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Abstract. Knowledge graphs have become ubiquitous data sources and
their utility has been amplified by the research on ability to answer
carefully crafted questions over knowledge graphs. We investigate the
problem of question generation (QG) over knowledge graphs wherein,
the level of difficulty of the question can be controlled. We present an
end-to-end neural network-based method for automatic generation of
complex multi-hop questions over knowledge graphs. Taking a subgraph
and an answer as input, our transformer-based model generates a natural
language question. Our model incorporates difficulty estimation based on
named entity popularity, and makes use of this estimation to generate
difficulty-controllable questions. We evaluate our model on two recent
multi-hop QA datasets. Our evaluation shows that our model is able to
generate high-quality, fluent and relevant questions. We have released our
curated QG dataset and code at https://github.com/liyuanfang/mhqg.
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processing · Transformer · Neural network

1 Introduction

Knowledge graphs (KG) have quickly become an indispensable information
source for both research and practice in recent years. A great amount of effort
has been invested into curating large KGs such as Freebase [3], DBPedia [2] and
Wikidata [11]. Question answering (QA) [19,8], the task of answering natural-
language questions over a KG, has attracted substantial research interest as it is
an accessible, natural way of retrieving information from KGs without the need
for learning complex structural query languages such as SPARQL.
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State-of-the-art KG QA models are typically based on neural networks and as
a result, they are data-driven and need large amounts of training data, containing
a set of triples in the form of a graph, a question and the corresponding answer.
To cater to the need of training and evaluating KG QA models, a number of
datasets have been created and curated over the years. These datasets include
those that contain simple, single-hop information [1,4,24] as well as those that
contain more complex information. These complex datasets either comprise multi-
hop instances [34,35,30] or instances that are answerable only through discrete
reasoning [23].

However, further improvements in KG QA have been hindered by the limited
availability of data. The abundance of large-scale “simple”, single-triple data
does not necessarily help advance state-of-the-art. This is because, questions on
such data are easy to answer, once correct entities and predicates are identified.
In contrast, complex questions whose answering entails inference across multiple
triples are naturally more difficult to answer and are therefore more valuable
resources for improving KG QA models. However, complex questions are also
more difficult to create, and most existing complex question datasets are created
either manually or in a semi-automated manner.

Question generation (QG) over knowledge graphs poses a number of challenges.
To illustrate the challenges, in Example 1 we present two subgraphs (both in
visual and textual form) and the corresponding reference questions and answers
from the ComplexWebQuestions [28] and the PathQuestion [35] datasets.
The first example is from PathQuestion, which has the entities and predicates
separated by a special token #, the end of the subgraph denoted by the token
<end>, followed by the answer entity. It contains three entities connected by two
predicates. The second example is from ComplexWebQuestions, which has the
triples separated by the special token <t>. The example is a three-hop subgraph.
Different from the previous example, this subgraph is not a sequence of triples
but rather star-shaped, and has multiple answers.

Example 1. Two examples, each consisting of a subgraph, a question about it,
together with the answer.

henry_i_duke
_of_guise

anna_deste
jacques_de_sa

voie_2nd_duc_de
_nemours

parents spouse

G: henry i duke of guise#parents#anna deste#spouse#

jacques de savoie 2nd duc de nemours#<end>#

jacques de savoie 2nd duc de nemours

Q: what is the name of the spouse of henry i duke of guise ’s mom?

A: jacques de savoie 2nd duc de nemours



Bokmål Norway Norwegian
official_language

official_language

Nynorsk

official_language

G: Norway official language Bokmål <t>

Norway official language Norwegian <t>

Norway official language Nynorsk

Q: what languages are spoken in norway?

