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ABSTRACT
Concepts in ontologies can be used in many scenarios, including
annotation of online resources, automatic ontology population,
and document classification to improve web search results. Col-
lectively, tens of millions of concepts have been defined in a
large number of ontologies that cover many overlapping do-
mains. The scale, duplication and ambiguity makes concept
search a challenging problem. We present a novel concept search
approach that exploits structures present in ontologies and con-
structs contexts to effectively filter the noise in concept search
results. The three key components of our approach are (1) a
context for each concept extracted from relevant properties and
axioms, (2) query interpretation based on the extracted context
and (3) result ranking using learning to rank algorithms. We
evaluate our approach on a large dataset from BioPortal. Our
comprehensive evaluation is performed on 2,062,080 concepts
and more than 2,000 queries, using two widely-employed perfor-
mance metrics: normalized discounted cumulative gain (NDCG)
and mean reciprocal rank (MRR). Our approach outperforms
BioPortal significantly for multitoken queries that make up a
large percentage of total queries.
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1. INTRODUCTION
The ever increasing availability of structured data on the web

has led to the challenging problem of searching across this data.
The Linked Open Data project [8] connect these datasets and
ontologies from different domains that range from biomedical,
academic to government and social media. The current breed of
Semantic Web search engines can be broadly grouped into three
categories: (1) those that search for ontologies [7, 6], (2) those
that search for individual resources [11, 7] and (3) those that
search for concepts that represent a group of individuals [4, 20].
Searching for ontologies is sometimes too coarse-grained because
a large ontology may contain hundreds of thousands, or even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

K-CAP 2015, October 07-10, 2015, Palisades, NY, USA
c© 2015 ACM. ISBN 978-1-4503-3849-3/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2815833.2816958

millions of concepts. On the other hand, searching for individual
resources could be too fine-grained since many resources may be
relevant and returning them individually may not be the most
useful approach. Searching for concepts forms an ideal middle
ground and can be useful in a wide variety of applications such
as annotation of online resources, ontology population, and docu-
ment classification for web search. The majority of these applica-
tions require searching for concepts across large overlapping on-
tologies. In certain domains such as life sciences, there are many
overlapping domain ontologies that primarily contain concepts
and properties that describe and link concepts. To the best of our
knowledge, existing concept search approaches can be primarily
divided into two types based on the nature of input queries:
SPARQL queries [14] at one end, and keyword queries [7] at the
other. The use of SPARQL queries as precise input queries leads
to exact results. However, it requires the user to be technically
good at writing SPARQL queries and to have knowledge of the
schema of the ontologies to be queried. In particular, often the
schema might not be known to the user who writes the query.
Existing keyword query based approaches [4, 20, 7] typically use
standard Information retrieval techniques including tf-idf based
search and ranking and popularity based PageRank algorithms.
However, these approaches do not capture the context necessary
for interpreting queries with multiple keywords.
In this paper, we present a novel context-driven approach of

searching for concepts across ontologies using keyword queries.
Ontology axioms and class properties are used as contextual
features to improve accuracy and assist in disambiguating user
queries. The primary technical contributions of our approach
are three-fold: (1) Context extraction for each concept based on
relevant properties and axioms (2) Query interpretation based
on extracted contexts and (3) Ranking search results using
learning to rank algorithms.

2. RELATED WORK
The Semantic search engines such as Sindice [23], Swoogle [7,

6], Watson [5], BioPortal [18], Falcons [4, 20] enable keyword
based search for ontology and the individual resources within
them. Current semantic search systems search for ontology,
documents and terms on the semantic web whereas we propose
to search concepts across ontologies. The search systems use
standard information retrieval approaches that are based on
tf-idf and PageRank algorithm. Our context driven approach
uses lexical co-occurrence measures and direct and indirect re-
lation extraction for query disambiguation. Our approach is
optimized for multiple token queries in which, the context plays
an important role.
SchemEX [15] is a stream based approach and tool for real



