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Abstract

We describe a novel max-margin learn-
ing approach to optimize non-linear perfor-
mance measures for distantly-supervised re-
lation extraction models. Our approach can
be generally used to learn latent variable
models under multivariate non-linear perfor-
mance measures, such as Fβ-score. Our
approach interleaves Concave-Convex Pro-
cedure (CCCP) for populating latent vari-
ables with dual decomposition to factorize
the original hard problem into smaller inde-
pendent sub-problems. The experimental re-
sults demonstrate that our learning algorithm
is more effective than the ones commonly used
in the literature for distant supervision of in-
formation extraction models. On several data
conditions, we show that our method outper-
forms the baseline and results in up to 8.5%
improvement in the F1-score.

1 Introduction

Rich models with latent variables are popular for
many problems in natural language processing. In
information extraction, for example, one needs to
predict the relation labels y that an entity-pair x can
have based on the hidden relation mentions h, i.e.,
the relation labels for occurrences of the entity-pair
in a given corpus. However, these models are often
trained by optimizing performance measures (such
as conditional log-likelihood or error rate) that are
not directly related to the task-specific non-linear
performance measure, e.g., the F1-score. However,
better models may be trained by optimizing the task-
specific performance measure while allowing latent
variables to adapt their values accordingly.

We present a large-margin method to learn pa-
rameters of latent variable models for a wide
range of non-linear multivariate performance mea-
sures such as Fβ . Our method can be applied

to learning graphical models that incorporate inter-
dependencies among the output variables either di-
rectly, or indirectly through hidden variables.

Large-margin methods have been shown to be a
compelling approach to learn rich models detailing
the inter-dependencies among the output variables,
via optimizing loss functions decomposable over the
training instances (Taskar et al., 2003; Tsochan-
taridis et al., 2004) or non-decompasable loss func-
tions (Ranjbar et al., 2013; Tarlow and Zemel, 2012;
Rosenfeld et al., 2014; Keshet, 2014). They have
also been shown to be powerful when applied to la-
tent variable models when optimizing for decompos-
able loss functions (Wang and Mori, 2011; Felzen-
szwalb et al., 2010; Yu and Joachims, 2009).

Our large-margin method learns latent variable
models via optimizing non-decomposable loss func-
tions. It interleaves the Concave-Convex Procedure
(CCCP) (Yuille and Rangarajan, 2001) for populat-
ing latent variables with dual decomposition (Ko-
modakis et al., 2011; Rush and Collins, 2012).
The latter factorizes the hard optimization problem
(encountered in learning) into smaller independent
sub-problems over the training instances. We then
present linear programming and local search meth-
ods for effective optimization of the sub-problems
encountered in the dual decomposition. Our local
search algorithm leads to a speed up of 7,000 times
compared to the exhaustive search used in the liter-
ature (Joachims, 2005; Ranjbar et al., 2012).

Our work is the first to make use of max-margin
training in distant supervision of relation extraction
models. We demonstrate the effectiveness of our
proposed method compared to two strong baseline
systems which optimize for the error rate and con-
ditional likelihood, including a state-of-the-art sys-
tem by Hoffmann et al. (2011). On several data con-
ditions, we show that our method outperforms the
baseline and results in up to 8.5% improvement in
the F1-score.
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Figure 1: Graphical model instantiated for entity pair x :=
(
Barack Obama, United States

)
2 Preliminaries

2.1 Distant Supervision for Relation Extraction

Our framework is motivated by distant supervision
for learning relation extraction models (Mintz et al.,
2009). The goal is to learn relation extraction mod-
els by aligning facts in a database to sentences in
a large unlabeled corpus. Since the individual sen-
tences are not hand labeled, the facts in the database
act as “weak” or “distant” labels, hence the learning
scenario is termed as distantly supervised.

