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Abstract—In this paper, we present a framework for assisting
word-level corrections in Indic OCR documents by incorporating
the ability to identify, segment and combine partially correct
word forms. The partially correct word forms themselves may
be obtained from corrected parts of the document itself and
auxiliary sources such as dictionaries and common OCR charac-
ter confusions. Our framework updates a domain dictionary and
learns OCR specific n-gram confusions from the human feedback
on the fly. The framework can also leverage consensus between
outputs of multiple OCR systems on the same text as an auxiliary
source for dynamic dictionary building. Experimental evaluations
confirm that for highly inflectional Indian languages, matching
partially correct word forms an result in significant reduction
in the amount of manual input required for correction. Further-
more, significant gains are observed when the consolidated output
of multiple OCR systems is employed as an auxiliary source of
information. We have corrected over 1100 pages (13 books) in
Sanskrit, 190 pages (1 book) in Marathi, 50 pages (part of a
book) in Hindi and 1000 pages (12 books) in English using our
framework. We present a book-wise analysis of improvement in
required human interaction for these Languages.

I. INTRODUCTION

Error detection in Optical Character Recognition (OCR)

extracted text for of highly inflectional languages from India

faces challenges such as large unique-words list, lack of

linguistic resources, lack of reliable language models, etc. [1].

The technique of morphological parsing has been applied

for character-level error detection and correction in Bangla

text [2], and Recurrent Neural Networks have been recently

used along with Gaussian Mixture Models to detect the

erroneous text in Hindi, Gujarati, Malayalam, and Telugu [3].

A Multi-engine Environment has proven effective in solving

the problem of OCR text correction in English [4].

The conventional spell-checkers make use of proximity-

based matches, especially Levenshtein-Damerau edit distance

to words from a known vocabulary (possibly gathered from the

Web), followed by a language model for auto-corrections [5],

[6], [7]. The various difficulties involved in developing a

high-performing Spellchecker for Hindi, Bengali and English

are discussed in Choudhury et al. [8]. Here, an example is

given that “fun” being misspelled as “gun” is a real-word

error (RWE) and “fun” being misspelled as “vun” is a non-

word error (NWE). An observation is made by Choudhury

et al. [8], that “hardness of NWE correction is highest for

Hindi, followed by Bengali and English”. Intuitively, the larger

Fig. 1. Examples of OCR words in Sanskrit, Marathi, Hindi and English (top
to bottom) with no correct suggestion from popular engines/spell-checkers.
Errors are marked in red and corrections in green. These errors are corrected
by our framework.

the number of basic word forms that exist in a language,

the more candidates there are for replacing each erroneous

word and the harder it is to build a functioning spell-checker.

We try to solve the problem of OCR text verification and

erroneous word replacement by partially matching the correct

word forms obtained from the document or other auxiliary

sources. 1

Although the major challenges of error detection in various

Indian languages have been discussed in Sankaran et al. [1],

we discuss the problem of error detection and correction for

Indic OCR and motivate our work in Section II. A systematic

discussion on the possible auxiliary sources for getting the

document specific suggestions is given in the Section III.

The experiments and results are summarized in Section IV,

followed by the conclusion in Section V.

II. PROBLEM SCOPE AND MOTIVATION

While investigating OCR error correction, we came across

various examples of Indic OCR text which was too hard for

various online spell-checkers to verify and/or correct. The

suggestions generated were very far from the truth for most

of the words. The major reasons for this are:

1) the limited vocabulary is majorly incomplete.

2) limited implementation of language-specific rules for

verifying correctly spelled words.

3) the design for such spell-checkers is based on typing

errors, and not on frequent OCR n-gram confusions.

1The source code of our framework, OpenOCRCorrect, is available at
http://tinyurl.com/y9lms89u.



Fig. 2. A screen-shot of our framework.

4) ambiguities in suggestions from dictionary due to large

no. of basic word forms.

Some examples of erroneous OCR outputs for which the

online spelling correction systems failed are given in Figure 1.

We are able to provide correct suggestions for these words

through our system.

