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Abstract

This paper generalizes the framework of Hierarchical Kernel Learning (HKL) and illustrates
its utility in the domain of rule learning. HKL involves Multiple Kernel Learning over
a set of given base kernels assumed to be embedded on a directed acyclic graph. This
paper proposes a two-fold generalization of HKL: the first is employing a generic `1/`ρ
block-norm regularizer (ρ ∈ (1, 2]) that alleviates a key limitation of the HKL formulation.
The second is a generalization to the case of multi-class, multi-label and more generally,
multi-task applications. The main technical contribution of this work is the derivation of a
highly specialized partial dual of the proposed generalized HKL formulation and an efficient
mirror descent based active set algorithm for solving it. Importantly, the generic regularizer
enables the proposed formulation to be employed in the Rule Ensemble Learning (REL)
where the goal is to construct an ensemble of conjunctive propositional rules. Experiments
on benchmark REL data sets illustrate the efficacy of the proposed generalizations.

Keywords: multiple kernel learning, mixed-norm regularization, multi-task learning, rule
ensemble learning, active set method

1. Introduction

A Multiple Kernel Learning (MKL) (Lanckriet et al., 2004; Bach et al., 2004) framework for
construction of sparse linear combinations of base kernels embedded on a directed acyclic
graph (DAG) was recently proposed by Bach (2008). Since the DAG induces hierarchical
relations between the base kernels, this framework is more commonly known as Hierarchical
Kernel Learning (HKL). It has been established that HKL provides a powerful algorithm
for task specific non-linear feature selection. HKL employs a carefully designed `1/`2 block-
norm regularizer: `1-norm across some predefined components associated with the DAG
and `2-norm within each such component. However, the sparsity pattern of kernel (feature)
selection induced by this regularizer is somewhat restricted: a kernel is selected only if the
kernels associated with all its ancestors in the DAG are selected. In addition, it can be
proved that the weight of the kernel associated with a (selected) node will always be greater
than the weight of the kernels associated with its descendants. Such a restricted selection
pattern and weight bias may limit the applicability of HKL in real world problems.

This paper proposes a two-fold generalization of HKL. The first is employing a `1/`ρ, ρ ∈
(1, 2), block-norm regularizer that mitigates the above discussed weight and selection bias
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among the kernels, henceforth termed as gHKL. Note that for the special case of ρ = 2,
gHKL renders the HKL regularizer. Further, gHKL is generalized to the paradigm of Multi-
task Learning (MTL), where multiple related tasks need to be learnt jointly. We consider
the MTL setup where the given learning tasks share a common sparse feature space (Lounici
et al., 2009; Jawanpuria and Nath, 2011; Obozinski et al., 2011). Our goal is to construct a
shared sparse feature representation that is suitable for all the given related tasks. We pose
the problem of learning this shared feature space as that of learning a shared kernel, common
across all the tasks. The proposed generalization is henceforth referred to as gHKLMT. In
addition to learning a common feature representation, gHKLMT is generic enough to model
additional correlations existing among the given tasks.

Though employing a `1/`ρ, ρ ∈ (1, 2), regularizer is an incremental modification to the
HKL formulation, devising an algorithm for solving it is not straightforward. The projected
gradient descent employed in the active set algorithm for solving HKL (Bach, 2008) can no
longer be employed for solving gHKL as projections onto `ρ-norm balls are known to be
significantly more challenging than those onto `1-norm balls (Liu and Ye, 2010). Hence naive
extensions of the existing HKL algorithm will not scale well. Further, the computational
challenge is compounded with the generalization for learning multiple tasks jointly. The
key technical contribution of this work is the derivation of a highly specialized partial
dual of the gHKL/gHKLMT formulations and an efficient mirror descent (Ben-Tal and
Nemirovski, 2001; Beck and Teboulle, 2003) based active set algorithm for solving it. The
dual presented here is an elegant convex optimization problem with a Lipschitz continuous
objective and constrained over a simplex. Moreover, the gradient of the objective can
be obtained by solving a known and well-studied variant of the MKL formulation. This
motivates employing the mirror descent algorithm that is known to solve such problems
efficiently. Further efficiency is brought in by employing an active set method similar in
spirit to that in Bach (2008).

A significant portion of this paper focuses on the application of Rule Ensemble Learn-
ing (REL) (Dembczyński et al., 2010, 2008), where HKL has not been previously explored.
Given a set of basic propositional features describing the data, the goal in REL is to con-
struct a compact ensemble of conjunctions with the given propositional features that gen-
eralizes well for the problem at hand. Such ensembles are expected to achieve a good
trade-off between interpretability and generalization ability. REL approaches (Cohen and
Singer, 1999; Friedman and Popescu, 2008; Dembczyński et al., 2010) have additionally
addressed the problem of learning a compact set of rules that generalize well in order to
maintain their readability. One way to construct a compact ensemble is to consider a linear
model involving all possible conjunctions of the basic propositional features and then per-
forming a `1-norm regularized empirical risk minimization (Friedman and Popescu, 2008;
Dembczyński et al., 2010). Since this is a computationally infeasible problem, even with
moderate number of basic propositions, the existing methods either approximate such a
regularized solution using strategies such as shrinkage (Friedman and Popescu, 2008; Dem-
bczyński et al., 2010, 2008) or resort to post-pruning (Cohen and Singer, 1999). This work
proposes to solve a variant of this regularized empirical risk minimization problem optimally
using the framework of gHKL. The key idea is to define kernels representing every possible
conjunction and arranging them on a DAG. The proposed gHKL regularizer is applied on
this DAG of kernels, leading to a sparse combination of promising conjunctions. Note that
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with such a setup, the size of the gHKL optimization problem is exponential in the number
of basic propositional features. However, a key result in the paper shows that the proposed
gHKL algorithm is guaranteed to solve this exponentially large problem with a complexity
polynomial in the final active set1 size. Simulations on benchmark binary (and multiclass)
classification data sets show that gHKL (and gHKLMT) indeed constructs a compact en-
semble that on several occasions outperforms state-of-the-art REL algorithms in terms of
generalization ability. These results also illustrate the benefits of the proposed generaliza-
tions over HKL: i) the ensembles constructed with gHKL (with low ρ values) involve fewer
number of rules than with HKL; though the accuracies are comparable ii) gHKLMT can
learn rule ensemble on multiclass problems; whereas HKL is limited to two-class problems.

The rest of the paper2 is organized as follows. Section 2 introduces the classical Multi-
ple Kernel Learning setup, briefly reviews the HKL framework and summarizes the existing
works in Multi-task Learning. In Section 3, we present the proposed gHKL and gHKLMT

formulations. The key technical derivation of the specialized dual is also presented in this
section. The proposed mirror descent based active set algorithm for solving gHKL/gHKLMT

formulations is discussed in Section 4. In Section 5, we propose to solve the REL problem
by employing the gHKL formulation and discuss its details. In Section 6, we report em-
pirical evaluations of gHKL and gHKLMT formulations for REL on benchmark binary and
multiclass data sets respectively. Section 7 concludes the paper.

2. Related Works

This section provides a brief introduction to the Multiple Kernel Learning (MKL) frame-
work, the HKL setup and formulation (Bach, 2008, 2009) as well as the existing works in
Multi-task Learning.

2.1 Multiple Kernel Learning Framework

We begin by discussing the regularized risk minimization framework (Vapnik, 1998), which
has been employed in the proposed formulations.

Consider a learning problem like classification or regression and let its training data be
denoted by D = {(xi, yi), i = 1, . . . ,m | xi ∈ X , yi ∈ R ∀i}, where (xi, yi) represents the ith

input-output pair. The aim is to learn an affine prediction function F (x) that generalize
well on unseen data. Given a positive definite kernel k that induces a feature map φk(·), the
prediction function can be written as: F (x) = 〈f, φk(x)〉Hk−b. Here Hk is the Reproducing
Kernel Hilbert Space (RKHS) (Schölkopf and Smola, 2002) associated with the kernel k,
endowed with an inner product 〈·, ·〉Hk , and f ∈ Hk, b ∈ R are the model parameters to
be learnt. A popular framework to learn these model parameters is the regularized risk
minimization (Vapnik, 1998), which considers the following problem:

min
f∈Hk,b∈R

1

2
Ω(f)2 + C

m∑
i=1

`(yi, F (xi)), (1)

1. Roughly, this is the number of selected conjunctions and is potentially far less than the total number of
conjunctions.

2. Preliminary results of this work were reported in Jawanpuria et al. (2011).
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where Ω(·) is a norm based regularizer, ` : R×R→ R is a suitable convex loss function and C
is a regularization parameter. As an example, the support vector machine (SVM) (Vapnik,
1998) employs Ω(f) = ‖f‖Hk . From the representer theorem (Schölkopf and Smola, 2002),
we know that the optimal f has the following form f(·) =

∑m
i αik(·,xi) where α = (αi)

m
i=1

is a vector of coefficients to be learnt.
It can be observed from above that the kernel definition plays a crucial role in defining

the quality of the solution obtained by solving (1). Hence learning a kernel suitable to the
problem at hand has been an active area of research over the past few years. One way
to learn kernels is via the Multiple Kernel Learning (MKL) framework (Lanckriet et al.,
2004; Bach et al., 2004). Lanckriet et al. (2004) proposed to learn the kernel k as a conic
combination of the given base kernels k1, . . . , kl: k =

∑l
i=1 ηiki, ηi ≥ 0 ∀ i. Here η = (ηi)

l
i=1

is a coefficient vector to be (additionally) learnt in the optimization problem (1). In this
setting, the feature map with respect to the kernel k is given by φk = (

√
ηiφki)

l
i=1 (see

Rakotomamonjy et al., 2008, for details). It is a weighted concatenation of feature maps
induced by the individual base kernels. Hence, sparse kernel weights will result in a low
dimensional φk. Some of the additional constraints on η explored in the existing MKL works
are `1-norm constraint (Bach et al., 2004; Rakotomamonjy et al., 2008), `p-norm constraint
(p > 1) (Kloft et al., 2011; Vishwanathan et al., 2010; Aflalo et al., 2011), etc.

2.2 Hierarchical Kernel Learning

Hierarchical Kernel Learning (HKL) (Bach, 2008) is a generalization of MKL and assumes
a hierarchy over the given base kernels. The base kernels are embedded on a DAG and a
carefully designed `1/`2 block-norm regularization over the associated RKHS is proposed
to induce a specific sparsity pattern over the selected base kernels. We begin by discussing
its kernel setup.

Let G(V, E) be the given DAG with V denoting the set of vertices and E denoting
the set of edges. The DAG structure entails relationships like parent, child, ancestor and
descendant (Cormen et al., 2009). Let D(v) and A(v) represent the set of descendants and
ancestors of the node v in the G. It is assumed that both D(v) and A(v) include the node
v. For any subset of nodes W ⊂ V, the hull and sources of W are defined as:

hull(W) =
⋃
w∈W

A(w), sources(W) = {w ∈ W | A(w) ∩W = {w}} .