Prior work casts this problem as a multi-instance
multi-label learning problem (Hoffmann et al.,
2011; Surdeanu et al., 2012). It is multi-instance
since for a given entity-pair, only the label of the bag
of sentences containing both entities (aka mentions)
is given. It is multi-label since a bag of mentions
can have multiple labels. The inter-dependencies
between relation labels and (hidden) mention labels
are modeled by a Markov Random Field (Figure 1)
(Hoffmann et al., 2011). The learning algorithms
used in the literature for this problem optimize the
(conditional) likelihood, but the evaluation measure
is commonly the F -score.

Formally, the training data isD := {(xi,yi)}Ni=1

where xi ∈ X is the entity-pair, yi ∈ Y denotes
the relation labels, and hi ∈ H denotes the hid-
den mention labels. The possible relation labels for
the entity pair are observed from a given knowledge-
base. If there are L candidate relation labels in the
knowledge-base, then yi ∈ {0, 1}L, (e.g. yi,` is 1 if
the relation ` is licensed by the knowledge-base for
the entity-pair) and hi ∈ {1, .., L, nil}|xi| (i.e. each
mention realizes one of the relation labels or nil).

Notation. In the rest of the paper, we denote the
collection of all entity-pairs {xi}Ni=1 by X ∈ X :=
X × .. × X , the collection of mention relations
{hi}Ni=1 by H ∈H := H×..×H, and the collection
of relation labels {yi}Ni=1 by Y ∈ Y := Y × ..×Y .

The aim is to learn a parameter vector w ∈ Rd by
which the relation labels for a new entity-pair x can
be predicted

fw(x) := arg max
y

max
h

w · Φ(x,h,y) (1)

where Φ ∈ Rd is a feature vector defined according
to the Markov Random Field, modeling the inter-
dependencies between x and y through h (Figure 1).
In training, we would like to minimize the loss func-
tion ∆ by which the model will be assessed at test
time. For the relation extraction task, the loss can be
considered to be the negative of the Fβ score:

Fβ =
1

β
Precision + 1−β

Recall

(2)

where β = 0.5 results in optimizing against F1-
score. Our proposed learning method optimizes
those loss functions ∆ which cannot be decomposed
over individual training instances. For example, Fβ
depends non-linearly on Precision and Recall which
in turn require the predictions for all the entity pairs
in the training set, hence it cannot be decomposed
over individual training instances.

2.2 Structured Prediction Learning
The goal of our learning problem is to find w ∈ Rd
which minimizes the expected loss, aka risk, over a
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new sample D′ of size N ′:

R∆
fw :=

∫
∆
((
fw(x′1), .., fw(x′N′)

)
,
(
y′1, ..,y

′
N′
))
dPr(D′)

(3)

Generally, the loss function ∆ cannot be decom-
posed into a linear combination of a loss function
δ over individual training samples. However, most
discriminative large-margin learning algorithms as-
sume for simplicity that the loss function is decom-
posable and the samples are i.i.d. (independent and
identically distributed), which simplifies the sample
risk R∆

fw
as:

Rδfw :=
∫
δ(fw(x′),y′)dPr(x′,y′) (4)

Often learning algorithms make use of the empirical
risk as an approximation of the sample risk:

R̂δfw :=
1
N

N∑
i=1

δ(fw(xi),yi) (5)

For non-decomposable loss functions, such as Fβ ,
∆ cannot be expressed in terms of instance-specific
loss function δ to construct the empirical risk of the
kind in Eq. (5). Instead, we need to optimize the
empirical risk constructed based on the sample loss:

R̂∆
fw := ∆

((
fw(x1), .., fw(xN )

)
,
(
y1, ..,yN

))
(6)

or equivalently

R̂∆
fw := ∆(fw(X),Y) (7)

where fw(X) := (fw(x1), .., fw(xN )).
Having defined the empirical risk in Eq (7), we

formulate the learning problem as a structured pre-
diction problem. Instead of learning a mapping
function fw : X → Y from an individual instance
x ∈ X to its label y ∈ Y , let us learn a mapping
function f : X → Y from all instances X ∈ X to
their labels Y ∈ Y . We then define the best labeling
using a linear discriminant function:

f(X) := arg max
Y′∈Y

max
H∈H

{
w ·Ψ(X,H,Y′)