time indexing and schema extraction of LOD data. Recent work
in the area of Semantic Web resources ranking is largely based on
adapting and modifying the PageRank algorithm [19]. ReCon-
Rank [10] adapts the PageRank and HITS [13, 9] algorithms for
Semantic Web data. AKTiveRank [1] ranks ontologies based on
how well they cover the specified search terms. The Linked open
vocabularies (LOV) [2] search system ranks results based on term
popularity in the LOD datasets and in the LOV ecosystem. The
paper by Butt et. al. [3] present comparison of eight ranking algo-
rithms for searching resources within ontologies. They evaluate
the performance of the the traditional IR based ranking algo-
rithms used in semantic web search. The current systems adapt
the indexing and pagerank based ranking for semantic search
sytems. We make use of the rich ontology structure for indexing
and use learning to rank approach for ranking search results.

The work on Top-k exploration of query candidates on (RDF)
graph data[22] proposes an intermediate step of converting key-
word queries to structured queries. The user needs to select
the correct SPARQL queries to finally retrieve search results.
Although our indexing techniques appear to be similar to theirs,
their approach requires user input to select the appropriate
SPARQL query interpretation, while our method internally in-
terprets the keyword query without needing to explicitly generate
candidate SPARQL query translations for the keyword query.

3. PROBLEM DEFINITION
Given a multi-word keyword query on a search space of di-

verse Web ontologies, the goal is to retrieve the relevant concepts
with high quality top-k ranking using the context of each con-
cept/class.
Keyword query Information need is represented as query Q.
Query Q can consist of m keywords, Q={k1,k2,...,km}.
Search space Let the ontologies be O={O1,O2,...,On}. The
(named) concepts in a given ontology Oi∈O are represented by
Ci={Ci

1,C
i
2,...,C

i
p}.

Entities, names & annotations Given an ontology O, an
entity is a named concept or a named property declared in the
ontology. Given an axiom a ∈ O (logical or annotation), let
entities(a) represent the set of entities that appear in a. For
an entity e, let function name(e) represent the name of e, and
let function annotations(e) represent the values of annotation
axioms on e. These annotation axioms include rdfs:label,
rdfs:comments, rdfs:isDefinedBy,etc.
Context of a concept The context of a concept is defined as
the set of annotation values of the concept and of the entities
in relevant axioms in the ontology.

AxCj ={a|a∈O∧Cj∈entities(a)∧ (1)

a is a SubClassOf or EqvClass axiom}
PxCj ={a|a∈O∧Cj∈entities(a)∧ (2)

a is an object/data property axiom}
Context(Cj)={name(Cj)}∪{annotations(Cj)}∪ (3)

{name(e)|∀a∈AxCj ,e∈entities(a)∧
Cj∈entities(a)}∪

{name(e)|∀a∈PxCj ,e∈entities(a)∧
Cj∈entities(a)}

whereAxCj and PxCj are sets of class- and property-axioms rele-
vant to Cj, respectively, where PxCj includes domain and range

axioms. Context(Cj) is the set of names of entities that are rele-
vant to Cj, together with the name and annotation values of Cj.

4. CONCEPT SEARCH FRAMEWORK
Our concept search approach is based on the understanding

that the tokens in the user query are interrelated. The query
interpretations using these relations are generated in a context-
driven approach. The user intention in the search query can be
interpreted in two ways. Either generate implicit query inter-
pretations such as generative language models [21] or generate
explicit query interpretations with clearly interpretable search
results. In our ontology search setting, we take advantage of
the rich structure to generate explicit interpretations using the
context properties and axioms related to the concepts.

4.1 Context-based Search
In the context based search, we index the context information

of a concept via axioms and properties in an ontology. The
context information in the index along with co-occurrence infor-
mation among keywords is used for query interpretations. We
evaluate co-occurrence among the keywords in the query using
lexical co-occurrence measures explained in detail in Section
4.2. The association among keywords is used for the query
interpretation (QI) discussed in Section 4.3. QI evaluates direct
and indirect relations among keywords using context of concept
and obtains search results. The feature vectors (fv’s) are built
for the search results and are used to rank the search results
using learning to rank algorithms. We present an outline of our
search framework in Figure 1.
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Figure 1: Our search framework

4.2 Query Token Association
We evaluate co-occurrence among keywords using the Pear-

son’s Chi square measure. We can reject null hypotheses that the
two words are independent with 95% confidence if the Pearson
Chi square > 3.841.