A: Bokmål, Norwegian, Nynorsk

We address the following challenges for QG over KGs. Firstly, the input
is a graph, and not necessarily a sequence of tokens. The second graph in
Example 1 contains one entity with three outgoing predicates connecting to three
other entities, and is obviously not structured as a sequence. Conventional text
generation methods are however based on sequence-to-sequence models such
as recurrent neural networks (RNN), that assume the input to be a sequence.
Such a mismatch may negatively affect the quality of QG. In the same vein, for
complex, multi-hop questions, a model would need to look at different parts of
the graph repeatedly to generate a syntactically fluent question. Again, this is
difficult for RNN-based techniques that operate sequentially. Last but not least,
it is desirable to be able to generate questions of varying difficulty levels.

In this paper, we address the important problem of automatic generation of
complex, multi-hop questions over KGs. We propose an end-to-end, self-attentive
QG method based on the Transformer [31] architecture. Our approach does not
assume sequential representation of an input graph, and is naturally able to
attend to different parts of a graph in an efficient manner. Moreover, we model
and estimate the difficulty level of a given subgraph-question pair so that we can
generate questions of varying difficulty levels.

To the best of our knowledge, this is the first work on automatic generation
of complex, multi-hop questions from KGs. Our main contributions are fourfold.

1. We propose a novel model for generating complex, difficulty-controllable
questions from subgraphs of multiple triples.

2. Our Transformer-based model naturally treats a subgraph (a set of triples)
as a graph and avoids arbitrary linearisation into a sequence of triples.

3. Our evaluation over a state-of-the-art natural-language generation model on
two multi-hop QA datasets shows our technique is able to generate questions
of much higher quality.

4. Models, dataset and code is available8 to facilitate reproduction and further
research on KG QA research.

8 https://github.com/liyuanfang/mhqg
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2 Related work

In this section we briefly discuss prior work from the areas of question answering
and question generation that are most related to our work.

2.1 Question Answering over Knowledge Graphs

Question Answering over Linked Data (QALD) [19] has been under intense
investigation in recent years. A wide array of methods and techniques have been
developed.Bordes et. al. [4] employed Memory Networks [33] to answer simple,
one-hop questions, and created the SimpleQuestions dataset that contains 100k
one-hop questions. Semantic parsing has also been investigated as an effective
method for answering both simple [1] and complex [34] questions. Talmor and
Berant proposed [28] to decompose a complex question into simpler ones as a way
of answering it. Unlike in semantic parsing where the knowledge graph is used for
QA, Talmor and Berant propose to answer simple questions by performing a Web
search. The final answer is computed from the sequence of answers. The results
are evaluated on their own ComplexWebQuestions dataset that includes
SPARQL queries, answers and text snippets as evidence. As a byproduct of
these methods, the datasets WebQuestions [1] and WebQuestionsSP [34]
were created. An Interpretable Reasoning Network (IRN) was proposed by Zhou,
Huang and Zhu [35] to answer multi-hop (path or conjunctive) questions. Two
datasets, PathQuestion and WorldCup2014, of up to three hops were created for
evaluating IRN.

A different type of complex questions answering task that involve discrete
reasoning has recently been proposed in CSQA [23]. Unlike multi-hop questions,
questions in CSQA requires a variety of different reasoning tasks, such as logical,
quantitative, qualitative, and comparative reasoning.

Interested readers are referred to a recent survey [8] for further details.

2.2 Question Generation

Question generation (QG) has recently attracted significant interests in the
natural language processing (NLP) and computer vision (CV) community. Given
an input (e.g. a passage of text in NLP or an image in CV), optionally also
an answer, the task of QG is to generate a natural-language question that is
answerable from the input. Neural network-based methods [9,17,26,18,12] are
the state-of-the-art in QG. These end-to-end models do not require the manual
creation of templates or rules, and are able to generate high-quality, fluent
questions.

For any data-driven tasks such as question answering, the availability of large,
varied and challenging datasets is crucial to their continued improvements. In fact,
the recent development and interests in QALD is in part driven by the creation
and release of the public datasets discussed in the previous subsection. Significant
manual work has been invested in the creation (e.g. by Amazon Mechanical Turk
workers) and curation (e.g. by the researchers) of these datasets. Despite the



coninued efforts, constrained by available resources, these datasets are limited in
their size and variability.