The size and complement ofW are denoted by |W| andWc respectively. Let kv : X×X → R
be the positive definite kernel associated with the vertex v ∈ V. In addition, let Hkv be
its associated RKHS and φkv be its induced feature map. Given this, HKL employs the
following prediction function:

F (x) =
∑
v∈V
〈fv, φkv(x)〉Hkv − b,

which is an affine model parameterized by f = (fv)v∈V , the tuple with entries as fv ∈ Hkv
and b ∈ R. Some more notations follow: for any subset of nodes W ⊂ V, fW = (fv)v∈W
and φW = (φv)v∈W . In general, the entries in a vector are referred to using an appropriate
subscript, i.e., entries in u ∈ Rd are denoted by u1, . . . , ud. The kernels are denoted by the
lower case ‘k’ and the corresponding Gram matrices are denoted by the upper case ‘K’.
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HKL formulates the problem of learning the optimal prediction function F as the fol-
lowing regularized risk minimization problem:

min
fv∈Hkv∀v∈V,b∈R

1

2

(∑
v∈V

dv‖fD(v)‖2

)2

+ C

m∑
i=1

` (yi, F (xi)) , (2)

where ‖fD(v)‖2 =
(∑

w∈D(v) ‖fw‖2
) 1

2 ∀v ∈ V, `(·, ·) is a suitable convex loss function and

(dv)v∈V are given non-negative parameters.
As is clear from (2), HKL employs a `1/`2 block-norm regularizer, which is known

to promote group sparsity (Yuan and Lin, 2006). Its implications are discussed in the
following. For most of v ∈ V, ‖fD(v)‖2 = 0 at optimality due to the sparsity inducing
nature of the `1-norm. Moreover (‖fD(v)‖2 = 0) ⇒ (fw = 0 ∀w ∈ D(v)). Thus it is
expected that most fv will be zero at optimality. This implies that the prediction function
involves very few kernels. Under mild conditions on the kernels (being strictly positive),
it can be shown that this hierarchical penalization induces the following sparsity pattern:
(fw 6= 0)⇒ (fv 6= 0 ∀v ∈ A(w)). In other words, if the prediction function employs a kernel
kw then it certainly employs all the kernels associated with the ancestor nodes of w.

Bach (2008) proposes to solve the following equivalent variational formulation:

min
γ∈∆1

min
fv∈Hkv∀v∈V,b∈R

1

2

∑
w∈V

δw(γ)−1‖fw‖2 + C

m∑
i=1

` (yi, F (xi)) , (3)

where ∆1 =
{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
and δw(γ)−1 =

∑
v∈A(w)

d2
v
γv

. From the repre-
senter theorem (Schölkopf and Smola, 2002), it follows that the effective kernel employed
in the HKL is: k =

∑
w∈V δw(γ)kw. Since the optimization problem (3) has a `1-norm

constraint over γ variables, most γv at optimality are expected to be zero. Moreover the
kernel weight δw(γ) is zero whenever γv = 0 for any v ∈ A(w). Thus, the HKL performs
a sparse selection of the base kernels and can be understood as a generalization of the
classical MKL framework. However, the sparsity pattern for the kernels has the following
restriction: if a kernel is not selected then none of the kernels associated with its descen-
dants are selected, as (γv = 0) ⇒ (δw(γ) = 0 ∀w ∈ D(v)). For the case of strictly positive
kernels, it follows that a kernel is selected only if all the kernels associated with its ances-
tors are selected. In addition, the following relationship holds among the kernels weights:
δv(γ) ≥ δw(γ) ∀w ∈ D(v) (strict inequality holds if δw(γ) > 0). Hence, the weight of the
kernel associated with a (selected) node is always be greater than the weight of the kernels
associated with its descendants.

Since the size of γ is same as that of V and since the optimal γ is known to be sparse, Bach
(2008) proposes an active set based algorithm (Lee et al., 2007) for solving (3). At each
iteration of the active set algorithm, (3) is solved with respect to only those variables in the
active set via the projected gradient descent technique (Rakotomamonjy et al., 2008).

As illustrated in Bach (2008), the key advantage of HKL is in performing non-linear
feature selection. For example, consider the case where the input space is X = Rn and
let I be power set of {1, . . . , n}. Consider the following 2n kernels arranged on the usual
subset lattice: ki(x,x

′) = Πj∈ixjx
′
j ∀i ∈ I. HKL can be applied in this setup to select
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the promising sub-products of the input features over all possible sub-products. Please
refer to Bach (2008) for more such pragmatic examples of kernels and corresponding DAGs.
The most interesting result in Bach (2008) is that in all these examples where the size of
the DAG is exponentially large, the computational complexity of the active set algorithm
is polynomial in the training set dimensions and the active set size. Importantly, the
complexity is independent of |V|!

Though encouraging, the above discussed weight bias (in favor of the kernels towards
the top of the DAG) and restricted kernel selection pattern may limit the applicability
of HKL in real world problems. For instance, in case of the sub-product kernel example
mentioned above, the following is true: a sub-product is selected only if all the products
including it are selected. This clearly may lead to selection of many redundant sub-products
(features). In Section 3, we present the proposed generalization that provides a more flexible
kernel selection pattern by employing a `1/`ρ, ρ ∈ (1, 2), regularizer. A key result of this
paper (refer Corollary 6) is that for all the cases discussed in Bach (2008), the proposed
mirror descent based active set algorithm for solving the generalization has a computational
complexity that is still polynomial in the training set dimensions and the active set size.
In other words, the proposed generalization does not adversely affect the computational
feasibility of the problem and hence is an interesting result in itself.

2.3 Multi-task Learning

Multi-task Learning (Caruana, 1997; Baxter, 2000) focuses on learning several prediction
tasks simultaneously. This is in contrast with the usual approach of learning each task
separately and independently. The key underlying idea behind MTL is that an appropriate
sharing of information while learning related tasks will help in obtaining better prediction
models. Various definitions of task-relatedness have been explored over the past few years
like proximity of task parameters (Baxter, 2000; Evgeniou and Pontil, 2004; Xue et al., 2007;
Jacob et al., 2008; Jawanpuria and Nath, 2012) or sharing common feature space (Ando
and Zhang, 2005; Ben-David and Schuller, 2008; Argyriou et al., 2008; Lounici et al., 2009;
Obozinski et al., 2011). Many learning settings like multiclass classification, multi-label
classification or learning vector-valued function may be viewed as a special case of multi-
task learning.

In this work, we consider the common setting in which the task parameters share a simul-
taneously sparse structure: only a small number of input features are relevant for each of the
tasks and the set of such relevant features is common across all the tasks (Turlach et al., 2005;
Lounici et al., 2009). Existing works in this setting typically employ a group lasso penalty
on the tasks parameters: `1/`2 block-norm (Lounici et al., 2009; Obozinski et al., 2011) or
the `1/`∞ block-norm (Turlach et al., 2005; Negahban and Wainwright, 2009). Thus, they

propose a multi-task regularizer of the form: Ω(f1, . . . , fT ) =
∑d

i=1

(∑T
t=1 |fti|q

) 1
q

where

the input feature space is assumed to be d dimensional, ft is the task parameter of the
tth task and ft = (fti)i=1,...,d and q = {2,∞}. Note that in addition to (sparse) shared
feature selection, the `1/`∞ block-norm penalty also promote proximity among the task
parameters.

We pose the problem of learning the shared features as that of learning a shared ker-
nel, whose induced feature space is common across all the tasks. The shared kernel is
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constructed as a sparse combination of the given base kernels. A hierarchical relationship
exists over the given kernels (feature spaces). We employ a graph based `1/`ρ block-norm
regularization over the task parameters that enable non-linear feature selection for multiple
tasks simultaneously. The details of the proposed MTL formulation are discussed in the
following section.

3. Generalized Hierarchical Kernel Learning

In this section, we present the proposed generalizations over HKL. As discussed earlier, the
first generalization aims at mitigating the weight bias problem as well as the restrictions
imposed on the kernel selection pattern of HKL, and is termed as gHKL. The gHKL formu-
lation is then further generalized to the paradigm of MTL, the proposed formulation being
termed as gHKLMT. We begin by introducing the gHKL formulation.

3.1 gHKL Primal Formulation

Recall that HKL employs a `1/`2 block norm regularizer. As we shall understand in more
detail later, a key reason for the kernel weight bias problem and the restricted sparsity
pattern in HKL is the `2-norm regularization. One way to mitigate these restrictions is by
employing the following generic regularizer:

ΩS(f) =
∑
v∈V

dv‖fD(v)‖ρ, (4)

where f = (fv)v∈V , ‖fD(v)‖ρ =
(∑

w∈D(v) ‖fw‖ρ
) 1
ρ

and ρ ∈ (1, 2]. The implications of the

`1/`ρ block-norm regularization are discussed in the following. Since the `1-norm promotes
sparsity, it follows that ‖fD(v)‖ρ = 0 (that is fw = 0 ∀w ∈ D(v)) for most v ∈ V. This
phenomenon is similar as in HKL. But now, even in cases where ‖fD(v)‖ρ is not forced to
zero by the `1-norm, many components of fD(v) tend to zero3 (that is fw → 0 for many
w ∈ D(v)) as the value of ρ tends to unity. Also note that ρ = 2 renders the HKL regularizer.
To summarize, the proposed gHKL formulation is

min
fv∈Hkv∀v∈V,b∈R

1

2
(ΩS(f))2 + C

m∑
i=1

` (yi, F (xi)) . (5)

We next present the gHKLMT formulation, which further generalizes gHKL to MTL paradigm.

3.2 gHKLMT Primal Formulation

We begin by introducing some notations for the multi-task learning setup. Let T be the
number of tasks and let the training data for the tth task be denoted by Dt = {(xti, yti), i =
1, . . . ,m | xti ∈ X , yti ∈ R ∀i}, where (xti, yti) represents the ith input-output pair of the

3. Note that as `ρ-norm (ρ > 1) is differentiable, it rarely induce sparsity (Szafranski et al., 2010). However,
as ρ → 1, they promote only a few leading terms due to the high curvatures of such norms (Szafranski
et al., 2007). In order to obtain a sparse solution in such cases, thresholding is commonly employed by
existing `p-MKL (ρ > 1) algorithms (Vishwanathan et al., 2010; Orabona et al., 2012; Jain et al., 2012;
Jawanpuria et al., 2014). We employed thresholding in our experiments.
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tth task. For the sake of notational simplicity, it is assumed that the number of training
examples is same for all the tasks. The prediction function for the tth task is given by:
Ft(x) =

∑
v∈V〈ftv, φkv(x)〉Hkv − bt, where ft = (ftv)v∈V and bt are the task parameters to

be learnt. We propose the following regularized risk minimization problem for estimating
these task parameters and term it as gHKLMT:

min
ft,bt∀t

1

2


∑
v∈V

dv

 ∑
w∈D(v)

(Qw(f1, . . . , fT ))ρ

 1
ρ

︸ ︷︷ ︸
ΩT (f1,...,fT )


2

+ C
T∑
t=1

m∑
i=1

`(yti, Ft(xti)), (6)

where ρ ∈ (1, 2] and Qw(f1, . . . , fT ) is a norm-based multi-task regularizer on the task
parameters ftw ∀t . In the following, we discuss the effect of the above regularization.
Firstly, there is a `1-norm regularization over the group of nodes (feature spaces) and a
`ρ-norm regularization within each group. This `1/`ρ block-norm regularization is same as
that of gHKL and will have the same effect on the sparsity pattern of the selected feature
spaces (kernels). Hence, only a few nodes (feature spaces) will be selected by the gHKLMT

regularizer ΩT (f1, . . . , fT ). Secondly, nature of the task relatedness within each (selected)
feature space is governed by the Qw(f1, . . . , fT ) regularizer.

For instance, consider the following definition of Qw(f1, . . . , fT ) (Lounici et al., 2009;
Jawanpuria and Nath, 2011):

Qw(f1, . . . , fT ) =

(
T∑
t=1

‖ftw‖2
) 1

2

. (7)

The above regularizer couples the task parameters within each feature space via `2-norm. It
encourages the task parameters within a feature space to be either zero or non-zero across
all the tasks. Therefore, ΩT (f1, . . . , fT ) based on (7) has the following effect: i) all the tasks
will simultaneously select or reject a given feature space, and ii) overall only a few feature
spaces will be selected in the gHKL style sparsity pattern.