Generating the spelling suggestions is even more of a

problem for Indian languages, since the average typing speed

of professional Indian typists is much slower than the average

typing speed of a professional typist in English, which is 75

words per minute (WPM) at a word error rate of roughly 0.5%

[9]. The reason for this is that the keyboard is designed for

a total of 26 characters whereas there are over 50 characters

in Sanskrit, out of which vowels exist in different forms at

different locations. Moreover, the average length of a word

in Indian languages is much longer than English due to

conjoining words which make typing a more difficult task for

curating errors. 2

Our research is motivated by various observations; a) as aux-

iliary sources and the methods to correct the word increases,

the possibility of getting the correct word suggestion increases,

b) a suggestion that is not helpful in complete word correction

may be helpful in partial word correction and c) a correct

2In our system we provide the facility to type in SLP1 (an ASCII
transliteration scheme) format, since typing in English is much easier; once
the user gets well conversant with typing in the SLP1 format. If “Ctrl+D” is
clicked after typing in SLP1 format, the word under the cursor is automatically
converted to Devanagari.

conjoined word is formed by combination of a minimum

number of words from the word dictionary. The problem in

reading the conjoined words, due to their large length, is

also an important factor while curating the OCR errors. To

overcome this, we provide a user-friendly color coding scheme

in our framework for the partial dictionary string matches, for

each combined word. Figure 2 shows a screen-shot of our

system. The words verified as correct are marked as black by

our framework. The gray words are the words that have been

marked as correct by the user (previously at a different location

in the document) and the purple words are ones that have been

auto-corrected by the system. The user is required to right

click to generate suggestions. Each multi-colored (green and

blue) word is a conjoined word consisting of substrings which

are valid words in either the word dictionary or the domain

vocabulary (which is updated on the fly with corrections). The

colors (green and blue) differentiate the adjacent valid sub-

strings of the conjoined word. An error is more likely to be

present in the places where the green/blue substring is short

(of length 2/3 chars).

III. AUXILIARY SOURCES

Various auxiliary sources are found to be helpful in gener-

ating the correct suggestions for an erroneous word. The same

is discussed in the decreasing order of relevance.



A. Domain specific vocabulary

One of the powerful auxiliary sources for OCR error correc-

tions could be a domain specific vocabulary. Our work aims

to digitize out-of-print books in Indian languages. Initially

no domain-specific vocabulary is available, but as the user

corrects a word in the document, we update a domain-specific

vocabulary to further help in correcting the remaining words.

We further use this vocabulary for correcting other books

written in the same domain.

B. OCR documents from different systems

In our experiments, it was observed that the OCR doc-

ument itself is one of the most powerful auxiliary sources

in correcting the erroneous text since it contains the domain

information. Such an auxiliary source is helpful when the OCR

document has decent word level accuracy and hence frequently

occurring words can be used to generate the correct suggestion

for the erroneous OCR words. Specifically, the words which

are incorrect due to location-specific imaging errors can be

corrected with this source. Another powerful auxiliary source

in the dual-engine environment is the OCR document from the

secondary OCR.

C. Sub-strings from OCR words conforming to word conjoin-

ing rules

A powerful auxiliary source which is helpful for generating

the suggestions for many erroneous words is the sub-strings

from the OCR words that are corrected, verified as correct, or

conform to the rules for conjoining word forms. The sub-word

forms for conjoined words are searched in the word dictio-

nary III-E and the updated domain specific vocabulary III-B.

D. Document and OCR specific n-gram confusions

We observed that the error confusions in a word from the

primary OCR engine are generally different from the error

confusions in the corresponding word from the secondary

OCR engine. This is because two different OCR systems

use different preprocessing techniques and different classifier

models [4]. Thus, the OCR specific confusions of the primary

OCR, or the only OCR in single engine environment, can

be helpful in deciding whether the part of the erroneous

word should be changed or not. For example: if the nearest

word to the erroneous word “iiet” are “net” and “pet” from

the dictionary, the tie can be broken by the common OCR

character confusion ii→n, and hence the word “net” can

be given preference over “pet”. Another interesting example

would be NWE “iiiternet” matching to “interpret”, where the

common OCR confusion ii→n can be helpful in correcting

the erroneous word to “internet”. The change to “interpret” is

be avoided if m→pr is not a valid OCR character confusion

for the primary OCR system. We also take care of n-gram

confusions involving two or more characters on either or both

sides, e.g.: in English iii→m or iii→in are common OCR

confusions. With each correction made by the user, we update

the OCR and document specific confusions to be further used

to correct the remaining words in the same document, and

further correct the remaining OCR documents.3

E. Off-the-shelf dictionary

Though the vocabulary is generally incomplete in Indian

Languages due to the rich inflections, still the frequent words

can be corrected via a fixed word dictionary.

IV. EXPERIMENTS AND RESULTS

Lang. TP FP TN FN Prec Recall F-Scr.