As a response to this issue, the (semi-)automatic generation of questions over
KG has recently been investigated. Seyler at al [25] proposed a semi-automatic
method of generating multi-hop quiz questions from KG. With an entity e as
the starting point, the KG is queried to find all triples with the entity as either
the subject or the object, using SPARQL with patterns 〈e ?p ?o〉 and 〈?s ?p o〉.
The SPARQL queries are then verbalised from a given pattern to generate quiz
questions. The notion of difficulty, which is measured from entity popularity,
triple pattern selectivity and coherence, is incorporated in this work.

Inspired by QALD [19], Large-Scale Complex Question Answering Dataset
(LC-QuAD) [30], a QA dataset of 5,000 multi-hop questions, was recently released.
Similar to the previous work, LC-QuAD’s generation is semi-automatic. The
starting point is a manually curated list of DBPedia entities and predicates, a list
of SPARQL templates, as well as a list of natural-language question templates,
one for each SPARQL template. Given a seed entity and predicates, a two-hop
subgraphs are extracted from DBPedia. The subgraphs and templates are merged
to create valid SPARQL queries, and in turn natural-language questions. These
questions are eventually corrected and reviewed by human users.

Different from the above works, our method is end-to-end and fully automated
without the need of manually created templates or patterns. Our method only
requires a subgraph (similar to a text passage and an image in other settings)
and optionally an answer, from which a natural-language question is generated.

The 30M Factoid Question Answer Corpus [24] is possibly the earliest work
using neural networks to generate questions over KG, and the largest dataset of
single-hop questions. With SimpleQuestions [4] as the training set, they employ
a standard encoder-decoder architecture to embed facts (triples), from which
questions are generated. Reddy et al [22] also uses a standard sequence-to-sequence
model to generate single-hop questions from a set of keywords, extracted from
a KG using rules. Elsahar et al recently proposed a method [10] of generating
single-hop questions from KG. Their method supports the generation involving
unseen predicates and types, which is achieved by incorporating side information,
in this case textual context from Wikipedia articles. Employing the encoder-
decoder architecture with GRUs (gated recurrent units), the decoder module
makes use of triple attention and textural attention to generate the next, possibly
unseen token.

Our method differs from the above in a number of important ways. (1) Our
model generates complex multi-hop questions, whilst all of the above neural
network-based methods generate single-hop questions. (2) Our end-to-end model
estimates and controls difficulty levels of generated questions. (3) We employ
the Transformer [31] as our base model. The Transformer architecture allows us
to naturally treat a graph as a graph, insted of a sequence of triples. Moreover,
compared to variants of recurrent neural networks (e.g. LSTM [15] and GRU [6]),
training on the Transformer is more efficient.



More broadly speaking, question generation from KG is a special case of text
generation from KG, which has also been investigated recently [20,29,32]. These
techniques encode a set of triples using either customised LSTM or GCN (graph
convolutional network), and are typically evaluated on the WebNLG dataset [13].
A main difference is that these work do not take into account the answer or the
difficulty level, which are important in the task of QG. Moreover, compared to
RNN-based methods, our technique is more effective and efficient in handling
larger contexts and is able to attend to multiple places in the context.

3 Our Approach

We model the problem of question generation over knowledge graphs as a sequence-
to-sequence (Seq2Seq) learning problem. We assume a background knowledge
graph G, comprising a set of triples (facts). Given a subgraph G = {f1, . . . , fn} ⊆
G of n facts, a set of entities EA that appears in some triple(s) in G that
represents the answer, our model will generate a natural-language question
Q = (w1, . . . , wm), i.e. a sequence of m words, such that

Q∗ = arg max
Q

P (Q | G,EA;Θ) (1)

= arg max
w1,...,wm

m∏
i=1

P (wi | w1, . . . , wi−1, G,EA;Θ) (2)

where Θ denotes model parameters.

