;
6: Update θG and wG according to Eq. (6), (7) and (8);
7: end for
8: for D-steps do
9: Sample t positive vertices from ground truth and t

negative vertices from G for each vertex vc;
10: Update θD and wD according to Eq. (2), (3) and (4);
11: end for
12: end while

C. Sampling strategy for generator
Previous approaches, such as Deepwalk [7] and LINE [4]

adopt random walk to choose sampling vertices. However,
such an unbiased random walk has an equal probability of
choosing samples vertices from the graph G . Node2vec [5]
manipulate hyperparameters p and q to adjust the frequency
of choosing sample vertices in a biased random walk. In
this paper, we perform a weighted random walk on all the
vertices in graph G starting at vertex vc. For a given vertex
vc, probability of choosing vertex vi is calculated from Eq
(6). Probability score considers both structural and content
information while performing the random walk. It suggests
that vertex can be sampled even if a pair of vertices are not
directly connected but have a common set of features.

Firstly, we create Breadth First Search (BFS) tree Bv for
the vertex set V . For the starting vertex vc, we move to the
next adjacent vertex with probability estimated from Eq (6).
The process is repeated until the previous vertex is chosen for
sampling. Starting vertex vc and the current vertex is chosen
as sample pairs. For a given vertex vc, the algorithm stops in
O(logV) steps due to the tree structure of vertices. Algorithm
2 describes the sampling procedure.

We discuss time complexity for the proposed approach.
Construction of BFS tree in line 2 requires O(V (V + E)) =
O(dV 2) since tree is constructed for all the vertices in the
graph and each BFS tree has time complexity of O(V +
E) [16]. Each iteration of Generator (line 5 and 6) and Dis-
criminator (line 9 and 10), has time complexity of O(V logV).
The addition of features will slightly increase the computation
time but it will be negligible compared to the size of V .

III. EXPERIMENTS

In this section, we evaluate the performance of our proposed
algorithm on real-world datasets. We compare our results with

Algorithm 2 Sampling strategy for generator

Require: BFS tree Bv representation of v ∈ V
Ensure: Generated samples vgen

1: Select a starting vertex vc := vcur and vc := vprev;
2: while true do
3: Select neighboring vertex vi proportional to p(vi|vc)

using Eq. (6);
4: if vi = vprev then
5: RETURN vgen;
6: else
7: vprev := vcur, vcur := vi
8: end if
9: end while

TABLE I: Summary of datasets used for the experiments.

Dataset #Nodes #Edges #Features #Classes
Facebook 4038 88234 1283 -

Google Plus 1650 166292 1319 -
Twitter 246 9630 2263 -
Citeseer 3312 4715 3703 6

Cora 2708 5429 1433 7

state-of-the-art network embedding algorithms. We choose
four real-world datasets which contain both structure and
content information. To evaluate the effectiveness of the
generated embeddings, we evaluate embedding on the task
of link prediction and node classification. We find that our
model outperforms all previous state-of-the-art embedding
algorithms. Table I provides summary of the datasets.

A. Datasets

We used following four real-world datasets for our experi-
ments :

• Facebook4: Facebook dataset contains 4039 nodes,
88234 edges and 1283 features. The features are binary
values representing the presence or absence of the fea-
tures. For instance, Gender has two features, namely,
Female and Male that are represented as 1 and 0 in the
feature set.

• Google Plus5: The original Google plus dataset contains
107614 nodes and 13673453 edges. We choose an egonet
(subgraph) from the dataset containing 1650 nodes and
166292 edges. The dataset contains 1319 features orga-
nized in a similar manner as Facebook dataset.

• Twitter6: Similar to Google plus dataset, we choose
an egonet from the large twitter dataset. The evaluated
dataset contains 246 nodes and 9630 edges with 2263
features consisting of unique words.

• Citeseer7: It is a citation network consisting of scien-
tific publications. Node represents publications and edges

4http://snap.stanford.edu/data/ego-Facebook.html
5http://snap.stanford.edu/data/ego-Gplus.html
6http://snap.stanford.edu/data/ego-Twitter.html
7https://linqs.soe.ucsc.edu/data

91

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on July 03,2020 at 13:07:53 UTC from IEEE Xplore. Restrictions apply.

signifies citations with other publications in the network.
Network contains 3312 nodes and 413 edges. It has 6
classes and 3703 features consisting of unique words.

• Cora8: It is a citation network having 2708 scientific pub-
lications classified into one of seven classes. It contains
5429 links and features consists of 1433 unique words.