Several multi-task regularizations (Evgeniou and Pontil, 2004; Evgeniou et al., 2005;
Jacob et al., 2008) have been proposed to encourage proximity among the task parameters
within a given feature space. This correlation among the tasks may be enforced while
learning a shared sparse feature space by employing the following Qw(f1, . . . , fT ):

Qw(f1, . . . , fT ) =

µ∥∥∥∥∥ 1

T + µ

T∑
t=1

ftw

∥∥∥∥∥
2

+

T∑
t=1

∥∥∥∥∥ftw − 1

T + µ

T∑
t=1

ftw

∥∥∥∥∥
2
 1

2

, (8)

where µ > 0 is a given parameter. The above Qw(f1, . . . , fT ) consists of two terms: the first
regularizes the mean while the second regularizes the variance of the task parameters in
the feature space induced by kernel kw. The parameter µ controls the degree of proximity
among the task parameters, with lower µ encouraging higher proximity. Note that when
µ =∞, (8) simplifies to (7). The gHKLMT regularizer ΩT (f1, . . . , fT ) based on (8) has the
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following effect: i) all the tasks will simultaneously select or reject a given feature space, ii)
overall only a few feature spaces will be selected in the gHKL style sparsity pattern, and
iii) within each selected feature space, the task parameters ftw ∀t are in proximity.

Thus, gHKLMT framework provides a mechanism to learn a shared feature space across
the tasks. In addition, it can also preserve proximity among the tasks parameters in the
learnt feature space. As we shall discuss in the next section, more generic correlations
among task parameters may be also modeled within the gHKLMT framework.

It is clear that the gHKL optimization problem (5) may be viewed as a special case
of the gHKLMT optimization problem (7), with the number of tasks set to unity. Hence
the rest of the discussion regarding dual derivation and optimization focuses primarily on
gHKLMT formulation.

3.3 gHKLMT Dual Formulation

As mentioned earlier, due to the presence of the `ρ-norm term in gHKLMT formulation,
naive extensions of the projected gradient based active set method in Bach (2008) will
be rendered computationally infeasible on real world data sets. Hence, we first re-write
gHKLMT formulation in an elegant form, which can then be solved efficiently. To this end,
we note the following variational characterization of ΩT (f1, . . . , fT ).

Lemma 1 Given ΩT (f1, . . . , fT ) and Qw(f1, . . . , fT ) as defined in (6) and (8) respectively,
we have:

ΩT (f1, . . . , fT )2 = min
γ∈∆

min
λv∈∆v

ρ̂ ∀v∈V

∑
w∈V

δw(γ, λ)−1Qw(f1, . . . , fT )2, (9)

where ρ̂ = ρ
2−ρ , δw(γ, λ)−1 =

∑
v∈A(w)

d2
v

γvλvw
, ∆1 =

{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
and

∆v
r =

{
z ∈ R|D(v)| | z ≥ 0,

∑
w∈D(v) zrw ≤ 1

}
.

Note that ρ ∈ (1, 2) ⇒ ρ̂ ∈ (1,∞). The proof of the above lemma is provided in Ap-
pendix A.2.

In order to keep the notations simple, in the remainder of this section, it is assumed
that the learning tasks at hand are binary classification, i.e., yti ∈ {−1, 1} ∀t, i, and the
loss function is the hinge loss. However, one can easily extend these ideas to other loss
functions and learning problems. Refer Appendix A.8 for gHKLMT dual formulation with
general convex loss functions.

Lemma 2 Consider problem (6) with the regularizer term replaced with its variational char-
acterization (9) and the loss function as the hinge loss `(y, Ft(x)) = max (0, 1− yFt(x)).
Then the following is a partial dual of it with respect to the variables ft, bt ∀t = 1, . . . , T :

min
γ∈∆1

min
λv∈∆v

ρ̂ ∀v∈V
max

αt∈S(yt,C)∀t
G(γ, λ, α), (10)

where

G(γ, λ, α) = 1>α− 1

2
α>Y

(∑
w∈V

δw(γ, λ)Hw

)
Yα,

625



Jawanpuria, Nath and Ramakrishnan

α = [α>1 , . . . , α
>
T ]>, S(yt, C) = {β ∈ Rm | 0 ≤ β ≤ C,

∑m
i=1 ytiβi = 0}, yt = [yt1, . . . , ytm]>,

Y is the diagonal matrix corresponding to the vector [y>1 , . . . ,y
>
T ]>, 1 is a mT × 1 vector

with entries as unity, δw(γ, λ)−1 =
∑

v∈A(w)
d2
v

γvλvw
, ∆1 =

{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
,

∆v
r =

{
z ∈ R|D(v)| | z ≥ 0,

∑
w∈D(v) zrw ≤ 1

}
, ρ̂ = ρ

2−ρ , and Hw ∈ RmT×mT is the multi-task

kernel matrix corresponding to the multi-task kernel hw ∀w ∈ V. The kernel function hw is
defined as follows:

hw(xt1i,xt2j) = kw(xt1i,xt2j)B(t1, t2), (11)

where B is a T × T matrix. B = I (identity matrix) when the multi-task regularizer (7)
is employed in (6). Alternatively, B = I + 11>/µ (here 1 is a T × 1 vector with entries
as unity) in the case when the regularizer (8) is employed. The prediction function for the
task t1 is given by

Ft1(xt1j) =
T∑

t2=1

m∑
i=1

ᾱt2iyt2i

(∑
w∈V

δw(γ̄, λ̄)kw(xt1i,xt2j)B(t1, t2)

)
,

where (γ̄, λ̄, ᾱ) is an optimal solution of (10).

Proof The proof follows from the representer theorem (Schölkopf and Smola, 2002). Also
refer to Appendix A.3.

This lemma shows that gHKLMT essentially constructs the same prediction function as an
SVM with the effective multi-task kernel as: h =

∑
w∈V δw(γ, λ)hw. Similarly, in the case

of the gHKL, the effective kernel is k =
∑

w∈V δw(γ, λ)kw (since the terms T and B are
unity). Here, as well as in the rest of the paper, we employ the symbols ‘h’ and ‘H’ for the
multi-task kernel and the corresponding Gram matrix respectively.

The multi-task kernel (11) consists of two terms: the first term corresponds to the
similarity between two instances xt1i and xt2j in the feature space induced by the kernel
kw. The second term corresponds to the correlation between the tasks t1 and t2. In the case
of the regularizer (7), the matrix B simplifies to: B(t1, t2) = 1 if t1 = t2 and B(t1, t2) = 0
if t1 6= t2, thereby making the kernel matrices Hw(w ∈ V) block diagonal. Hence, the
gHKLMT regularizer based on (7) promotes simultaneous sparsity in kernel selection among
the tasks, without enforcing any additional correlations among the tasks.

In general, any T × T positive semi-definite matrix may be employed as B to model
generic correlations among tasks. The multi-task kernel given by (11) will still remain a
valid kernel (Sheldon, 2008; Álvarez et al., 2012). The matrix B is sometimes referred to as
the output kernel in the setting of learning vector-valued functions. It is usually constructed
from the prior domain knowledge.

We now discuss the nature of the optimal solution of (10). Most of the kernel weights
δw(γ, λ) are zero at optimality of (10): δw(γ, λ) = 0 whenever γv = 0 or λvw = 0 for
any v ∈ A(w). The vector γ is sparse due to `1-norm constraint in (10). In addition,
ρ → 1 ⇒ ρ̂ → 1. Hence the vectors λv ∀v ∈ V get close to becoming sparse as ρ → 1 due
to the `ρ̂-norm constraint in (10). The superimposition of these two phenomena leads to a
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flexible4 sparsity pattern in kernel selection. This is explained in detail towards the end of
this section.

Note that ρ = 2 ⇒ λvw = 1 ∀v ∈ A(w), w ∈ W at optimality in (10). Hence for
ρ = 2, the minimization problem in (10) can be efficiently solved using a projected gradient
method (Rakotomamonjy et al., 2008; Bach, 2009). However, as established in Liu and Ye
(2010), projection onto the kind of feasibility set in the minimization problem in (10) is
computationally challenging for ρ ∈ (1, 2). Hence, we wish to re-write this problem in a
relatively simpler form that can be solved efficiently. To this end, we present the following
important theorem.

Theorem 3 The following is a dual of (6) considered with the hinge loss function, and the
objectives of (6) (with the hinge loss), (10) and (12) are equal at optimality:

min
η∈∆1

g(η), (12)

where g(η) is the optimal objective value of the following convex problem:

max
αt∈S(yt,C)∀t

1>α− 1

2

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

, (13)

where ζw(η) =
(∑

v∈A(w) d
ρ
vη

1−ρ
v

) 1
1−ρ

, α = [α>1 , . . . , α
>
T ]>, S(yt, C) = {β ∈ Rm | 0 ≤

β ≤ C,
∑m

i=1 ytiβi = 0}, yt = [yt1, . . . , ytm]>, Y is the diagonal matrix corresponding to

the vector [y>1 , . . . ,y
>
T ]>, 1 is a mT × 1 vector with entries as unity, ρ̄ = ρ̂

ρ̂−1 , ρ̂ = ρ
2−ρ ,

∆1 =
{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
, and Hw ∈ RmT×mT is the multi-task kernel matrix

corresponding to the multi-task kernel (11).

The key idea in the proof of the above theorem is to eliminate the λ variables and the details
are presented in Appendix A.5. The expression for the prediction function F , in terms of
the variables η and α, is provided in Appendix A.9.

This theorem provides some key insights: firstly, we have that (12) is essentially a `1-
norm regularized problem and hence it is expected that most η will be zero at optimality.
Since (ηv = 0) ⇒ (ζw(η) = 0 ∀w ∈ D(v)), it follows that most nodes in V will not
contribute in the optimization problems (12) and (13). Secondly, in a single task learning
setting (T = 1), the problem in (13) is equivalent to the `ρ̂-norm MKL dual problem (Kloft

et al., 2011) with the base kernels as (ζv(η))
1
ρ̄ kv ∀v ∈ V 3 ζv(η) 6= 0. The optimization

problem (13) essentially learns an effective kernel of the form h =
∑

v∈V θv (ζv(η))
1
ρ̄ hv,

where the θ are intermediate optimization variables constrained to be non-negative and lie
within a `ρ̂-norm ball. The expression for θ in terms of the variables η and α is provided in
Appendix A.9.

The variable θ influence the nature of the effective kernel h in two important ways: i)
it follows from the expression of θ that

θv (ζv(η))
1
ρ̄ ∝ ζv(η)

(
α>YHvYα

) 1
(ρ̂−1)

.

4. The HKL dual formulation (Bach, 2009) is a special case of (10) with ρ = 2, T = 1 and B = 1. When
ρ = 2, ρ̂ = ∞. This implies λvw = 1 ∀ v ∈ A(w), w ∈ V at optimality, resulting in the weight bias
towards kernels embedded in the ancestor nodes and restricted sparsity pattern in kernel selection
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Algorithm 1 Active Set Algorithm - Outline

Input: Training data D, the kernels (kv) embedded on the DAG (V), the T × T matrix
B that models task correlations and tolerance ε.
Initialize the active set W with sources(V).
Compute η, α by solving (14)
while Optimal solution for (12) is NOT obtained do

Add some nodes to W
Recompute η, α by solving (14)

end while
Output: W, η, α

The above relation implies that the weight of the kernel hv in the DAG V is not only
dependent on the position5 of the node v, but also on the suitability of the kernel hv to
the problem at hand. This helps in mitigating the kernel weight bias in favour of the nodes
towards the top of the DAG from gHKLMT, but which is present in HKL, and ii) as ρ→ 1
(and hence as ρ̂ → 1), the optimal θ get close to becoming sparse (Szafranski et al., 2007;
Orabona et al., 2012). This superimposed with the sparsity of η promotes a more flexible
sparsity pattern in kernel selection that HKL, especially when ρ→ 1.

Next, we propose to solve the problem (12) by exploiting the sparsity pattern of the
η variables and the corresponding ζ(η) terms at optimality. We discuss it in detail in the
following section.

4. Optimization Algorithm

Note that problem (12) remains the same whether solved with the original set of variables
(η) or when solved with only those ηv 6= 0 at optimality (refer Appendix A.4 for details).
However the computational effort required in the latter case can be significantly lower since
it involves low number of variables and kernels. This motivates us to explore an active set
algorithm, which is similar in spirit to that in Bach (2008).