The high-level architecture of our model can be seen in Figure 1. It uses the
Transformer as the base architecture. The encoder (Section 3.1) consists of a
stack of Transformers, taking as input the subgraph, the answer entities and
estimated difficulty level of the subgraph. Difficulty modelling and estimation
is described in detail in Section 3.2. The decoder (Section 3.3) is another stack
of Transformers and decodes a multi-hop question given the encoder output,
conditioned on the user-specified difficulty setting.

3.1 Knowledge Graph Encoding

For a subgraph G, the encoder takes its embedding as input, which in turn is
constructed from the embeddings of the triples in G. Let de denote the dimension
of entity/relation embeddings and dg denote the dimension of triple embeddings.
At initialisation, the embedding of a triple is the concatenation of the embeddings
of the subject, the predicate and the object of the triple, with the rest of the
values randomly initialised to match triple embedding dimension dg. Each answer
entity in EA is additionally embedded into a de-dimensional vector, learned from
whether it is an answer entity through an MLP (multi-layer perceptron). Element-
wise addition is then performed on the answer embedding and the original entity
embedding to obtain the final emmedding for each answer entity.
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Fig. 1: The high-level architecture of our multi-hop question generation framework.
The encoder stack of Transformers is on the left and the decoder stack is on the
right.

Therefore, for graph G containing n triples, it is represented as a matrix
G ∈ Rn×dg . Taking G as input, the Transformer encoder maps it to a sequence
of continuous representations Z = (z1, · · · , zn) ∈ Rn×dv .

Let Q,K ∈ Rn×dk ,V ∈ Rn×dv denote the query, the key and the value
matrices of the encoder Transformer. Given input G, we use the query matrix V
to soft select the relevant triples with the scaled dot-product attention:

Att(Q,K,V ) = softmax(
QKT

√
dk

)V (3)

where KT is K’s transpose, Q = GWQ,K = GWK ,V = GW V , and
WQ,WK ∈ Rdg×dk ,W V ∈ Rdg×dv are trainable model parameters.

To be able to attend to information from different triples in different repre-
sentation subspaces, we use the multi-head attention with k heads and aggregate
them as follows:

MultiAtt(Q,G) = concat(a1, . . . ,ak)WO (4)



where WO ∈ Rkdv×dg , and ai = Att(QWQ
i ,GWK

i ,GW V
i ), i ∈ [1, k] as defined

in Formula 3.

Aggregated multi-head attention output is passed to a feed-forward neural
net (FFNN) in each of the encoder stack of Transformers, where the output x
goes through two linear transformations:

FFNN(x) = max(0,xW1 + b1)W2 + b2 (5)

In all the encoder layers other than 1st layer we directly feed output of the
previous encoder layer as input. The output of the top of the encoder is finally
transformed into two attention matrices, the keys Kencdec and the values Vencdec.

The original Transformer is designed for handling sequences, and for that
purpose it provides positional encoding to encode the position of each input token.
As a subgraph does not necessarily form a sequence of triples (cf the second
graph in Example 1), we do not use positional encoding in our encoder.

The subgraph embedding is augmented with the answering (entity) encoding,
as well as a difficulty estimation, which is described in the next subsection.

3.2 Difficulty Level Modelling & Estimation

Given a subgraph, it is desirable to generate questions of different difficulty levels
in different situations. As there is no ground truth for question difficulty level,
we estimate the difficulty using characteristics of the question and the subgraph,
namely (1) the confidence of entity linking in the question, and (2) the selectivity
of the surface forms of entities in the subgraph.

Confidence. We employ NER (named entity recognition) systems to perform
entity recognition and linking. Intuitively, high confidence of an NER system
about an entity-mention linking may be due to the low ambiguity of the mention
and the high differentiability of the context, both of which would make the
subgraph easy to understand and the generated question easy to answer. For
example, given the mention “Cold War”, if the NER system returns a higher
confidence score for the entity freebase:m.034y4w than freebase:m.011l309l, a
question that contains the former would be more likely to be correct, hence easier
to answer.