Pearson’s Chi square The Pearson’s Chi square test com-
pares the observed frequenciesOi,j with the frequencies expected
Ei,j for independence. If the difference between observed and
expected is large than we reject the null hypotheses of indepen-
dence. The χ2 statistic sums the differences between observed
and the expected values in all squares scaled by magnitude of
expected frequencies as follows:

χ2=
∑
i,j

(Oi,j−Ei,j)
2

Ei,j
(4)



4.3 Query Interpretation (QI)
The query interpretations are generated using contexts of

concepts. The co-occurring tokens along with single tokens in
the keyword query are used to find direct relations, in which all
the keywords in the query are related via properties and axioms
relevant to the concept. The indirect relations are found via
named class expressions found in equivalent and subclass axiom.
We formally define the direct and indirect relation further in
this section.

The name and annotation values of class Cj is represented as
L(Cj) as defined in Section 3.2. With slight abuse of notation,
we use name(PxCj )=

⋃
a∈PxCj

{name(entities(a))} to denote

the names of all those entities appearing in property axioms
relevant to concept Cj. k

′ and k′′ are two partitioning subsets of
keywords in a query, where k′ is the set of co-occurring and/or
single terms in the query found using co-occurrence measure
presented in Section 3.3, and k′′ is the set of tokens in the query
which are not in k′ (k′′=Q\k′). The cosine similarity measure
is used by the match(L(Cj),k

′) function to search for concepts
Lj where L(Cj) matches k′. Similarly, match(name(PxCj ),k

′′)
uses the same similarity measure to find concepts Cj where
name(PxCj ) and k

′′ match.

Direct Relation Direct relation among the query tokens is
function of L(Cj) and name(PxCj ). Direct relation among to-
kens k′ and k′′ is:

DR(k′,k′′):=match(L(Cj),k
′)∪match(name(PxCj ),k

′′) (5)

Indirect Relation The indirect relations are formed via rela-
tions among tokens in the query via properties of other concept
(equivalent-class or subclassOf concept) which does not directly
appear in keyword query, but indirectly via SubClassOf or
EquivalentClasses axioms. Indirect relation among tokens k′

and k′′ is given by:

OC(Cj):={Ck|SubClassOf(Cj,Ck)}∪ (6)

{Ck|EquivalentClasses(Cj,Ck)}

IDR(k′,k′′):=
⋃

Ck∈OC(Cj)

match(L(Ck),k
′) ∪ (7)

⋃
Ck∈OC(Cj)

match(name(PxCk),k
′′)

whereOC(Cj) collects all other classes that are indirectly related
toCj through either SubClassOf or EquivalentClasses axioms,
and IDR(k′,k′′) is similarly constructed from classes in OC(Cj).

The direct and indirect relations enable effective query interpre-
tation during the search process. The classes matched via direct
relations have the classname and its related context words in
the query. The indirect relations are used to extract classes
whose names may not directly appear in the query.

4.4 Search Results Ranking
The search results are ranked by the ranking model. The rank-

ing model is built using learning to rank (LTR) algorithm [17, 16,
12], which are supervised machine learning algorithms designed
to build ranking models. Training data is generated from query-
logs. Feature vectors (FV’s) were generated for each combination
of query and result in the querylog. Components of such FV’s
are ranking features. The ranking features are the similarity
value between query and all the context axioms and properties
of concept. The training data of feature vectors was then used

to build learning to rank (LTR) models, based on the RankLib
implementation1. The ranking model learns the weights features
using the ranking model. The models are then applied to get
the scores for all the pairs of query and concept search results.
These scores are sorted to obtain the top-k ranked search results.