An outline of the proposed active set algorithm is presented in Algorithm 1. The algo-
rithm starts with an initial guess for the setW such that ηw 6= 0 (∀w ∈ W) at the optimality
of (12). This set W is called the active set. Since the weight associated with the kernel hw
will be zero whenever ηv = 0 for any v ∈ A(w), the active set W must contain sources(V),
else the problem has a trivial solution. Hence, the active set is initialized with sources(V).
At each iteration of the algorithm, (12) is solved with variables restricted to those in W:

min
η∈∆1

max
αt∈S(yt,C)∀t

1>α− 1

2

(∑
w∈W

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

. (14)

In order to formalize the active set algorithm, we need: i) an efficient algorithm for
solving problem (14), ii) a condition for verifying whether a candidate solution is optimal

5. Similar to the δv function in HKL (3), it follows from the definition of ζv that ζv(η) ≥ ζw(η) ∀w ∈ D(v)
(strict inequality holds if ζw(η) > 0).
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Algorithm 2 Mirror Descent Algorithm for solving (14)

Input: Gram matrices Hw (w ∈ W) and the regularization parameter C
Initialize ηW (w ∈ W) such that ηW ∈ ∆1 (warm-start may be used)
Iteration number: i = 0
while convergence criterion is not met6 do
i = i+ 1
Compute ζw(ηW) ∀w ∈ W (Theorem 3)

Compute αW (13) using `ρ̂-norm MKL algorithm with kernels as
(

(ζw(ηW))
1
ρ̄ Hw

)
w∈W

Compute ∇g(ηW) as in (24)
Compute step size s =

√
log(|W|)/i·‖∇g(ηW ))‖2∞

Compute ηw = exp (1 + log(ηw)− s · ∇g(ηW)w) ∀w ∈ W
Normalize ηw = ηw∑

v∈W ηv
∀w ∈ W

end while
Output: ηW , αW

with respect to the optimization problem (12), and iii) a procedure for building/improving
the active set after each iteration.

We begin with the first. We propose to solve the optimization problem (14) using the
mirror descent algorithm (Ben-Tal and Nemirovski, 2001; Beck and Teboulle, 2003). Mirror
descent algorithm is known to efficiently solve convex programs with Lipschitz continuous
and differentiable objectives constrained over a convex compact set. It achieves a near-
optimal convergence rate whenever the feasibility set is a simplex (which is true in our
optimization problem (14)). Mirror descent is close in spirit to the projected gradient
descent algorithm and hence assumes that an oracle for computing the gradient of the
objective is available.

Following the common practice of smoothing (Bach, 2009), in the rest of the paper, we
employ ζw((1 − ε)η + ε

|V|) instead7 of ζw(η) in (13) with ε > 0. The following theorem

establishes the applicability of mirror descent for solving (14):

Theorem 4 The function g(η) given by (13) is convex. Also, the expression for the ith

entry in the gradient (∇g(η))i is given in (24). If all the eigenvalues of the Gram matrices
Hw are finite and non-zero, then g is Lipschitz continuous.

The proof of the above theorem is technical and is provided in Appendix A.6.

Algorithm 2 summarizes the proposed mirror descent based algorithm for solving (14).
One of its steps involve computing ∇g(ηW) (expression provided in (24)), which in turn
requires solving (13). As noted before, (13) is similar to the `ρ̂-norm MKL problem (Kloft
et al., 2011) but with a different feasibility set for the optimization variables α. Hence,
(13) can be solved by employing a modified cutting planes algorithm (Kloft et al., 2011) or
a modified sequential minimal optimization (SMO) algorithm (Platt, 1999; Vishwanathan

6. Relative objective gap between two successive iteration being less than a given tolerance ε is taken to be
the convergence criterion. Objective here is the value of g(ηW), calculated after `ρ̂-norm MKL step.

7. Note that this is equivalent to smoothing the regularizer ΩT while preserving its sparsity inducing
properties (Bach, 2009).
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Algorithm 3 Active Set Algorithm

Input: Training data D, the kernels (kv) embedded on the DAG (V), the T × T matrix
B that models task correlations and tolerance ε.
Initialize the active set W with sources(V)
Compute η, α by solving (14) using Algorithm 2
while sufficient condition for optimality (15) is not met do

Add those nodes to W that violate (15)
Recompute η, α by solving (14) using Algorithm 2

end while
Output: W, η, α

et al., 2010). Empirically, we observed the SMO based algorithm to be much faster than
the cutting planes algorithm for gHKLMT (and gHKL) with SVM loss functions. In the
special case of ρ = 2, T = 1 and B = 1, (13) is simply a regular SVM problem.

Now we turn our attention to the second requirement of the active set algorithm: a
condition to verify the optimality of a candidate solution. We present the following theorem
that provides a sufficient condition for verifying optimality of a candidate solution.

Theorem 5 Suppose the active set W is such that W = hull(W). Let (ηW , αW) be a εW-
approximate optimal solution of (14), obtained from Algorithm (2). Then, it is an optimal
solution for (12) with a duality gap less than ε if the following condition holds:

max
u∈sources(Wc)

α>WYKuYαW ≤

(∑
w∈W

ζw(ηW)
(
α>WYHwYαW

)ρ̄) 1
ρ̄

+ 2(ε− εW), (15)

where Ku =
∑

w∈D(u)
Hw

(
∑
v∈A(w)∩D(u) dv)

2 .

The proof is provided in Appendix A.7. It closely follows that for the case of HKL (Bach,
2008).

The summary of the proposed mirror descent based active set algorithm is presented in
Algorithm 3. At each iteration, Algorithm (3) verifies optimality of the current iterate by
verifying the condition in (15). In case the current iterate does not satisfy this condition, the
nodes in sources(Wc) that violate the condition (15) are included in the active set.8 This
takes care of the third requirement of the active set algorithm. The algorithm terminates
if the condition (15) is satisfied by the iterate.

In the following, an estimate of the computational complexity of the active set algorithm
is presented. Let W be the final active set size. The optimization problem (14) needs to
be solved at most W times, assuming the worst case scenario of adding one node per
active set iteration. Each run of the mirror descent algorithm requires at most O(log(W ))
iterations (Ben-Tal and Nemirovski, 2001; Beck and Teboulle, 2003). A conservative time
complexity estimate for computing the gradient ∇g(ηW) by solving a variant of the `ρ̂-
norm MKL problem (13) is O(m3T 3W 2). This amounts to O(m3T 3W 3 log(W )). As for
the computational cost of the sufficient condition, let z denote the maximum out-degree

8. It is easy to see that with this update scheme, W is always equal to hull(W), as required in Theorem 5.
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of a node in G, i.e., z is an upper-bound on the the maximum number of children of any
node in G. Then the size of sources(Wc) is upper-bounded by Wz. Hence, a total of
O(ωm2T 2Wz) operations are required for evaluating the matrices K in (15), where ω is the
complexity of computing a single entry in any K. In all the pragmatic examples of kernels
and the corresponding DAGs provided by Bach (2008), ω is polynomial in the training
set dimensions. Moreover, caching of K usually renders ω to be a constant (Bach, 2009).
Further, the total cost of the quadratic computation in (15) is O(m2T 2W 2z). Thus the
overall computational complexity is O(m3T 3W 3 log(W ) + ωm2T 2Wz + m2T 2W 2z). More
importantly, because the sufficient condition for optimality (Theorem 5) is independent of
ρ, we have the following result:

Corollary 6 In a given input setting, HKL algorithm converges in time polynomial in the
size of the active set and the training set dimensions if and only if the proposed mirror
descent based active set algorithm (i.e., gHKLMT algorithm) has a polynomial time conver-
gence in terms of the active set and training set sizes.

The proof is provided in Appendix A.10.

In the next section, we present an application of the proposed formulation that illustrate
the benefits of the proposed generalizations over HKL.

5. Rule Ensemble Learning

In this section, we propose a solution to the problem of learning an ensemble of decision rules,
formally known as Rule Ensemble Learning (REL) (Cohen and Singer, 1999), employing
the gHKL and gHKLMT formulations. For the sake of simplicity, we only discuss the single
task REL setting in this section, i.e., REL as an application of gHKL. Similar ideas can
be applied to perform REL in multi-task learning setting, by employing gHKLMT. In fact,
we present empirical results of REL in both single and multiple task learning settings in
Section 6. We begin with a brief introduction to REL.

If-then decision rules (Rivest, 1987) are one of the most expressive and human readable
representations for learned hypotheses. It is a simple logical pattern of the form: IF condi-
tion THEN decision. The condition consists of a conjunction of a small number of simple
boolean statements (propositions) concerning the values of the individual input variables
while the decision specifies a value of the function being learned. An instance of a decision
rule from Quinlan’s play-tennis example (Quinlan, 1986) is:

IF HUMIDITY==normal AND WIND==weak THEN PlayTennis==yes.

The dominant paradigm for induction of rule sets, in the form of decision list (DL) models
for classification (Rivest, 1987; Michalski, 1983; Clark and Niblett, 1989), has been a greedy
sequential covering procedure.

REL is a general approach that treats decision rules as base classifiers in an ensemble.
This is in contrast to the more restrictive decision list models that are disjunctive sets of
rules and use only one in the set for each prediction. As pointed out in Cohen and Singer
(1999), boosted rule ensembles are in fact simpler, better-understood formally than other
state-of-the-art rule learners and also produce comparable predictive accuracy.
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REL approaches like SLIPPER (Cohen and Singer, 1999), LRI (Weiss and Indurkhya,
2000), RuleFit (Friedman and Popescu, 2008), ENDER/MLRules (Dembczyński et al.,
2008, 2010) have additionally addressed the problem of learning a compact set of rules that
generalize well in order to maintain their readability. Further, a number of rule learners like
RuleFit, LRI encourage shorter rules (i.e., fewer conjunctions in the condition part of the
rule) or rules with a restricted number of conjunctions, again for purposes of interpretability.
We build upon this and define our REL problem as that of learning a small set of simple
rules and their weights that leads to a good generalization over new and unseen data. The
next section introduces the notations and the setup in context of REL.

5.1 Notations and Setup

Let D = {(x1, y1), . . . , (xm, ym)} be the training data described using p basic (boolean)
propositions, i.e., xi ∈ {0, 1}p. In case the input features are not boolean, such propositions
can be derived using logical operators such as ==, 6=,≤ or ≥ over the input features (refer
Friedman and Popescu, 2008; Dembczyński et al., 2008, for details). Let V be an index-
set for all possible conjunctions with the p basic propositions and let φv : Rn 7→ {0, 1}
denote the vth conjunction in V. Let fv ∈ R denote the weight for the conjunction φv.
Then, the rule ensemble to be learnt is the weighted combination of these conjunctive rules:
F (x) =

∑
v∈V fvφv(x)− b, where perhaps many weights (fv) are equal to zero.

One way to learn the weights is by performing a `1-norm regularized risk minimization in
order to select few promising conjunctive rules (Friedman and Popescu, 2008; Dembczyński
et al., 2008, 2010). However, to the best of our knowledge, rule ensemble learners that iden-
tify the need for sparse f , either approximate such a regularized solution using strategies
such as shrinkage (Rulefit, ENDER/MLRules) or resort to post-pruning (SLIPPER). This
is because the size of the minimization problem is exponential in the number of basic propo-
sitions and hence the problem becomes computationally intractable with even moderately
sized data sets. Secondly, conjunctive rules involving large number of propositions might
be selected. However, such conjunctions adversely effect the interpretability. We present
an approach based on the gHKL framework that addresses these issues.

We begin by noting that 〈V,⊆〉 is a subset-lattice; hereafter this will be referred to
as the conjunction lattice. In a conjunction lattice, ∀ v1, v2 ∈ V, v1 ⊆ v2 if and only if
the set of propositions in conjunction v1 is a subset of those in conjunction v2. As an
example, (HUMIDITY==normal) is considered to be a subset of (HUMIDITY==normal
AND WIND==weak). The top node of this lattice is a node with no conjunctions and is
also sources(V). Its children, the second level nodes, are all the basic propositions, p in
number. The third level nodes, children of these basic propositions, are the conjunctions
of length two and so on. The bottom node at (p+ 1)th level is the conjunction of all basic
propositions. The number of different conjunctions of length r is

(
p
r

)
and the total number

of nodes in this conjunction lattice is 2p. Figure (1) shows a complete conjunction lattice
with p = 4.