Sanskrit
LB 87.45 39.02 60.98 12.55 30.36 87.45 45.08
UB 91.62 0 100 8.38 100 91.62 95.63
Dual eng. 82.35 17.64 82.29 17.70 48.04 82.29 60.66
Loglinear 85.13 17.84 82.16 14.87 48.62 85.13 61.89

Marathi
LB 33.80 25.02 74.98 66.20 36.10 33.80 34.91
UB 15.20 0.03 99.97 84.80 99.49 15.20 26.37
Dual eng. 29.15 12.87 87.13 70.85 48.64 29.15 36.46
Loglinear 76.93 3.83 96.17 23.07 78.77 76.93 77.84

Hindi
LB 53.15 19.21 80.79 46.85 49.83 53.15 51.43
UB 44.72 1.55 98.45 55.28 91.18 44.72 60.01
Dual eng. 61.76 18.74 81.26 38.23 54.19 61.76 57.73
Loglinear 64.34 15.25 84.75 35.66 55.97 64.33 59.86

TABLE I
ERROR DETECTION RESULTS. THE RESULTS OF BOTH DUAL ENGINE

AGREEMENT (USED IN FRAMEWORK) AND LOG LINEAR CLASSIFIER ARE

BETTER THAN LB (LOWER BASELINE) AND ARE IN-BETWEEN (OR

BETTER THAN) UB (IDEALIZED UPPER BASELINE). ALSO, LOG LINEAR

CLASSIFIER BEATS DUAL ENGINE RESULTS.

A. Error detection

We analyzed various methods for detecting errors in the

OCR text. We observed that commonly used dictionary lookup

approach gave a high percentage of True Positives (errors

detected as errors) but a lower percentage of True Negatives

(correct words detected as correct). Marking all words that

can be formed by applying conjoining rules to words from the

dictionary as correct increased the True Negatives but reduced

the True Positives and hence was not used. We observed

through data analysis that task of achieving high F-Score

depends upon the complexity of the data and the dictionary

being used for error detection. The difficulty can be analyzed

by the two baselines as follows:-

• Lower Baseline (LB): Dictionary Lookup based detection

with off-the-shelf Dictionary.

• Upper Baseline (UB): Dictionary Lookup based detection

with Dictionary set to contain all the words in the Ground

Truth. This is an idealized baseline as OOV (Out of

Vocabulary) Ground Truth words are never known in

advance.

For our framework, we mark words common to the output

of two OCR systems as correct as it is highly unlikely

for two OCR systems to come up with same erroneous

word [4]. Words, where the OCR systems disagree, are marked

3Word alignment and confusions extraction is done using dynamic pro-
gramming.



as incorrect. The results for different Indian languages are

summarized in Table I. It can be observed that F-Score for

the dual OCR system is better than LB (Lower Baseline)

and are in-between (or better than) UB (Idealized Upper

Baseline). For comparison purposes, we also trained a logistic

linear regression based plug-in classifier [10] on 60% of data

with 80:20 as the train:val split, and tested the results of

remaining 40% of document words. The plug-in classifier is

trained to optimize the F-score of validation data and can

also be tuned incrementally on-the-fly. This is done by tuning

the probability threshold of the logistic linear classifier to

maximize the F-Score on validation data. Using the simple

features like frequencies of n-grams (up-to 8) of the OCR word

in a fixed dictionary, it gave better F-Score on the test data

than Dual OCR agreement. For Sanskrit, the Indian language

with highest inflections, we additionally used features such as

edit distance between OCR words from two OCR systems,

no. of dictionary word components both obtained by applying

simple and complex word conjoining rules, and all possible

products of these three features as the input features. We also

divided each of the first three features with primary OCR word

length, and used all of their possible products as another set

of features in addition to using two binary features; i) marked

as 1 for word common to both OCR systems, else 0, and ii)

1 if the word is from dictionary else 0.

Sugg. %age of “correct”,“uniquely correct” suggestions in
Rank Sanskrit Marathi Hindi

1 29.07, 29.07 15.73, 15.73 14.24, 14.24

2 10.76, 4.45 13.23, 5.11 13.05, 0.01

3 23.42, 4.20 14.09, 3.93 3.47, 0.36

4 15.99, 2.86 3.34, 0.60 3.83, 0.72

5 6.84, 2.06 15.20, 11.99 10.973, 8.11

Total (Uniq.) Suggs. 42.64 37.63 23.44

TABLE II
PERCENTAGE OF ERRONEOUS WORDS FOR WHICH THE CORRECT

SUGGESTIONS WERE GENERATED BY VARIOUS AUXILIARY SOURCES AND

METHODS IN DECREASING ORDER OF RELEVANCE.