}
(8)

where Ψ(X,H,Y′) :=
∑N

i=1 Φ(xi,hi,y′i). Based
on the margin re-scaling formulation of structured
prediction problems (Tsochantaridis et al., 2004),

the training objective can be written as the follow-
ing unconstrained optimization problem:

min
w

1
2
||w||22 + C max

Y′

{
max

H
w ·Ψ(X,H,Y′)

−max
H

w ·Ψ(X,H,Y) + ∆(Y′,Y)
}

(9)

which is similar to the training objective for the la-
tent SVMs (Yu and Joachims, 2009), with the differ-
ence that instance-dependent loss function δ is re-
placed by the sample loss function ∆. Learning w
by optimizing the above objective function is chal-
lenging, and is the subject of the next section.

3 Optimizing the Training Objective

In this section we present our method to learn latent
SVMs with non-decomposable loss functions. Our
training objective is Eq (9), which can be equiva-
lently expressed as:

min
w

1

2
||w||22 + C max

y′
1,..,y′

N

{
∆

(
(y1, ..,yN ), (y′1, ..,y

′
N )

)

+

N∑
i=1

max
h

w · Φ(xi,h,y
′
i)−

N∑
i=1

max
h

w · Φ(xi,h,yi)

}
(10)

The training objective is non-convex, since it is the
difference of two convex functions. In this section
we make use of the CCCP to populate the hidden
variables (Yu and Joachims, 2009; Yuille and Ran-
garajan, 2001), and interleave it with dual decompo-
sition (DD) to solve the resulting intermediate loss-
augmented inference problems (Ranjbar et al., 2012;
Rush and Collins, 2012; Komodakis et al., 2011).

3.1 Concave-Convex Procedure (CCCP)

The CCCP (Yuille and Rangarajan, 2001) gives
a general iterative method to optimize those non-
convex objective functions which can be written as
the difference of two convex functions g1(w) −
g2(w). The idea is to iteratively lowerbound g2 with
a linear function g2(w(t)) + v · (w−w(t)), and take
the following step to update w:

w(t+1) := arg min
w

{
g1(w)−w · v(t)

}
(11)

In our case, the training objective Eq (10) is the dif-
ference of two convex functions, where the second
function g2 isC

∑N
i=1 maxh

{
w·Φ(xi,h,yi)

}
. The
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Algorithm 1 The Training Algorithm (Optimizing Eq 10)
1: procedure OPT-LATENTSVM(X,Y)
2: Initialize w(0) and set t = 0
3: repeat
4: for i := 1 to N do
5: h∗i := arg maxh w(t) · Φ(xi,h,yi)

// Optimizing Eq 12
6: w(t+1) := optSVM(X,H∗,Y)
7: t := t+ 1
8: until some stopping condition is met
9: return w(t)

lowerbound of g2(w) involves populating the hid-
den variables by:

h∗i := arg max
h

{
w(t) · Φ(xi,h,yi)

}
.

Therefore, in each iteration of our CCCP-based al-
gorithm we need to optimize Eq (12), which is rem-
iniscent of the standard structural SVM without la-
tent variables:

min
w

1

2
||w||22 + C max

y′
1,..,y′

N

{
∆

(
(y1, ..,yN ), (y′1, ..,y

′
N )

)
+

N∑
i=1

max
h

w · Φ(xi,h,y
′
i)−

N∑
i=1

w · Φ(xi,h
∗
i ,yi)

}
(12)

The above objective function can be optimized us-
ing the standard cutting-plane algorithms for struc-
tural SVM (Tsochantaridis et al., 2004; Joachims,
2005). The cutting-plane algorithm in turn needs
to solve the loss-augmented inference, which is the
subject of the next sub-section. The CCCP-based
training algorithm is summarized in Algorithm 1.