We now discuss how the proposed gHKL regularizer (5) provides an efficient and optimal
solution to a regularized empirical risk minimization formulation for REL.
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Figure 1: Example of a conjunction lattice with 4 basic propositions: (x1 = a), (x2 6= b),
(x3 ≥ c) and (x4 ≤ d). The input space consist of four features: x1, x2, x3 and
x4. The number of nodes in conjunction lattice is exponential in the number of
basic propositions. In this particular example, the number of nodes is 16 (= 24).

5.2 Rule Ensemble Learning with gHKL

The key idea is to employ gHKL formulation (5) with the DAG as the conjunction lattice
and the kernels as kv(xi,xj) = φv(xi)φv(xj) for learning an ensemble of rules. Note that
with such a setup, the `1/`ρ block-norm regularizer in gHKL (ΩS(f) =

∑
v∈V dv‖fD(v)‖ρ)

implies: 1) for most v ∈ V, fv = 0, and 2) for most v ∈ V, fw = 0 ∀ w ∈ D(v). In the context
of the REL problem, the former statement is equivalent to saying: selection of a compact
set of conjunctions is promoted, while the second reads as: selection of conjunctive rules
with small number of propositions is encouraged. Thus, gHKL formulation constructs a
compact ensemble of simple conjunctive rules. In addition, we set dv = a|Sv | (a > 1), where
Sv is the set of basic propositions involved in the conjunction φv. Such a choice further
encourages selection of short conjunctions and leads to the following elegant computational
result:

Theorem 7 The complexity of the proposed gHKL algorithm in solving the REL problem,
with the DAG, the base kernels and the parameters dv as defined above, is polynomial in the
size of the active set and the training set dimensions. In particular, if the final active set
size is W , then its complexity is given by O(m3W 3 log(W ) +m2W 2p).

The proof is provided in Appendix A.11.
We end this section by noting the advantage of the generic regularizer in gHKL formu-

lation over the that in HKL formulation in the context of REL application. Recall that
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the sparsity pattern allowed by HKL has the following consequence: a conjunction is se-
lected only after selecting all the conjunctions which are subsets of it. This, particularly
in the context of REL, is psycho-visually redundant, because a rule with k propositional
statements, if included in the result, will necessarily entail the inclusion of (2k−1) more gen-
eral rules in the result. This violates the important requirement for a small set (Friedman
and Popescu, 2008; Dembczyński et al., 2008, 2010) of human-readable rules. The gHKL
regularizer, with ρ ∈ (1, 2), alleviates this restriction by promoting additional sparsity in
selecting the conjunctions. We empirically evaluate the proposed gHKL based solution for
REL application in the next section.

6. Experimental Results

In this section, we report the results of simulation in REL on several benchmark binary and
multiclass classification data sets from the UCI repository (Blake and Lichman, 2013). The
goal is to compare various rule ensemble learners on the basis of: (a) generalization, which
is measured by the predictive performance on unseen test data, and (b) ability to provide
compact set of simple rules to facilitate their readability and interpretability (Friedman and
Popescu, 2008; Dembczyński et al., 2010; Cohen and Singer, 1999). The latter is judged
using i) average number of rules learnt, and ii) average number of propositions per rule.
The following REL approaches were compared.

• RuleFit: Rule ensemble learning algorithm proposed by Friedman and Popescu
(2008). All the parameters were set to the default values mentioned by the authors. In
particular, the model was set in the mixed linear-rule mode, average tree size was set 4
and maximum number of trees were kept as 500. The same configuration was also used
by Dembczyński et al. (2008, 2010) in their simulations. This REL system cannot han-
dle multi-class data sets and hence is limited to the simulations on binary classification
data sets. Its code is available at www-stat.stanford.edu/~jhf/R-RuleFit.html.

• SLI: The SLIPPER algorithm proposed by Cohen and Singer (1999). Following Dem-
bczyński et al. (2008, 2010), all parameters were set to their defaults. We retained
the internal cross-validation for selecting the optimal number of rules.

• ENDER: State-of-the-art rule ensemble learning algorithm (Dembczyński et al.,
2010). For classification setting, ENDER is same as MLRules (Dembczyński et al.,
2008). The parameters were set to the default values suggested by the authors. The
second order heuristic was used for minimization. Its code is available at www.cs.

put.poznan.pl/wkotlowski.

• HKL-`1-MKL: A two-stage rule ensemble learning approach. In the first stage, HKL
is employed to prune the exponentially large search space of all possible conjunctive
rules and select a set of candidate rules (kernels). The rule ensemble is learnt by
employing `1-MKL over the candidate set of rules. In both the stages, a three-fold
cross validation procedure was employed to tune the C parameter with values in
{10−3, 10−2, . . . , 103}.

• gHKLρ: The proposed gHKL based REL formulation for binary classification prob-
lem. We considered three different values of ρ: 2, 1.5 and 1.1. Note that for binary
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classification, ρ = 2 renders the HKL formulation (Bach, 2008). In each case, a three-
fold cross validation procedure was employed to tune the C parameter with values in
{10−3, 10−2, . . . , 103}. As mentioned earlier, the parameters dv = 2|v|.

• gHKLMT−ρ: The proposed gHKLMT based REL formulation for multiclass classi-
fication problem. For each class, a one-vs-rest binary classification task is created.
Since we did not have any prior knowledge about the correlation among the classes
in the data sets, we employed the multi-task regularizer (7) in the gHKLMT primal
formulation (6).

We considered three different values of ρ: 2, 1.5 and 1.1. Its parameters and cross validation
details are same as that of gHKLρ. The implementations of both gHKLρ and gHKLMT−ρ are
available at http://www.cse.iitb.ac.in/~pratik.j/ghkl.

Note that the above methods differ in the way they control the number of rules (M) in
the ensemble. In the case of gHKLρ (gHKLMT−ρ), M implicitly depends on the parameters: ρ,
C and dv. SLI has a parameter for maximum number of rules Mmax and M is decided via a
internal cross-validation such that M ≤Mmax. For the sake of fairness in comparison with
gHKLρ, we set Mmax = max(M1.5,M1.1), where Mρ is the average number of rules obtained
with gHKLρ (gHKLMT−ρ). ENDER has an explicit parameter for the number of rules, which is
also set to max(M1.5,M1.1). In case of RuleFit, the number of rules in the ensemble is
determined internally and is not changed by us.

6.1 Binary Classification in REL

This section summarizes our results on binary REL classification. Table 1 provides the
details of the binary classification data sets. For every data set, we created 10 random
train-test splits with 10% train data (except for MONK-3 data set, whose train-test split
of 122 − 432 instances respectively was already given in the UCI repository). Since many
data sets were highly unbalanced, we report the average F1-score along with the standard
deviation (Table 5 in Appendix A.12 reports the average AUC). The results are presented in
Table 2. The best result, in terms of the average F1-score, for each data set is highlighted.

Data set Num Bias p |V| Data set Num Bias p |V|
TIC-TAC-TOE (TIC) 958 1.89 54 ≈ 1016 HEARTSTAT (HTS) 270 0.8 76 ≈ 1022

B-CANCER-W (BCW) 699 0.53 72 ≈ 1021 MONK-3 (MK3) 554 1.08 30 ≈ 109

DIABETES (DIA) 768 0.54 64 ≈ 1019 VOTE (VTE) 232 0.87 32 ≈ 109

HABERMAN (HAB) 306 0.36 40 ≈ 1012 B-CANCER (BCC) 277 0.41 76 ≈ 1022

HEARTC (HTC) 296 0.85 78 ≈ 1023 MAM. MASS (MAM) 829 0.94 46 ≈ 1013

BLOOD TRANS (BLD) 748 3.20 32 ≈ 109 LIVER (LIV) 345 1.38 48 ≈ 1014

Table 1: Data sets used for binary REL classification. ‘Num’ is the number of instances in
the data set while ‘Bias’ denotes the ratio of # of +ve and −ve instances. The
number of number of basic propositions is ‘p’ and |V| represents the total number
of possible conjunctions. For each numerical input feature, 8 basic propositions
were derived. The letters in brackets are the acronym used for the corresponding
data set in Table 2.
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RuleFit SLI ENDER
HKL- gHKLρ
`1-MKL ρ = 2 ρ = 1.5 ρ = 1.1

TIC 0.517± 0.092 0.665± 0.053 0.668± 0.032 0.749± 0.040 0.889± 0.093 0.897± 0.093 0.905± 0.096∗

(57.7, 2.74) (10.3, 1.96) (187, 3.17) (74.8, 1.89) (161.7, 1.72) (186.6, 1.76) (157.6, 1.72)

BCW 0.879± 0.025 0.928± 0.018 0.900± 0.041 0.925± 0.032 0.923± 0.032 0.924± 0.032 0.925± 0.032
(17.5, 2.03) (4.4, 1.15) (21, 1.56) (27,1.03) (30.9, 1) (20, 1.03) (20.4, 1.02)

DIA 0.428± 0.052 0.659± 0.027 0.656± 0.027 0.658± 0.028 0.661± 0.018 0.663± 0.017 0.661± 0.023
(32.9, 2.66) (4.9, 1.42) (74.0, 2.65) (47.6, 1.40) (83.2, 1.31) (73.2, 1.17) (62.6, 1.27)

HAB 0.175± 0.079 0.483± 0.057 0.474± 0.057 0.506± 0.048 0.523± 0.062 0.521± 0.060 0.521± 0.060
(7.5, 1) (2.1, 1) (52, 3.59) (45.6, 1.48) (112.1, 1.366) (51.2, 1.235) (17.1, 1.142)

HTC 0.581± 0.047 0.727± 0.05 0.724± 0.032 0.750± 0.038 0.743± 0.038 0.735± 0.058 0.736± 0.055
(8.8, 1) (3.2, 1.23) (32, 2.05) (32.9, 1.09) (46.7, 1.06) (23.9, 1) (32, 1.09)

BLD 0.163± 0.088 0.476± 0.057 0.433± 0 0.572± 0.029 0.586± 0.029 0.587± 0.028 0.588± 0.027
(40.7, 2.26) (2.0, 1) (63, 1.97) (175.9, 2.13) (229.7, 1.98) (62.8, 1.79) (19, 1.29)

HTS 0.582± 0.040 0.721± 0.065 0.713± 0.055 0.752± 0.036 0.747± 0.031 0.746± 0.028 0.747± 0.028
(9.3, 1) (3.5, 1.07) (25, 2.02) (24.6, 1.06) (34.7, 1.02) (25, 1.02) (24.4, 1.03)

MK3 0.947 0.802 0.972 0.972 0.972 0.972 0.972
(52, 2.88) (1, 3) (93, 1.96) (17, 1.88) (200, 2.07) (93, 1.84) (7, 1.43)

VTE 0.913± 0.047 0.935± 0.055 0.951± 0.035 0.927± 0.045 0.93± 0.042 0.929± 0.043 0.934± 0.038
(2.7, 1) (1.3, 1.15) (9, 1.07) (23.5, 1.17) (39, 1.11) (8.2, 1) (6.4, 1)

BCC 0.254± 0.089 0.476± 0.086 0.452± 0.079 0.588± 0.057 0.565± 0.059 0.563± 0.061 0.569± 0.063
(8.1, 1) (1.2, 1) (31, 2.93) (33.6, 1.17) (39.6, 1.15) (30.2, 1.07) (29.4, 1.17)

MAM 0.668± 0.032 0.808± 0.022 0.816± 0.018 0.805± 0.028 0.796± 0.026 0.796± 0.026 0.797± 0.024
(26.4, 2.68) (5.3, 1.43) (48, 2.53) (38.7, 1.32) (92.2, 1.27) (47.6, 1.24) (40.5, 1.25)

LIV 0.357± 0.016 0.445± 0.083 0.563± 0.058 0.585± 0.071 0.594± 0.046 0.595± 0.048 0.588± 0.049
(10, 1) (1.5, 1) (59, 2.35) (43.4, 1.56) (242.5, 1.42) (58.2, 1.32) (45.7, 1.36)

Table 2: Results on binary REL classification. We report the F1-score along with standard
deviation and, in brackets below, the number of the learnt rules as well as the
average length of the learnt rules. The proposed REL algorithm, gHKLρ (ρ =
1.5, 1.1), obtains better generalization performance than state-of-the-art ENDER in
most data sets, with the additional advantage of learning a smaller set of more
compact rules. The ‘*’ symbol denotes statistically significant improvement. The
results are averaged over ten random train-test splits.
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Additionally if the best result achieves a statistically significant improvement over its nearest
competitor, it is marked with a ‘*’. Statistical significance test is performed using the paired
t-test at 99% confidence. We also report the average number of rules learnt (r) and the
average length of the rules (c), specified below each F1-score as: (r, c). As discussed earlier,
it is desirable that REL algorithms achieve high F1-score with a compact set of simple rules,
i.e., low r and c.