Selectivity. On the other hand, the less selective a mention is (e.g. “John
Smith” vs “Elon Musk”) , the more confusing it would be for the question
containing that mention. We query Wikidpedia with the each mention, and use
the number of returned hits as an estimation of its selectivity, where he higher
the number of hits, the lower the selectivity, thus the more difficult the question.

Given a training instance (G, q) of a subgraph G and a question q, we denote
the confidence of Con(q), by averaging over all identified mentions in q and
min-max normlisation over the training corpus. We denote the selectivity of the
subgraph Sel(G), by averaging over all entities in G and min-max normlisation.
We estimate the difficulty level of a given subgraph and a question, Dif(G, q),



as follows:

Dif(G, q) =
1 + Sel(G)

1 + Con(q)
(6)

The difficulty estimation Dif(G, q) is then normalised into the closed interval
[0, 1], and finally converted into a binary vector x ∈ {0, 1}2 by thresholding,
where (0, 1) and (1, 0) represent easy and difficult respectively. We randomly
observe values of around 200 instances of easy difficulty level and we choose the
maximum of those values as threshold. We note that we use a one-hot vector to
represent difficulty levels so that it is easy to generalise it to multiple difficulty
levels (e.g. easy, medium, hard).

3.3 Complex Question Decoder

Our decoder is a stack of Transformer decoders, conditioned on the difficulty
level of the question to be generated. Similar to the encoder, the decoder also
has multiple scaled dot-product attention layers along with feed forward neural
network layers. Besides the self-attention, the decoder uses the final (top in
Figure 1) encoder Transformer’s output attention matrices (Kencdec and Vencdec)
in its encoder-decoder attention layer, which helps decoder in attending to
(focusing on) important triples in the input subgraph.

The encoder-decoder attention layer works very similarly to the multi-head
self attention layer described in Section 3.1 above. The main difference is that
the encoder-decoder attention layer computes the query matrix (Q) using the
layer below it in the decoder and takes the key (K) and values (V ) matrices
from encoder output.

The output vector from the decoder stack is fed to a fully connected neural
network (linear layer) which projects it to logits vector. Finally the softmax layer
converts this logits vectors into a probability distribution over vocabulary, from
which the question is decoded.

We encode difficulty into the decoder using a multi-layer perceptron DE
consisting of an input linear layer followed by a rectified linear unit (ReLU) layer
and an output linear layer. The input to DE is a length-two vector x representing
a given difficulty level, as described in the previous subsection.

DE(x) = Linear(ReLU(Wx + b)) (7)

where x the difficulty level and W ∈ Rdg×2 and b ∈ Rdg are trainable model
parameters. we sum DE(x) with decoder input to condition decoder to generate
question of encoded difficulty.

At the decoder side, the order of question words is important. Therefore, we
inject/add sequence order information to the decoder input. To represent order
of the sequence we use fixed positional encoding with sine and cosine functions
of different frequencies:



PE(pos,2i) = sin
(
pos/100002i/dg

)
(8)

PE(pos,2i+1) = cos
(
pos/100002i/dg

)
(9)

where pos is the position and i is the index of dimension.

Label smoothing Label smoothing [27] has shown great impact especially in
Transformers with multi-head attention. Adding label smoothing reduces expected
calibration error. Motivated by previous work [7], we use label smoothing for
regularisation with an uncertainty of 0.1. Our label smoothing technique is based
on the Kullback-Leibler divergence loss. Instead of using the vanilla one-hot
question word distribution, we build a distribution that has confidence of the
correct word and distributes the rest of the smoothing mass throughout the
output vocabulary.

4 Evaluation

Dataset & Preprocessing. We collected data from three recent multi-hop ques-
tion answering datasets: WebQuestionsSP [34], ComplexWebQuestions [28],
and PathQuestion [35]9, all of which are based on Freebase.