3.2 Loss-Augmented Inference
To be able to optimize the training objective Eq (12)
encountered in each iteration of Algorithm 1, we
need to solve (the so-called) loss-augmented infer-
ence:

max
y′

1,..,y
′
N

∆
(

(y1, ..,yN ), (y′1, ..,y
′
N )
)

+
N∑
i=1

max
h

w · Φ(xi,h,y′i) (13)

We make use of the dual decomposition (DD) tech-
nique to decouple the two terms of the above ob-
jective function, and efficiently find an approximate
solution. DD is shown to be an effective technique
for loss-augmented inference in structured predic-
tion models without hidden variables (Ranjbar et al.,
2012).

To apply DD to the loss-augmented inference
(13), let us rewrite it as a constrained optimization
problem:

max
y′

1,...,y
′
N ,y

′′
1 ,...,y

′′
N

∆
(

(y1, . . . ,yN ), (y′1, . . . ,y
′
N )
)

+
N∑
i=1

max
h

w · Φ(xi,h,yi′′)

subject to
∀i ∈ {1, . . . , N},∀` ∈ {1, . . . , L}, y′i,` = y′′i,`

Introduction of the new variables (y′′1 , ..,y′′N ) de-
couples the two terms in the objective function, and
as we will see, leads to an effective optimization al-
gorithm. After forming the Lagrangian, the dual ob-
jective function is derived as:

L(Λ) := max
Y′

∆(Y,Y′) +
∑
i

∑
`

λi(`)y′i,` +

max
Y′′

N∑
i=1

max
h

w · Φ(xi,h,yi′′)−
∑
i

∑
`

λi(`)y′′i,`

where Λ := (λλλ1, ..,λλλN ), and λλλi is a vector of La-
grange multipliers for L binary variables each of
which represent a relation label. The two optimiza-
tion problems involved in the dual L(Λ) are inde-
pendent and can be solved separately. The dual is an
upperbound on the loss-augmented objective func-
tion for any value of Λ; therefore, we can find the
tightest upperbound as an approximate solution:

min
Λ

L(Λ)

The dual is non-differentiable at those points Λ
where either of the two optimisation problems has
multiple optima. Therefore, it is optimized using the
subgradient descent method:

Λ(t) := Λ(t−1) − η(t)(Y
′
∗ −Y

′′
∗ )

where η(t) = 1√
t

is the step size1, and

Y
′
∗ := arg max

Y′
∆(Y,Y′) +

∑
i

∑
`

λ
(t−1)
i (`)y′i,` (14)

Y
′′
∗ := arg max

Y′′

N∑
i=1

max
h

w · Φ(xi,h,yi′′)

−
∑
i

∑
`

λ
(t−1)
i (`)y′′i,` (15)

1Other (non-increasing) functions of the iteration number t
are also plausible, as far as they satisfy the following condi-
tions (Komodakis et al., 2011) needed to guarantee the conver-
gence to the optimal solution in the subgradient descent method:
η(t) ≥ 0, limt→∞ η(t) = 0,

∑∞
t=1 η

(t) =∞
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Algorithm 2 Loss-Augmented Inference
1: procedure OPT-LOSSAUG(w,X,Y)
2: Initialize Λ(0) and set t = 0
3: repeat
4: Y

′
∗ := opt-LossLag(Λ,Y) // Eq (14)

5: Y
′′
∗ := opt-ModelLag(Λ,X) // Eq (15)

6: if Y
′
∗ = Y

′′
∗ then

7: return Y
′
∗

8: for i := 1 to N do
9: for ` := 1 to L do

10: λ
(t+1)
i (`) := λ

(t)
i (`)− η(t)(y′i,` − y′′i,`)

11: until some stopping condition is met
12: return Y

′
∗

The DD algorithm to compute the loss-augmented
inference is outlined in Algorithm 2. Now the chal-
lenge is how to solve the above two optimization
problems, which is the subject of the following sec-
tion.