We can observe from Table 2 that gHKLρ obtains better generalization performance than
state-of-the-art ENDER in most of the data sets with the additional advantage of having
rules with smaller number of conjunctions. In fact, when averaged over the data sets,
gHKL1.1 and gHKL1.5 output the shortest rules among all the methods. gHKL1.1 obtains
statistically significant performance in TIC-TAC-TOE data set. Though the generalization
obtained by gHKL2 (HKL), gHKL1.5 and gHKL1.1 are similar, the number of rules selected by
gHKL2 is always higher than gHKL1.1 (by as much as 25 times in a few cases), hampering its
interpretability.

6.2 Multiclass Classification in REL

This section summarizes our results on multiclass REL classification. The details of the
multiclass data sets are provided in Table 3. Within the data sets, classes with too few
instances (< 3) were not considered for simulations since we perform a three-fold cross
validation for hyper-parameter selection. The results, averaged over 10 random train-test
splits with 10% train data are presented in Table 4. Following Dembczyński et al. (2008,
2010), we report the accuracy to compare generalization performance among the algorithms.
The number of rules as well as the average length of the rules is also reported to judge the
interpretability of the output.

We can observe that gHKLMT−ρ obtains the best generalization performance in seven data
sets, out of which four are statistically significant. Moreover, gHKLMT−1.5 and gHKLMT−1.1

usually select the shortest rules among all the methods. The number of rules as well as
the average rule length of gHKLMT−2 is generally very large compared to gHKLMT−1.5 and
gHKLMT−1.1. This again demonstrates the suitability of the proposed `1/`ρ regularizer in
obtaining a compact set of simple rules.

Data set Num c p |V| Data set Num c p |V|
BALANCE 625 3 32 ≈ 109 IRIS 150 3 50 ≈ 1015

CAR 1728 4 42 ≈ 1012 LYMPH 146 3 86 ≈ 1025

C.M.C. 1473 3 54 ≈ 1016 T.A.E. 151 3 114 ≈ 1034

ECOLI 332 6 42 ≈ 1012 YEAST 1484 10 54 ≈ 1016

GLASS 214 6 72 ≈ 1021 ZOO 101 7 42 ≈ 1012

Table 3: Data sets used for multiclass REL classification. ‘Num’ is the number of instances
in the data set while ‘c’ denotes the number of classes. The number of number of
basic propositions is ‘p’ and |V| represents the total number of possible conjunc-
tions. For each numerical input feature, 8 basic propositions were derived.
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SLI ENDER
gHKLMT−ρ

ρ = 2 ρ = 1.5 ρ = 1.1

BALANCE 0.758± 0.025 0.795± 0.034 0.817± 0.028 0.808± 0.032 0.807± 0.034
(10.4, 1.7) (112, 2.4) (2468.9, 2.84) (112, 1.64) (85, 1.61)

CAR 0.823± 0.029 0.835± 0.024 0.864± 0.020 0.86± 0.028 0.875± 0.029∗

(18.3, 2.93) (270, 3.05) (9571.2, 3.14) (220.3, 1.64) (269.3, 1.85)

C.M.C. 0.446± 0.016 0.485± 0.015∗ 0.472± 0.014 0.463± 0.017 0.465± 0.016
(21.1, 1.9) (513, 4.36) (10299.3, 2.85) (512.9, 1.95) (396.4, 1.88)

ECOLI 0.726± 0.042 0.636± 0.028 0.779± 0.057 0.784± 0.045∗ 0.778± 0.054
(7.8, 1.34) (35, 2.15) (4790.2, 2.99) (34.3, 1.05) (32.4, 1.16)

GLASS 0.43± 0.061 0.465± 0.052 0.501± 0.049 0.525± 0.043∗ 0.524± 0.046
(7.4, 1.41) (70, 3.21) (5663.7, 2.40) (69.1, 1.15) (54.6, 1.04)

IRIS 0.766± 0.189 0.835± 0.093 0.913± 0.083 0.927± 0.024∗ 0.893± 0.091
(2.2, 1.02) (10, 1.34) (567, 2.44) (9.8, 1) (8.6, 1)

LYMPH 0.61± 0.066 0.706± 0.058 0.709± 0.061 0.724± 0.078 0.722± 0.078
(2.7, 1) (34, 2.2) (4683.8, 2.30) (33.7, 1.01) (33, 1.01)

T.A.E. 0.334± 0.035 0.41± 0.065 0.418± 0.049 0.399± 0.049 0.402± 0.046
(1.1, 1) (39, 1.86) (5707.4, 2.25) (38.3, 1.00) (38.1, 1.05)

YEAST 0.478± 0.035 0.497± 0.015 0.487± 0.021 0.485± 0.022 0.486± 0.021
(23.4, 1.63) (218, 5.78) (8153.6, 2.85) (217.8, 1.80) (179.6, 1.73)

ZOO 0.556± 0.062 0.938± 0.033 0.877± 0.06 0.928± 0.037 0.927± 0.039
(7.1, 1.24) (33, 1.29) (3322.2, 2.70) (32.3, 1.00) (31.9, 1.01)

Table 4: Results on multiclass REL classification. We report the accuracy along with stan-
dard deviation and, in the brackets below, the number of learnt rules as well as the
average length of the learnt rules. The proposed REL algorithm, gHKLMT−ρ, obtains
the best generalization performance in most data sets. In addition, for ρ = 1.5 and
1.1, our algorithm learns a smaller set of more compact rules than state-of-the-art
ENDER. The ‘*’ symbol denotes statistically significant improvement. The results
are averaged over ten random train-test splits.

7. Summary

This paper generalizes the HKL framework in two ways. First, a generic `1/`ρ block-norm
regularizer, ρ ∈ (1, 2), is employed that provides a more flexible kernel selection pattern than
HKL by mitigating the weight bias towards the kernels that are nearer to the sources of the
DAG. Secondly, the framework is further generalized to the setup of learning a shared feature
representation among multiple related tasks. We pose the problem of learning shared fea-
tures across the tasks as that of learning a shared kernel. An efficient mirror descent based
active set algorithm is proposed to solve the generalized formulations (gHKL/gHKLMT).
An interesting computational result is that gHKL/gHKLMT can be solved in time polyno-
mial in the active set and training set sizes whenever the HKL formulation can be solved in
polynomial time. The other important contribution in this paper is the application of the
proposed gHKL/gHKLMT formulations in the setting of Rule Ensemble Learning (REL),
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where HKL has not been previously explored. We pose the problem of learning an en-
semble of propositional rules as a kernel learning problem. Empirical results on binary
as well as multiclass classification for REL demonstrate the effectiveness of the proposed
generalizations.
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Appendix A.

In the appendix section, we provide the proofs of theorems/lemmas referred to in the main
paper.

A.1 Lemma 26 of Micchelli and Pontil (2005)

Let ai ≥ 0, i = 1, . . . , d, 1 ≤ r < ∞ and ∆d,r =
{

z ∈ Rd | z ≥ 0,
∑d

i=1 zri ≤ 1
}

. Then, the

following result holds:

min
z∈∆d,r

d∑
i=1

ai
zi

=

(
d∑
i=1

a
r
r+1

i

)1+ 1
r

.

The minimum is attained at

zi =
a

1
r+1

i(∑d
j=1 a

r
r+1

j

) 1
r

∀i = 1, . . . , d.

The proof follows from Holder’s inequality.

A.2 Proof of Lemma 1

Proof Applying the above lemma (Appendix A.1) on the outermost `1-norm of the regu-
larizer ΩT (f1, . . . , fT )2 in (6), we get

ΩT (f1, . . . , fT )2 = min
γ∈∆1

∑
v∈V

d2
v

γv

 ∑
w∈D(v)

(Qw(f1, . . . , fT ))ρ

 2
ρ

,

where ∆1 =
{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
. Reapplying the above lemma on the individ-

ual terms of the above summation gives ∑
w∈D(v)

(Qw(f1, . . . , fT )2)
ρ
2

 2
ρ

= min
λv∈∆v

ρ̂

∑
w∈D(v)

Qw(f1, . . . , fT )2

λvw
,
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where ρ̂ = ρ
2−ρ and ∆v

r =
{

z ∈ R|D(v)| | z ≥ 0,
∑

w∈D(v) zrw ≤ 1
}

. Using the above two re-

sults and regrouping the terms will complete the proof.

A.3 Re-parameterization of the Multi-task Regularizer in (8)

The gHKLMT dual formulation (10) follows from the representer theorem (Schölkopf and
Smola, 2002) after employing the following re-parameterization in (8).

Define f0w = 1
T+µ

∑T
t=1 ftw and f tw = ftw − f0w. Then, Qw(f1, . . . , fT ) in (8) may be

rewritten as:

Qw(f1, . . . , fT ) =

(
µ‖f0w‖2 +

T∑
t=1

‖f tw‖2
) 1

2

.

Further, construct the following feature map (Evgeniou and Pontil, 2004)

Φw(x, t) = (
φw(x)
√
µ
, 0, . . . ,0︸ ︷︷ ︸

for tasks before t

, φw(x), 0, . . . ,0︸ ︷︷ ︸
for tasks after t

) (16)

and define fw = (
√
µf0w, f1w, . . . , fTw).

With the above definitions, we rewrite the gHKLMT primal regularizer as well as the
prediction function: Qw(f1, . . . , fT )2 = ‖fw‖2 and Ft(x) =

∑
w∈V〈fw,Φw(x, t)〉 − bt ∀ t. It

follows from Lemma 1 that the gHKLMT primal problem based on (8) is equivalent to the
following optimization problem:

min
γ∈∆1

min
λv∈∆v

ρ̂ ∀v∈V
min
f,b

1

2

∑
w∈V

δw(γ, λ)−1‖fw‖2 + C
T∑
t=1

m∑
i=1

`(yti, Ft(xti)), (17)

where f = (fw)w∈V and b = [b1, . . . , bT ].

A.4 Motivation for the Active Set Algorithm

Lemma 8 The problem (12) remains the same whether solved with the original set of vari-
ables (η) or when solved with only those ηv 6= 0 at optimality.

Proof The above follows from the following reasoning: a) variables η owe their presence
in (12) only via ζ(η) functions, b) (ηv = 0) ⇒ (ζw(η) = 0 ∀w ∈ D(v)), c) Let (η′, α′) be
an optimal solution of the problem (12). If ζv(η

′) = 0 and η′v 6= 0, then (η∗, α′) is also an
optimal solution of the problem (12) where η∗w = η′w ∀w ∈ V \v and η∗v = 0, and d) min-max
interchange in (12) yields an equivalent formulation.