B. Experiment Setup

Datasets are chosen such that dense and sparse networks
exist with a large number of features. In citeseer network, the
number of edges is less than the number of nodes and a large
number of features are present. Sparse networks can evaluate
the performance of our feature-based approach. The dense
network such as Google plus can evaluate the effectiveness
of our algorithm.

We compare our proposed approach with GraphGAN [8]
and Node2vec [5]. GraphGAN experiments on link prediction
have outperformed previous approaches such as DeepWalk
[7], LINE [4], Struc2vec [6] and node2vec. Performance
of DeepWalk and struc2vec performs relatively poor in link
prediction due to their limitation to explore the local neigh-
borhood of nodes. Node2vec is a variant of Deepwalk and
capture link prediction tasks more accurately due to the
inclusion of biased random walks. All these methods including
GraphGAN incorporate structural information to learn node
embeddings. We exclude other approaches such as DeepWalk,
LINE, struc2vec that are already shown inferior to GraphGAN.

C. Parameter Settings

We perform stochastic gradient descent to update parameters
with a learning rate of 0.0001 on batch size of 64 for both
generator and discriminator. In each iteration, we set 20 as
the number of positive and negative samples, and run 30 steps
of generator and discriminator. The system is trained until
the generator is indistinguishable from the true distribution.
We have used L2 regularization term both generator and
discriminator. Dimension size of output embeddings is 32.
We choose the above parameters based on cross-validation.
For experiments on GraphGAN and node2vec, best hyper-
parameters are chosen for training the models.

IV. RESULTS

In this section, we present the results of our experiments
for link prediction and node classification.

A. Link Prediction

The aim of link prediction is to predict whether there exists
an edge between a pair of vertices or not. This task shows
the performance of our embeddings for the problem of edge
prediction. For this task, we test on two scenarios of training
set size. Firstly, we randomly select 20% positive edges9

for training and remaining 80% positive edges for testing.
Secondly, we randomly select 40% positive edges for training

8https://relational.fit.cvut.cz/dataset/CORA
9Positive edge refers to the presence of an edge and negative edge refers

to the absence of an edge between a pair of vertices.

and the remaining 60% positive edges for testing. For each pair
of vertices in the testing set, we calculate the score by adding
dot product of the embeddings and weighted features. Then,
we use a sigmoid activation function to keep values between 0
and 1. The threshold of activation function regulates precision
values for positive and negative edges. Moreover, the threshold
may be different for various embedding methods but we report
precision numbers for the optimum threshold. The results for
link prediction on five datasets are shown in Table II.

We randomly choose 5x negative edges for evaluation
purpose, i.e., number of negative edges = 5× positive edges.
In real-world networks, the absence of links is way higher
than the presence of links. It is important that we consider this
imbalance in the testing set. In previous evaluation approaches
such as GraphGAN [8], the equal number of positive and
negative edges are given in the testing set which does not
represent real-world networks. In this paper, we adopt the test
set ratio of negative to positive edges as 5 : 1.

In Table II, P@0 and P@1 refer to precision for negative
and positive edges respectively. It is calculated as a fraction of
edges predicted correctly. Due to our imbalanced positive and
negative edges in the testing set, we calculate the weighted
macro F1 score as shown in Eq (9) and (10).

Precision =
True Positive

True Positive+ False Negative
(9)

Weighted Macro F1 =
5× P@0 + P@1

5 + 1
(10)

We observe that the performance of our approach outper-
forms all baselines in link prediction. Addition of features
(or content) information boosts link prediction. For facebook
dataset, in case of 20% training set, node2vec is able to beat
link prediction when the link is present, however it poorly
predicts when the link is absent. Overalll, our approach report
better Macro-F1 scores than other approaches. Further, we
observe that node2vec is biased towards predicting positive
edges correctly and predict relatively poor on the absence of
links on Facebook, Citeseer and Cora dataset. The training
process of node2vec that takes structural properties into con-
sideration explains such imbalance. For Facebook dataset on
20% training set, our numbers are slightly less than Graph-
GAN but on all others train-test ratio, we outperform both
embedding methods. Our model outperforms other methods by
a considerable margin of more than 20% where there is a large
number of missing edges such as Citeseer and Cora datasets.
Our approach of incorporating content information in addition
to structure information in a adversarial training process during
training produces improved embedding. Using the Wilcoxon
signed-rank test, we notice that the sum of the signed ranks
is very clearly in favour of our approach as against Node2Vec
and GraphGAN.