5. EVALUATION

5.1 Benchmark dataset
We compare our system with the search function of BioPor-

tal,2 a large and widely-used biomedical ontology repository. In
our experiment a large portion of ontologies, 296 openly available
in total, were downloaded from BioPortal. Together these on-
tologies contain 2,062,080 classes. Our index maintains the term
frequency of all terms as well as co-occurring tokens required for
co-occurrence statistics. These frequencies are further used in
calculation of lexical co-occurrence of terms in a query. These sin-
gle and co-occurring tokens in queries found using Pearson’s Chi
square statistics are input to our query interpretation procedure.
They are first used to find direct relations among the query to-
kens. We further use them to extract results of indirect relations,
which are found via equivalent-class or subclass-of axioms.

5.2 Evaluation Measures
The real user queries from the BioPortal querylog (July 2012

to July 2014) were used to evaluate our framework. More than
50% queries are multiple-token queries. We use the 2,000+
queries to evaluate our search results. The standard IR rank-
ing measures are used for evaluation vis-a-vis BioPortal per-
formance. The BioPortal querylog consists of query, clicked-
position, clicked-ontology-id and concept-id. We first selected the
queries for which the click information was available. We then
selected the queries for which the click ontologies are openly
available so that evaluation could be fair. (Some of the ontolo-
gies such as MEDDRA are not openly available.) The final set
of queries used for evaluation is 2,173. We used the standard
IR measures Mean Reciprocal Rank (MRR) and Normalized
distributive cumulative gain (NDCG) to compare our search
results vis-a-vis BioPortal.

5.3 Result Analysis and Discussion
Our results indicate better performance for the multitoken

queries when the query keywords are related to each other.
Most users enter keywords that are related to each other. These
query tokens have high co-occurrence values and/or they have
a direct or indirect relation among them. This is being used
by our approach to interpret the query and understand the
intent of the user. The average NDCG and MRR for our ap-
proach are 0.72 and 0.60, and those of the BioPortal are 0.61
and 0.42 respectively for multitoken queries. We also evaluated
the system for single-token queries. The average NDCG and
MRR values for our approach are 0.63 and 0.51, and those of
BioPortal are 0.62 and 0.49, respectively. Our results are found
to be statistically significant with, 95%, confidence level using
Wilcoxon signed-rank test. We outperform the BioPortal, espe-
cially for multitoken queries. We evaluate the difference between
the NDCG value for each query. The difference is calculated
between NDCG value using our approach and that using Bio-
Portal for the same set of queries. Please refer to Figure 2 for a
detailed analysis. The NDCG values for 1000+ queries (>50%)

1http://people.cs.umass.edu/˜vdang/ranklib.html
2http://BioPortal.bioontology.org/



are better for our results depicting better overall performance.
More than 700 queries (>35%) have same level of performance.
The better performance is for the queries where the tokens in
the query are related. This is detected using our co-occurrence
procedure and direct and indirect relation based context-driven
approach. The number of queries with negative difference is
300+ (> 15%) where BioPortal performs better and may be
attributed to the ontology popularity considered while ranking.
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Figure 2: NDCG@10 Difference

6. CONCLUSION AND FUTURE WORK
Searching the right concept in a large ontology repository is

a challenging task. In this paper, we present a novel concept
search approach that incorporates three major techniques: (1)
Context for each concept extracted by properties and axioms
relevant to the concept, (2) Query interpretation based on the
extracted context and (3) Ranking search results using learning
to rank algorithms. Our comprehensive evaluation that involves
more than 2,000 queries and 2,062,080 concepts shows that,
for multi-token queries, our approach outperforms BioPortal’s
search function on two widely-used IR performance measures,
NDCG and MRR. In future we plan to evaluate our search
system using human-based evaluation. We will be comparing
our performance with other related keyword based concept
search systems in addition to Bioportal system. We also plan to
evaluate our system with and without the learning to rank model.
We will be designing more features such as ontology popularity
to further improve the performance of our ranking model.
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