Lemma 9 The following min-max interchange is equivalent:

min
η∈∆1

max
αt∈S(yt,C)∀t

Ḡ(η, α) = max
αt∈S(yt,C)∀t

min
η∈∆1

Ḡ(η, α),
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where

Ḡ(η, α) = 1>α− 1

2

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

.

Proof Note that G(η, α) is a convex function in η and a concave function in α. The
min-max interchange follows from Sion-Kakutani minimax theorem (Sion, 1958).

A.5 Proof of Theorem 3

Before stating the proof of Theorem 3, we first prove the results in Lemma 10, Proposi-
tion 11 and Lemma 12, which will be employed therein (also see Bach, 2009, Lemma 10 and
Proposition 11).

Lemma 10 Let ai > 0 ∀i = 1, . . . , d, 1 < r <∞ and ∆1 =
{

z ∈ Rd | z ≥ 0,
∑d

i=1 zi ≤ 1
}

.

Then, the following holds true:

min
z∈∆1

d∑
i=1

aiz
r
i =

(
d∑
i=1

a
1

1−r
i

)1−r

and the minimum is attained at

zi = a
1

1−r
i

 d∑
j=1

a
1

1−r
i

−1

∀ i = 1, . . . , d.

Proof Take vectors u1 and u2 as those with entries a
1
r
i zi and a

− 1
r

i ∀ i = 1, . . . , d respectively.
The result follows from the Holder’s inequality: u>1 u2 ≤ ‖u1‖r‖u2‖ r

r−1
. Note that if any

ai = 0, then the optimal value of the above optimization problem is zero.

Proposition 11 The following convex optimization problems are dual to each other and
there is no duality gap:

max
γ∈∆1

∑
w∈V

δw(γ, λ)Mw, (18)

min
κ∈L

max
u∈V

∑
w∈D(u)

κ2
uwλuwMw

d2
u

, (19)

where L = {κ ∈ R|V|×|V| | κ ≥ 0,
∑

v∈A(w) κvw = 1, κvw = 0 ∀v ∈ A(w)c, ∀w ∈ V},
∆1 =

{
z ∈ R|V| | z ≥ 0,

∑
v∈V zv ≤ 1

}
and Mw ≥ 0 ∀w ∈ V.

Proof The optimization problem (19) may be equivalently rewritten as:

min
κ∈L

min
A
A, subject to A ≥

∑
w∈D(u)

κ2
uwλuwMw

d2
u

∀u ∈ V,
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= min
κ∈L

max
γ∈∆1

∑
u∈V

∑
w∈D(u)

γuκ
2
uwλuwMw

d2
u

(Lagrangian dual with respect to A)

= max
γ∈∆1

min
κ∈L

∑
w∈V

 ∑
u∈A(w)

κ2
uw

γuλuw
d2
u

Mw (min-max interchange and rearranging terms)

= max
γ∈∆1

∑
w∈V

 ∑
u∈A(w)

(
γuλuw
d2
u

)−1
−1

Mw (Lemma 10 with respect to variables κ)

= max
γ∈∆1

∑
w∈V

δw(γ, λ)Mw �

Lemma 12 The following min-max interchange is equivalent:

min
γ∈∆1

min
λv∈∆v

ρ̂ ∀v∈V
max

αt∈S(yt,C)∀t
G(γ, λ, α) = max

αt∈S(yt,C)∀t
min
γ∈∆1

min
λv∈∆v

ρ̂ ∀v∈V
G(γ, λ, α),

where G(γ, λ, α) is as defined in (10).

Proof We proceed by applying a change of variables. Note that γv = 0 implies that the
variables λvw (∀w ∈ D(v)) do not influence the objective of optimization problem (10). This
follows from the definition of the δ(γ, λ) function. Hence, we define βvw = γvλvw, ∀w ∈ D(v)
as it is a one-to-one transformation for γv 6= 0 (see also Szafranski et al., 2010). The gHKL
dual (10) (the L.H.S. of the proposed lemma) can be equivalently rewritten as:

min
βvw≥0 ∀w∈D(v),v∈V∑

v ‖βvD(v)‖ρ̂≤1

max
αt∈S(yt,C)∀t

G(β, α), where βvD(v) = (βvw)w∈D(v),

G(β, α) = 1>α− 1

2
α>Y

(∑
w∈V

δw(β)Hw

)
Yα, and δw(β)−1 =

∑
v∈A(w)

d2
v

βvw
.

Note that δw(β) is a concave function of β (in the given feasibility set) and hence G(β, α)
is convex-concave function with convex and compact feasibility sets. Therefore, we obtain
minβ maxαG(β, α) = maxα minβ G(β, α) (with constraints over β and α as stated above) by
applying the Sion-Kakutani minimax theorem (Sion, 1958). Finally, we revert to the original

variables (γ, λ) by substituting γv = (
∑

w∈D(v) (βvw)ρ̂)
1
ρ̂ ∀v ∈ V and λvw = βvw

γv
∀w ∈

D(v), ∀v ∈ V s.t. γv 6= 0. This gives us the equivalent R.H.S.

Now we begin the proof of Theorem 3.

Proof From Lemma 12, the gHKL dual (10) can be equivalently written as:

max
α∈S(y,C)

1>α− 1

2
max
γ∈∆1

max
λv∈∆v

ρ̂ ∀v∈V

(∑
w∈V

δw(γ, λ)α>YHwYα

)
︸ ︷︷ ︸

O

, (20)
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where ρ̂ = ρ
2−ρ . In the following, we equivalently rewrite the second part of the above

formulation.

O = max
λv∈∆v

ρ̂ ∀v∈V
max
γ∈∆1

∑
w∈V

δw(γ, λ)α>YHwYα︸ ︷︷ ︸
Mw

= max
λv∈∆v

ρ̂ ∀v∈V
min
κ∈L

max
u∈V

∑
w∈D(u)

κ2
uwλuwMw

d2
u

(Proposition 11)

= max
λv∈∆v

ρ̂ ∀v∈V
min
κ∈L

min
A

A (Eliminating u)

s.t. A ≥
∑

w∈D(v)

κ2
vwλvwMw

d2
v

∀v ∈ V

= min
κ∈L

min
A

max
λv∈∆v

ρ̂ ∀v∈V
A (Sion-Kakutani theorem)

s.t. A ≥
∑

w∈D(v)

κ2
vwλvwMw

d2
v

∀v ∈ V

= min
κ∈L

min
A

A (Holder’s inequality, ρ̄= ρ̂
ρ̂−1

)

s.t. A ≥ d−2
v

 ∑
w∈D(v)

(
κ2
vwMw

)ρ̄ 1
ρ̄

∀v ∈ V

= min
κ∈L

max
u∈V

d−2
u

 ∑
w∈D(u)

(
κ2
uwMw

)ρ̄ 1
ρ̄

(Eliminating A) (21)

Now consider the problem Oρ̄ = minκ∈L maxu∈V d
−2ρ̄
u

∑
w∈D(u)

(
κ2
uwMw

)ρ̄
. Its Lagrangian

is

L(κ,A, η) = A+
∑
v∈V

ηv

d−2ρ̄
v

∑
w∈D(v)

(
κ2
vwMw

)ρ̄ −A
 .

Minimization of L with respect to A leads to the constraint η ∈ ∆1. Hence, we have:

Oρ̄ = max
η∈∆1

min
κ∈L

∑
v∈V

∑
w∈D(v)

ηv
(
d−2
v κ2

vwMw

)ρ̄
.

Using the special structure of L, the above can be rewritten as:

Oρ̄ = max
η∈∆1

∑
w∈V

(Mw)ρ̄

 min
κw∈∆|A(w)|

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw

 ,

where ∆|A(w)| =
{
η ∈ R|A(w)| | η ≥ 0,

∑
w∈A(w) ηw ≤ 1

}
. By applying Lemma 10 with re-

spect to variables κ, we obtain the following equivalence:

min
κw∈∆|A(w)|

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw = ζw(η) =

 ∑
v∈A(w)

dρvη
1−ρ
v

 1
1−ρ

. (22)
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From the above two results, we obtain the following equivalent dual of (21):

O = max
η∈∆1

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

. (23)

Substituting O in (20) by the above (23) and again interchanging the min-max completes
the proof.

A.6 Proof of Theorem 4

Proof We begin by noting that ζv(η) (v ∈ V) is a concave function of η for all v (this is
because when ρ ∈ (1, 2], ζv is a weighted q-norm in η, where q ∈ [−1, 0) and hence is concave
in the first quadrant). By simple observations regarding operations preserving convexity we
have that the objective in (13) is a convex function of η for a fixed value of α. Hence g(η),
which is a point-wise maximum over convex functions, is itself convex. The expression for
∇g(η) is computed by employing Danskin’s theorem (Bertsekas, 1999, Proposition B.25)
and is as follows:

(∇g(η))i =− (1− ε)
2ρ̄

×

P1︷ ︸︸ ︷ ∑
u∈D(i)

dρi

(
(1− ε)ηi +

ε

|V|

)−ρ
ζsu(η)ρ

(
ᾱ>YHuYᾱ

)ρ̄ (24)

×

(∑
w∈V

ζsw(η)
(
ᾱ>YHwYᾱ

)ρ̄) 1
ρ̄
−1

︸ ︷︷ ︸
P2

,

where ρ̄ = ρ
2(ρ−1) , ζsw(η) = ζw((1− ε)η + ε

|V|), i.e., the smoothed ζw(η) and ᾱ is an optimal

solution of problem (13) with that η where the gradient is to be computed.
Next, we show that g is Lipschitz continuous by showing that its gradient is bounded.

Firstly, ρ ∈ (1, 2] and hence ρ̄ ∈ [1,∞). Next, let the minimum and maximum eigenvalues
over all Hw (w ∈ V) be θ and σ respectively. Then we have θ‖ᾱ‖2 ≤ ᾱ>YHwYᾱ ≤
σ‖ᾱ‖2. Using this, we obtain:

∑
w∈V ζ

s
w(η)

(
ᾱ>YHwYᾱ

)ρ̄ ≥ θρ̄‖ᾱ‖2ρ̄
∑

w∈V ζ
s
w(η). Note

that
∑

w∈V ζ
s
w(η) ≥ ζsr (η) where r ∈ sources(V) and ζsr (η) ≥ d

ρ/(1−ρ)
max

ε
|V| where dmax is the

maximum of dv (v ∈ V). Thus we obtain: P2 ≤
(
θρ̄‖ᾱ‖2ρ̄ε/|V|

) 1
ρ̄
−1
d

2−ρ
ρ−1
max.

Now, it is easy to see that ∀u ∈ D(i), dρi ((1 − ε)ηi + ε
|V|)
−ρζu(η)ρ ≤ d

ρ
1−ρ
i ≤ d

ρ
1−ρ
min,

where dmin is the minimum of dv (v ∈ V). Hence P1 ≤ |V|σρ̄‖ᾱ‖2ρ̄d
ρ

1−ρ
min. In addition, since

0 ≤ ᾱ ≤ C, we have ‖ᾱ‖ ≤
√
mTC. Summarizing these findings, we obtain the following

bound on the gradient:

‖∇g(η)‖1 ≤
(1− ε)

2ρ̄
mTC2θ1−ρ̄σρ̄ε

1−ρ̄
ρ̄ |V|

2
ρ

+1
d

ρ
1−ρ
mind

2−ρ
ρ−1
max.

The proof will be similar for gHKLMT formulations in other learning settings.
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A.7 Proof of Theorem 5

Proof Given a candidate solution η and α = [α>1 , . . . , α
>
T ]> (with associated primal (f =

(f1, . . . , fT ), b, ξ)), the duality gap (D) between the two variational formulations in Lemma 9
is as follows:

D = max
α̂t∈S(yt,C)∀t

Ḡ(η, α̂) − min
η̂∈∆1

Ḡ(η̂, α)

≤ 1

2
ΩT (f)2 + C1>ξ − min

η̂∈∆1

Ḡ(η̂, α)

=

Gap in solving with fixed η︷ ︸︸ ︷
ΩT (f)2 + C1>ξ − 1>α+

1

2

max
η̂∈∆1

(∑
w∈V

ζw(η̂)
(
α>YHwYα

)ρ̄) 1
ρ̄

− ΩT (f)2


︸ ︷︷ ︸

Gap in solving with fixed α

.