92

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on July 03,2020 at 13:07:53 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Performance of the algorithms for link prediction
on various datasets for different embedding methods on Face-
book, Google Plus, Twitter, Citeseer and Cora datasets. 20/80
and 40/60 represents train-test ratio. Algorithms were trained
with 20% and 40% positive edges and test on remaining 80%
and 60% positive edges respectively. P@0 and P@1 represents
precision for negative edges and positive edges respectively.
Macro-F1 represents weighted Macro-F1 scores for positive
and negative edges with a ratio of 1:5.

(a) Facebook Dataset

Algorithm 20/80 40/60

P@0 P@1 Macro-F1 P@0 P@1 Macro-F1
Node2Vec 0.36 0.97 0.45 0.75 0.98 0.79
GraphGAN 0.5 0.5 0.5 0.92 0.72 0.89

Our Approach 0.54 0.54 0.54 0.91 0.71 0.88

(b) Google Plus Dataset

Algorithm 20/80 40/60

P@0 P@1 Macro-F1 P@0 P@1 Macro-F1
Node2Vec 0.62 0.69 0.63 0.44 0.88 0.52

GraphGAN 0.67 0.71 0.68 0.52 0.91 0.584
Our Approach 0.68 0.72 0.69 0.52 0.91 0.586

(c) Twitter Dataset

Algorithm 20/80 40/60

P@0 P@1 Macro-F1 P@0 P@1 Macro-F1
Node2Vec 0.60 0.66 0.61 0.64 0.67 0.65

GraphGAN 0.64 0.7 0.65 0.65 0.67 0.65
Our Approach 0.66 0.7 0.664 0.65 0.69 0.66

(d) Citeseer Dataset

Algorithm 20/80 40/60

P@0 P@1 Macro-F1 P@0 P@1 Macro-F1
Node2Vec 0.46 0.90 0.53 0.47 0.75 0.52
GraphGAN 0.50 0.51 0.50 0.50 0.52 0.50

Our Approach 0.68 0.70 0.69 0.69 0.78 0.70

(e) Cora Dataset

Algorithm 20/80 40/60

P@0 P@1 Macro-F1 P@0 P@1 Macro-F1
Node2Vec 0.53 0.70 0.55 0.43 0.56 0.45

GraphGAN 0.49 0.51 0.50 0.48 0.56 0.49
Our Approach 0.59 0.70 0.60 0.56 0.72 0.58

B. Node Classification

Node classification is an important application in cases
where we need to predict labels of a vertex. Each vertex is
assigned one or more label, our aim is to predict label of a
vertex. The performance of node classification can reveal the
distinguishing ability of various embedding methods. In this
task, we retrieve the embeddings of the nodes and use them

as features to train a logistic regression [17]. We perform
this experiment for the different train-test ratio. The dataset
is split for training set size of 5%, 50% and 90% and used
remaining nodes for testing. We take two popular metrics
based on the F1 score as evaluation criteria, namely, Macro-
F1 and Micro-F1. In Macro-F1, we average the performance
of each individual class whereas in Micro-F1 we calculate the
individual performance of each class on true positives, false
positive, false negative and true negative. Generally, the higher
the score, better the classification performance. We repeat the
same experiment for other embedding methods.

The results for node classification for Citeseer and Cora
datasets are presented in Table III. We observe that the
performance of Node2vec is higher than GraphGAN for both
datasets and training set size. On both metrics, our model
outperforms previous approaches by a significant margin.
For citeseer dataset, we observe a jump of 10% - 20% of
both Macro-F1 and Micro-F1 scores. It turns out that our
approach outperforms baselines by a higher margin for node
classification. This indicates that features play a crucial role
to encode node representations for link prediction and node
classification.

TABLE III: Performance of the algorithms for node classi-
fication for various embedding methods on the Citeseer and
Cora datasets. We have tried methods on different train-test
ratio namely 5%-95%, 50%-50% and 90%-10%. Macro-F1
and Micro-F1 results are shown for the embedding methods.