Each instance in WebQuestionsSP and ComplexWebQuestions contains
a natural-language question, a corresponding SPARQ query and the answer entity
and some other auxiliary information. For each instance, we convert its SPARQL
query to return a subgraph instead of the answer entity, by changing it from
a SELECT query to a CONSTRUCT query. An example CONSTRUCT query and its
returned graph from the WebQuestionsSP dataset is shown in Example 2
below. We combine these two datasets and refer to them as WQ hereinafter.

Example 2. An example CONSTRUCT query and the corresponding returned graph.

PREFIX ns: <http://rdf.freebase.com/ns/>

CONSTRUCT WHERE { FILTER (?x != ns:m.02189)

FILTER (!isLiteral(?x) OR lang(?x) = ’’ OR langMatches(lang(?x), ’en’))

ns:m.02189 ns:organization.organization.founders ?x .

?x ns:medicine.notable_person_with_medical_condition.condition ns:m.0g02vk .

}

The subgraph returned after executing the above query is given below. Note
the Freebase prefix is omitted for brevity reasons.

m.02189 organization.organization.founders m.04xzm .

m.04xzm medicine.notable_person_with_medical_condition.condition m.0g02vk .

9 Retrieved from https://www.microsoft.com/en-us/download/details.aspx?id=

52763, https://www.tau-nlp.org/compwebq, and https://github.com/zmtkeke/

IRN/tree/master/PathQuestion respectively.

https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://www.tau-nlp.org/compwebq
https://github.com/zmtkeke/IRN/tree/master/PathQuestion
https://github.com/zmtkeke/IRN/tree/master/PathQuestion


PathQuestion (referred to as PQ hereinafter) is similar to WQ. However, PQ
only contains verbalised entities and predicates but not their Freebase IDs. As a
result, we process this dataset differently.

Conceptually, each of WQ and PQ is a set of tuples {(Qt, G,EA)}, where Qt

is a natural-language question, G is the subgraph from which the question is
derived, and EA is the set of answer entities to question Qt. Brief statistics of
the two datasets can be found in Table 1.

For each dataset (WQ and PQ), we split it into 80%, 10% 10% for training,
validation and testing.

Table 1: Brief statistics of the collected datasets.

Dataset # entities # predicates # hops # instances

WQ [34,28] 25,703 672 2 to 100 22,989
PQ [35] 7,250 378 2, 3 9,731

Total 32,953 1,050 – 32,720

Implementation Details. We have implemented our multi-hop question genera-
tion model, denoted MHQG10, in the PyTorch framework. For the state-of-the-art
question generation model Learning to Ask (L2A) [9] used for comparison, we
used its publicly available code.

We set triple embedding dimension for the Transformers to 512, i.e. dg = 512.
The triple embeddings are fine-tuned during training. We use 8 parallel attention
heads with dk and dv set to 64. The dimension of encoder and decoder’s fully
connected feed forward neural nets is set to 2048. We set the number of layers of
Transformers to six (n = 6 in Figure 1) for both the encoder and the decoder.

For the WQ dasatet, we obtain the pre-trained 50-dimensional TransE [5]
embeddings for Freebase from OpenKE [14]. The embedding of a triple is the
150-dimensional concatenated embeddings of its components (subject, predicate
and object). For initialisation, we extend the 150-dimensional embedding vectors
to 512-dimensional with random values for the remaining 362 dimensions.

As PQ only contains lexicalised entities and predicates but not their IDs,
we resort to using the pre-trained 300-dimensional GloVe [21] word embeddings
for this dataset. For each entity/predicate, its embedding is the average of the
embeddings of its words. We extend the embedding vectors to 512-dimensional
with random values for the remaining 212 dimensions. As in WQ, the triple
embeddings are fine-tuned during training.

For example, for the following (2-triple) subgraph in PQ claudius#parents#

nero claudius drusus#nationality#roman empire, the embedding of the en-
tity roman empire is the average of the GloVe embeddings of words roman and

10 Available at https://github.com/liyuanfang/mhqg

https://github.com/liyuanfang/mhqg


empire. We mask entities in questions to a generic entity form such as “ENT1” to
handle unseen entities, thus resolving the out of vocabulary issue. Entity masking
also helps model learn better generalisations for similar training instances.