With this upper bound on the duality gap, it is easy to see that the following condition is
sufficient for the reduced solution (with active set W) to have D ≤ ε:

max
η∈∆1

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

≤ ΩT (fW)2 + 2(ε− εW), (25)

where εW is the duality gap9 associated with the computation of the dual variables αW .
Here as well as in the rest of the proof, the subscript (·)W implies the value of the variable
obtained when the gHKLMT formulation is solved with V restricted to the active set W. In
Appendix A.5, we had proved that the L.H.S. of the above inequality is equal to the R.H.S.
of (21), i.e.,

max
η∈∆1

(∑
w∈V

ζw(η) (Mw)ρ̄
) 1

ρ̄

= min
κ∈L

max
v∈V

d−2
v

 ∑
w∈D(v)

(
κ2
vwMw

)ρ̄ 1
ρ̄

, (26)

where Mw = α>WYHwYαW .

Next, we obtain an upper bound of the above by substituting κ ∈ L in the R.H.S of (26).
In particular, we employ the following: the value of κvw v, w ∈ W is obtained by solving
the small10 problem (14). This is fine because W = hull(W). For v ∈ Wc and w ∈ W , by
definition of L andW, we have κvw = 0. Next, κvw is set to zero ∀ v ∈ W, w ∈ Wc. For the
remaining κvw, v ∈ Wc and w ∈ Wc, we use the value of κ obtained by solving (21) with

ρ = 1, i.e., κvw = dv

(∑
u∈A(v)∩Wc du

)−1
(also see Section A.5 Bach, 2009). Note that the

above constructed value of κ is feasible in the set L. With this choice of κ substituted in

9. This is given by the gap associated with the ρ̂-norm MKL solver employed in the mirror descent algorithm
for solving the small problem (14).

10. The value of κvw (∀v, w ∈ W) obtained in this manner satisfy the constraint set L restricted to W, i.e.,
LW = {κ ∈ R|W|×|W| | κ ≥ 0,

∑
v∈A(w) κvw = 1, κvw = 0 ∀ v ∈ A(w)c ∩W, ∀ w ∈ W}
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the R.H.S. of (26), we have the following inequalities:

max
η∈∆1

(∑
w∈V

ζw(η)
(
α>WYHwYαW

)ρ̄) 1
ρ̄

≤max

ΩT (fW)2, max
u∈Wc

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩Wc dv

)2


ρ̄

1
ρ̄


( Specific choice of κ)

= max

ΩT (fW)2, max
u∈sources(Wc)

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩Wc dv

)2


ρ̄

1
ρ̄


(∵ W = hull(W))

≤max

ΩT (fW)2, max
u∈sources(Wc)

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩D(u) dv

)2


ρ̄

1
ρ̄


(∵

∑
v∈A(w)∩Wc dv ≥

∑
v∈A(w)∩D(u) dv)

≤max

ΩT (fW)2, max
u∈sources(Wc)

∑
w∈D(u)

α>WYHwYαW(∑
v∈A(w)∩D(u) dv

)2


(∵ ‖β‖1 ≥ ‖β‖ρ̄ ∀ ρ̄ ≥ 1)

Employing the above upper bound in (25) leads to the result in Theorem 5. Note that in
practice, the last upper bound is not loose for Rule Ensemble Learning (REL) application.
This is because most of the matrices, especially near the bottom of the lattice, will be (near)
zero-matrices — larger the conjunctive rule, the fewer are the examples which may satisfy
it.

A.8 gHKLMT with General Convex Loss Functions

In this section, we present extension of the proposed algorithm to other learning settings
like regression. In particular, we consider the case where the loss function `(·, ·) is a general
convex loss function such as the hinge loss, the square loss, the Huber loss, etc.

The gHKLMT primal formulation with a general convex loss function `(·, ·) was given in
equation (6). The specialized gHKLMT dual formulation corresponding to (6) is as follows:

min
η∈∆1

max
αt∈Rm,1>αt=0 ∀t

−C
T∑
t=1

m∑
i=1

ϕ∗ti

(
−αti
C

)
− 1

2

(∑
w∈V

ζw(η)
(
α>Hwα

)ρ̄) 1
ρ̄

,
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where α = [α>1 , . . . , α
>
T ]>, ζw(η) =

(∑
v∈A(w) d

ρ
vη

1−ρ
v

) 1
1−ρ

(refer Theorem 3 for details)

and ϕ∗ti denotes the Fenchel11 conjugate (Boyd and Vandenberghe, 2004) of the function
ϕti : z → `(yti, z).

A.9 Prediction Function for gHKLMT with the Hinge Loss Function

Let the final active set be W and (η̄W , ᾱW) be the optimal solution of (12). Then the
prediction function for an instance xtj belonging to the tth task is given by

Ft(x) = (ᾱW � y)>

(∑
w∈W

θ̄w(ζw(η̄W))
1
ρ̄Hw(·,xtj)

)
, (27)

where symbol � denote element-wise product, Hw is the kernel matrix corresponding to the
multi-task kernel (11), Hw(·,xtj) = ((Hw(xt′i,xtj))

m
i=1)Tt′=1 and

θ̄w =

 (ζw(η̄W))
1
ρ̄ ᾱ>WYHwYᾱW(∑

v∈W

(
(ζv(η̄W))

1
ρ̄ ᾱ>WYHvYᾱW

)ρ̄) 1
ρ̄


1
ρ̂−1

.

A.10 Proof of Corollary 6

Note that proving the computational complexity of the matrix Ku (u ∈ sources(Wc)) in
(15) to be polynomial time in size of the active set and the training set dimensions suffices
to prove the corollary. This is because all the other steps in Algorithms 3 and 2 are of
polynomial time complexity (discussed in Section 4).

We begin the proof by introducing some indexing notations related to the multi-task
matrices. Let the entries in Hw, the mT ×mT multi-task kernel matrix, be arranged in the
following form: the entry corresponding to the input pair (xt1i,xt2j) be in the ((t1 − 1) ∗
m+ i)th row and ((t2 − 1) ∗m+ j)th column of Hw.

Next we observe that the expression for Ku in Theorem 5 may be rewritten as:

Ku =

 ∑
w∈D(u)

Kw(∑
v∈A(w)∩D(u) dv

)2


︸ ︷︷ ︸

Tu

�KT ,

where: i) Kw is a mT ×mT matrix corresponding to the base kernel kw and constructed
from the inputs from all the tasks, ii) KT is a mT ×mT such that the entry corresponding
to the ((t1 − 1) ∗ m + i)th row and ((t2 − 1) ∗ m + j)th column (1 ≤ i, j ≤ m) of KT is
B(t1, t2), and iii) � is the symbol for element-wise product (Hadamard product).

11. Fenchel conjugate ϕ∗(z) of a convex function ϕ(u) is given by ϕ∗(z) = supu z
>u−ϕ(u). As an example,

for hinge loss ϕ(u) = `(u, y) = max(0, 1− uy), ϕ∗(z) =

{
zy if zy ∈ [−1, 0]
∞ otherwise
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In the above expression, Ku is computable in polynomial time if and only if Tu is
computable in polynomial time. The proof of the corollary follows from observing the
expression of the sufficient condition for optimality of the HKL (Bach, 2009, Equation 21),
which also involves the term Tu.

A.11 Proof of Theorem 7

Given an active set W of size W , proving that the computational complexity of the verifi-
cation of the sufficient condition of optimality (15) is polynomial in terms of the active set
and the training set sizes suffices to prove Theorem 7. This is because all the other steps
in Algorithms 3 and 2 are of polynomial time complexity (discussed in Section 4).

In the REL setup, the DAG is the conjunction lattice and the embedded kernels kv v ∈ V
may be rewritten as:

kv(xi,xj) = φv(xi) · φv(xj) =

(∏
c∈Sv

φc(xi)

)
·

(∏
c∈Sv

φc(xj)

)
=
⊙
c∈Sv

kc(xi,xj),

where Sv is the set of basic propositions involved in the conjunction φv and � is the symbol
for element-wise product (Hadamard product). The kernels corresponding to the basic
propositions are in fact the base kernels embedded in the second level nodes of the lattice
V. Employing the above definition of kv(xi,xj), the matrices Ku (in L.H.S. of (15)) are
computed as:

Ku =
∑

w∈D(u)

Kw(∑
v∈A(w)∩D(u) dv

)2 =

(⊙
c∈Su

Kc

a2

)
�

 ⊙
c∈B/Su

(
Kc

(1 + a)2
+ 11>

) ,

where Kc is the kernel matrix corresponding to the basic proposition φc, B is the set of all
basic propositions and the parameters dv (v ∈ V) are defined as dv = a|Sv | (a > 0).

It is obvious that a trivial computational complexity of computing Ku (u ∈ V) is O(pm2).
In practice, this complexity can be reduced to O(m2) by caching the matrices Ku. For
illustration, suppose Ku1 needs to be computed, given that Ku0 is cached and u0 is a parent
of u1. Let the extra basic proposition contained in φu1 (with respect to φu0) be φe. Then
Ku1 can be calculated as follows:

Ku1 = Ku0 �
(
Ke

a2

)
�
(

Ke

(1 + a)2
+ 11>

)
,

where � is the symbol for element-wise division of matrices.

Hence, plugging the REL specific values in the runtime complexity of the gHKL algo-
rithm, ω =constant and z = p, the runtime complexity of the gHKL based REL algorithm
is O(m3W 3 log(W ) +m2W 2p).

A.12 REL Binary Classification Results in AUC

Table 5 reports the REL binary classification results in AUC (area under the ROC curve).
The experimental details (and results measured in F1-score) are discussed in Section 6.
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RuleFit SLI ENDER
HKL- gHKLρ
`1-MKL ρ = 2 ρ = 1.5 ρ = 1.1

TIC 0.736± 0.05 0.482± 0.21 0.783± 0.036 0.836± 0.024 0.967± 0.023 0.973± 0.02 0.975± 0.018

BCW 0.941± 0.011 0.917± 0.051 0.958± 0.039 0.981± 0.008 0.984± 0.005 0.93± 0.099 0.93± 0.099

DIA 0.67± 0.027 0.576± 0.115 0.761± 0.02 0.746± 0.050 0.766± 0.046 0.733± 0.058 0.636± 0.118

HAB 0.537± 0.054 0.17± 0.155 0.575± 0.039 0.524± 0.078 0.556± 0.07 0.482± 0.11 0.383± 0.166

HTC 0.764± 0.03 0.541± 0.215 0.805± 0.031 0.802± 0.085 0.837± 0.035 0.763± 0.12 0.753± 0.118

BLD 0.546± 0.06 0.175± 0.256 0.68± 0.028 0.660± 0.025 0.667± 0.034 0.634± 0.028 0.519± 0.079

HTS 0.765± 0.028 0.712± 0.085 0.801± 0.022 0.825± 0.032 0.849± 0.021 0.83± 0.027 0.811± 0.056

MK3 0.972 0.632 0.998 0.995 1 0.998 0.957

VTE 0.955± 0.022 0.919± 0.048 0.965± 0.014 0.977± 0.009 0.972± 0.016 0.948± 0.015 0.945± 0.016

BCC 0.578± 0.05 0.469± 0.078 0.622± 0.043 0.627± 0.063 0.637± 0.055 0.576± 0.089 0.513± 0.124

MAM 0.818± 0.02 0.763± 0.08 0.887± 0.006 0.866± 0.028 0.882± 0.023 0.85± 0.032 0.839± 0.03

LIV 0.607± 0.017 0.093± 0.168 0.619± 0.038 0.619± 0.074 0.623± 0.038 0.583± 0.11 0.565± 0.109

Table 5: Results on binary REL classification. We report the average AUC along with
standard deviation, over ten random train-test splits.
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