B. Suggestion generation

We avoid using frequency based Language Models for

OCR corrections as they can do more harm than good in

the OCR setting [11]. Moreover, Language Models are al-

ready used in post-processing stage of an OCR system, and

hence OCR output is likely to exhibit a lower percentage

of contextual errors. We generated various suggestions based

on the auxiliary sources mentioned in the previous sections.

The suggestion generation results are shared in Table II. The

top two suggestions are the nearest suggestions from the

secondary and primary OCR documents respectively. The third

suggestion is generated with the nearest sub-string search from

the secondary OCR document as explained in section III-C.

The fourth suggestion is generated by partially correcting

the primary OCR word in accordance with the secondary

OCR word for the same image as explained in Section III-D.

Here the OCR confusions of primary OCR, that are updated

on the fly, are used. The fifth suggestion is generated by

applying OCR confusions to the OCR word to reach to a

word that follows the conjoining rules. Some frequently used

word conjoining rules are simultaneously used to split the

OCR word until we reach a word that follows the conjoining

rules. We look for the word forms for such conjoined words

in off-the-shelf as well as domain vocabulary that is updated

on-the-fly.
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Fig. 3. System analysis of documents in different Languages. For Indian
Languages, there is overall decrease in time per error as the user progresses
in page number. The system also works well for the English document.

C. System analysis

As mentioned earlier, we have corrected over 1000 pages

in English and Sanskrit, 190 pages in Marathi and 50 pages

in Hindi using our application.

Here, in Figure 3, we present the real time system analysis

for a book in each language. Each book is corrected by a

single user so that the efficiency of the framework can be truly

analyzed. After correction of each page by the user, the time

taken to correct the page is saved. The number of erroneous



words on each page, calculated using dynamic programming

(by comparing original OCR page and corrected page), is also

saved and used for calculating time per error on each page. For

Indian languages, the average (with the averaging window of

the quarter size of the document) time per error decreases with

page number for the majority of the document. Ideally, the

time per error should be dropping throughout the documents,

but fatigue and other factors cause the user to slow down at

times. Thus, the system is effective in reducing human efforts

for corrections in Indic OCR.

Although the system is designed specifically for Indian lan-

guages, we nevertheless used it for English documents. For the

particular document in English, refer Figure 3 (bottom right),

the average time per error drops similar to the documents in

Indian languages.

Fig. 4. Examples of erroneous OCR words for which partially correct
suggestions were obtained by our framework.

Some errors in OCR output for which the correct sugges-

tions are obtained by our framework are shown in Figure 1.

Some examples of erroneous OCR words, for which partially

correct words were suggested by our framework, are shown

in Figure 4.

Fig. 5. Examples of correct Out of Vocabulary (OOV) words (marked as
errors) for which readability is improved by our framework.

In Figure 5, we show examples of the correct Out of Vo-

cabulary (OOV) words in the OCR output, which are marked

as errors (colored) by our framework. However, the user can

easily understand that such words as correct due to improved

readability. This happens due to adequate color coding of

dictionary strings in a combined word. Such coding is also

helpful in identifying the errors such as “Therehegoes” where

the OCR system fails to recognize the whitespace characters.

Fig. 6. Examples of incorrect OCR words with improved readability.

Some examples of incorrect OCR words for which error

locations are easily identifiable due to adequate color coding

are shown in Figure 6.

Fig. 7. Examples of complex OCR errors not corrected by our framework.

In certain complex cases, our framework is not able to

suggest the correct word to the user. Such examples are shown

in Figure 7.

V. CONCLUSIONS

We designed an interactive approach for word level correc-

tions applicable to Indian languages with varying degree of

inflections. The system can easily be adapted to other Indian

languages by changing the ASCII transliteration scheme which

it uses to store and process the data. Our framework leverages

generic word dictionaries and a domain-specific vocabulary

grown incrementally based on user corrections from the

current on the OCR document. It also learns OCR specific

confusions on-the-fly. We have incorporated word conjoining

rules to parse OCR words and discover their potentially correct

sub-strings. Furthermore, we have presented a dual engine

environment to cross-verify potential errors and corrections.

We empirically verify that the dual engine environment in

conjunction with the previously mentioned resources, yields

error detection performance close to the idealized baseline,

while additionally providing for accurate suggestion genera-

tion. We also presented a plug-in classification approach to

further improve the error detection by tuning the probability



threshold for classification. Given the role of user interaction

in our framework, we have carefully designed the UI to

reduce the overall cognitive load by use of transliteration

schemes, suitable color coding, and learning on-the-fly from

interactions.
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