We use TAGME11 for entity recognition and entity linking, and obtain the
TAGME confidence score in difficulty estimation (Section 3.2).

We used the Adam optimiser [16] with β2 = 0.998, initialised with learning
rate 2 to optimise model parameters. The learning rate increases linearly for the
first 800 training steps (warmup steps) and decreases thereafter proportionally to
the inverse square root of the step number. For regularisation we apply dropout
to the output of each layer with the dropout probability set to 0.1. We use beam
search in the decoder with beam size of 10 for decoding question words. These
parameters are empirically chosen using grid search.

All our models are trained on a single P100 GPU. We train for 15 epochs, and
select the model with the minimum perplexity on the validation set to generate
question on the test set for evaluation.

4.1 Results and Discussion

To the best of our knowledge, this work is the first to address multi-hop question
generation from KG. Therefore, there is no other model that we can compare with
directly. Existing text generation models such as GTR-LSTM [29] and GCN [20]
are trained on a different KG (DBPedia instead of Freebase). Comparing them
requires significant additional data preprocessing work, including entity linking,
triple embedding, etc., as well as mandatory additional data (e.g. entity types)
that are not available to us. As a result, we leave comparing with them to future
work.

Instead, we use a state-of-the-art natural language QG model, Learning to
Ask [9] (referred to as L2A hereinafter), as a baseline model for comparison.
L2A is a recent LSTM-based Seq2Seq model that takes a sentence as input
and generates a question. We train L2A using the linearised subgraph with
300-dimensional embeddings, which are fine-tuned during training. We use a 2
layer Bi-LSTM encoder and decoder with hidden unit size set to 600. The other
hyper-parameters are set exactly the same as described in L2A [9]

We perform two experiments to evaluate the effectiveness of our proposed
model: automatic evaluation using widely-used metrics including BLEU, GLEU
and METEOR and human evaluation. We compare two variants of our model
against L2A: with (MHQG+AE) or without (MHQG) answer encoding. The
automatic evaluation is performed on the full test sets, whereas a subset of 50
randomly selected questions, 25 from each of WQ and PQ, are used in human
evaluation.

The results of automatic evaluation are shown in Table 2. As can be seen, on
both datasets, both our models outperform L2A substantially across all three
evaluation metrics. On both datasets, our models outperform L2A on BLEU for
5.56 and 8.99 absolute points, representing a 93% and 53% respectively. On the

11 https://tagme.d4science.org/tagme/

https://tagme.d4science.org/tagme/


Table 2: Results of automatic evaluation. Best results for each metric is bolded.

Model WQ PQ

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

L2A 6.01 26.95 25.24 17.00 50.38 19.72
MHQG 11.49 34.61 27.65 24.98 58.08 31.32
MHQG+AE 11.57 35.53 29.69 25.99 58.94 33.16

PQ dataset, the differences in ROUGE-L and METEOR are more substantial
than on the WQ dataset. Moreover, MHQG+AE, the model with answer encoding,
also consistently exhibits better performance than without it.

Table 3: Results of human evaluation, showing percentages of questions with
correct syntax, semantics and difficulty level for the two datasets and each model.
The numbers in parentheses are the percentage of agreement between participants.
Best results for each metric is bolded.

Model WQ PQ

Syntax Semantics Difficulty Syntax Semantics Difficulty

L2A 78 (97) 80 (95) 48 (59) 67 (65) 65 (73) 58 (50)
MHQG 79 (75) 83 (81) 60 (49) 64 (75) 70 (69) 68 (44)
MHQG+AE 98 (73) 97 (76) 56 (53) 78 (70) 74 (62) 68 (49)

In human evaluation, four participants were asked to judge the correctness of
syntax, semantics and difficulty level of the questions generated by L2A and our
models. The results are averaged across the four participants and are summarised
in Table 3. For all evaluation criteria, both of our models outperform L2A.
Notably, on WQ, our model MHQG+AE achieves 98% and 97% of syntactic
and semantic correctness respectively. Overall MHQG+AE achieves best result,
except the slightly lower percentage of correct difficulty level for WQ. This is
consistent with the results in automatic evaluation in Table 2, where MHQG+AE
also shows best performance.