(a) Citeseer Dataset

Metric Algorithm 5/95 50/50 90/10

Macro-F1
Node2Vec 0.45 0.55 0.56

GraphGAN 0.34 0.40 0.40
Our Approach 0.54 0.65 0.68

Micro-F1
Node2Vec 0.50 0.60 0.62

GraphGAN 0.38 0.46 0.40
Our Approach 0.60 0.65 0.68

(b) Cora Dataset

Metric Algorithm 5/95 50/50 90/10

Macro-F1
Node2Vec 0.69 0.74 0.81

GraphGAN 0.34 0.44 0.49
Our Approach 0.57 0.74 0.82

Micro-F1
Node2Vec 0.69 0.77 0.8

GraphGAN 0.39 0.47 0.52
Our Approach 0.61 0.77 0.84

C. Significance Test

On all datasets, we report significance using the Wilcoxon
signed-rank test [18]. This is a non-parametric test used to

93

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on July 03,2020 at 13:07:53 UTC from IEEE Xplore. Restrictions apply.

compare median performance of a pair of algorithms. It
evaluates null hypothesis that there is no significant difference
between a pair of algorithms. In the signed rank test, one
first rank the absolute value of the differences observed in the
performance of the pair of algorithms and signs are assigned
depending on the whether performance of first algorithm is
higher than that of the second. If there is no significant
difference (that is, if the null hypothesis holds), the sum of
the signed ranks should be approximately 0. In our case, we
obtain a sum of 134 and 128 for Node2vec and GraphGAN
respectively. We note that comparing a pair of algorithms using
the Wilcoxon test is equivalent to determining if the area under
the ROC curves of the algorithms differ significantly. The null
hypothesis is that our model does not perform better than
two baselines and the alternative hypothesis is that our model
performs better than baselines. We obtain a p− value ≤ 0.01
clearly reject the null hypothesis and support our claim. Table
IV shows the results of Wilcoxon signed-rank test.

TABLE IV: Test for statistical significance of our model with
Node2vec and GraphGAN using Wilcoxon Signed Rank test.
Sum refers to sum of signed ranks.

Algorithm Sum Z-value W-value p-value

Node2vec 134 -3.5162 0 0.00044
GraphGAN 128 -3.3611 3 0.00078

V. CONCLUSION AND FUTURE WORK

In this paper, we leverage generative adversarial network to
train our network. We train generator and discriminator in a
minimax game utilizing both structure and feature information
to learn node embedding. Similar to GAN, the generator is
trained to utilize discriminator output to improve its perfor-
mance. We conduct extensive experiments on five datasets for
link prediction and node classification. We observe significant
gains in both tasks outperforming baselines by a significant
margin. For node classification, our model achieves 10%-20%
higher Macro-F1 and Micro-F1 score over current state-of-
the-art baselines. In link prediction, our model registers at
least 20% higher Macro-F1 scores over current baselines on
the sparse networks. In well-connected networks, our model
exceeds current state-of-the-art approaches Macro-F1 scores.

In the future work, we propose to add features directly
to the embeddings. We would also like to introduce feature
selection to reducing computation time. We propose to extend
our idea to time-variant networks such as social networks
where network relationship changes with time.

VI. ACKNOWLEDGEMENTS

We thank Saket Bhojane for his useful contributions in
initial experiments. We would also like to thank National
Center of Excellence in Technology for Internal Security
(NCETIS) at IIT Bombay for financially supporting the first
author. Manjesh Kumar Hanawal would like to thank support

from INSPIRE faculty fellowships from DST, Government of
India and SEED grant (16IRCCSG010) from IIT Bombay.

REFERENCES

[1] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” in Advances in neural information
processing systems, 2002, pp. 585–591.

[2] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management.
ACM, 2015, pp. 891–900.

[3] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity
preserving graph embedding,” in Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2016, pp. 1105–1114.

[4] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2015, pp. 1067–1077.

[5] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855–864.

[6] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, “struc2vec: Learning
node representations from structural identity,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2017, pp. 385–394.

[7] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 701–710.

[8] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and
M. Guo, “GraphGAN: Graph representation learning with generative
adversarial nets,” arXiv preprint arXiv:1711.08267, 2017.

[9] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction us-
ing matrix and tensor factorizations,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 5, no. 2, p. 10, 2011.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[11] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, 2015, pp.
2111–2117.

[12] X. Huang, J. Li, and X. Hu, “Label informed attributed network
embedding,” in Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining. ACM, 2017, pp. 731–739.

[13] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024–1034.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[15] R. A. Horn, “The hadamard product,” in Proc. Symp. Appl. Math, vol. 40,
1990, pp. 87–169.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[17] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in Proceedings of the fifth annual workshop
on Computational learning theory. ACM, 1992, pp. 144–152.

[18] S. Siegel and N. Castellan, 2006.

94

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on July 03,2020 at 13:07:53 UTC from IEEE Xplore. Restrictions apply.