Below in Example 3 we show two questions, one easy, and one hard, generated
by our model MHQG+AE on a same graph. Fro brevity reasons only the localname
of the freebase predicates are shown. As can be seen, the difference in hardness is
obvious, showing the effectiveness of our model in controlling question difficulty.



Example 3. An example graph with two questions of different difficulty levels
generated by our model MHQG+AE.

Graph: m.0gtqy5p location m.0r0m6 <t> m.0gtqxxq location m.0fpzwf <t>

m.01vrncs places_lived m.03pnpl8 <t>

m.01vrncs film.film_subject.films m.0djlxb <t>

m.03pnpl8 location m.0h1k6 <t> m.0gtqxxk location m.02_286 <t>

m.01vrncs places_lived m.0gtqy5p <t>

m.01vrncs places_lived m.0gtqxxk <t>

m.0gtqy5h location m.0wjjx<t> m.01vrncs places_lived m.0gtqxxq <t>

m.01vrncs places_lived m.0gtqy5h <t>

Easy: where did bob dylan live?

Hard: where did the subject of the film "I’m Not There" live?

Example 4 below shows two complex, 7-hop and 4-hop, subgraphs from WQ
and the questions generated on them, by L2A and our two models. As can be
seen, our models generate questions of much higher quality than L2A.

Example 4. Two subgraphs and questions generated by different models.
Graph: m.0jjl89y office_position_or_title m.0j6tpbb <t>

m.0hqg6pb office_position_or_title m.0j6tpbb <t>

m.03gj2 official_language m.02ztjwg <t>

m.03gj2 governing_officials m.0hqg6m3 <t>

m.03gj2 governing_officials m.0jjl89y <t>

m.03gj2 governing_officials m.0hqg6pb <t>

m.0hqg6m3 office_position_or_title m.0j6tpbb <t>

L2A: what language is spoken in the governmental jurisdiction?

MHQG: what is the spoken language in the country with governmental

position prime minister of hungary?

MHQG+AE: what language is spoken in the governmental jurisdiction

where prime minister of hungary holds office?

Graph: m.0d04z6 currency_used m.049p2z <t>

m.0d04z6 national_anthem m.048z_y1 <t>

m.0d04z6 currency_used m.049p6c <t>

m.048z_y1 anthem m.01lg5j <t>

L2A: the country that contains uses what type of currency?

MHQG: what is the currency used in the country with la bayamesa as

its national anthem?

MHQG+AE: what currency is used in the country with national anthem la

bayamesa?

5 Conclusion

In this paper we present a novel technique for the automatic generation of complex,
multi-hop questions from knowledge graphs. Our technique takes a subgraph
as input, encodes the answer, estimates the difficulty level, and generates a
natural-language question from the subgraph. We employ a Transformer-based
encoder-decoder model that is conditioned on the difficulty level. Experiments



were performed on three recent multi-hop question-answering datasets to assess
the quality of generated questions, by both widely-used evaluation metrics and
human judgements. Compared to a state-of-the-art text question generation
technique, our method generates questions that are more fluent and relevant with
tunable difficulty levels.

Our technique allows the generation of complex questions over a large knowl-
edge without any manual intervention. This ability can facilitate the continued
improvements of knowledge graph question answering methods by providing
substantial amount of new training data with minimal cost.

We have planned a number of further research directions. Firstly, we will
investigate a more refined estimation of difficulty levels, taking into account
more comprehensive information such as predicates and the graph itself, but
not only entities. Secondly, taking into account additional information sources
such as background ontologies as entity and predicate definitions is also worth
investigating.
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