3.3 Effective Optimization of the Dual

The two optimization problems involved in the dual
are hard in general. More specifically, the optimiza-
tion of the affine-augmented model score (in Eq. 15)
is as difficult as the MAP inference in the underlying
graphical model, which can be challenging for loopy
graphs. For the graphical model underlying distant
supervision of relation extraction (Fig 1), we formu-
late the inference as an ILP (integer linear program).
Furthermore, we relax the ILP to LP to speed up the
inference, in the expense of trading exact solutions
with approximate solutions2.

Likewise, the optimization of the affine-
augmented multivariate loss (in Eq. 14) is difficult.
This is because we have to search over the entire
space of Y′ ∈ Y , which is exponentially large
O(2N∗L). However, if the loss term ∆ can be
expressed in terms of some aggregate statistics
over Y′, such as false positives (FPs) and false
negatives (FNs), the optimization can be performed
efficiently. This is due to the fact that the number
of FPs can range from zero to the size of negative
labels, and the number of FNs can range from zero
to the number of positive labels. Therefore, the loss
term can take O(N2L2) different values which can

2We observed in our experiments that relaxing the ILP to
LP does not hurt the performance, but significantly speeds up
the inference.

Algorithm 3 Finding Y′∗ : Local Search
1: procedure OPT-LOSSLAG(Λ,Y)
2: (idxn1 . . . idx

n
#neg)← Sort ↓ (λi(`)) // FPs

3: (idxn1 . . . idx
n
#pos)← Sort ↑ (λi(`)) // FNs

4: Initialise (fp, fn) on the grid
5: repeat
6: for ((fp′, fn′) ∈ Neigbours(fp, fn) do
7: loss(fp′,fn′) = ∆(fp′, fn′) + Λsorted

3

8: loss(fp′′,fn′′) = arg max(fp′,fn′) loss(fp′,fn′)
9: if loss(fp,fn) > loss(fp′′,fn′′) then

10: break
11: else
12: (fp, fn) = (fp′′, fn′′)
13: until loss(fp,fn) ≤ loss(fp′′,fn′′)

14: return {Y′ corresponding to (fp, fn) }

be represented on a two-dimensional grid. Fixing
FPs and FNs to a grid point, Λ · Y′ is maximized
with respect to Y′. The grid point which has the
best value for ∆(Y,Y′) + Λ ·Y′ will then give the
optimal solution for Eq (14).

Exhaustive search in the space of all possible grid
points is not efficient as soon as the grid becomes
large. Therefore, we have to adapt the techniques
proposed in previous work (Ranjbar et al., 2012;
Joachims, 2005). We propose a simple but effective
local search strategy for this purpose. The procedure
is outlined in Algorithm 3. We start with a random
grid point, and move to the best neighbour. We keep
hill climbing until there is no neighbour better than
the current point. We define the neighbourhood by
a set of exponentially-spaced points in all directions
around the current point, to improve the exploration
of the search space. We present some analysis on the
benefits of using this search strategy vis-a-vis the ex-
haustive search in the Experiments section.

4 Experiments

Dataset: We use the challenging benchmark dataset
created by Riedel et al. (2010) for distant supervi-
sion of relation extraction models. It is created by
aligning relations from Freebase4 with the sentences
in New York Times corpus (Sandhaus, 2008). The
labels for the datapoints come from the Freebase

3For a given (fp, fn), we set y′ by picking the sorted unary
terms that maximize the score according to y.

4www.freebase.com
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database but Freebase is incomplete (Ritter et al.,
2013). So a data point is labeled nil when either no
relation exists or the relation is absent in Freebase.
To avoid this ambiguity we train and evaluate the
baseline and our algorithms on a subset of this
dataset which consists of only non-nil relation
labeled datapoints (termed as positive dataset).
For the sake of completeness, we do report the
accuracies of the various approaches on the entire
evaluation dataset.

Systems and Baseline: Hoffmann et al. (2011)
describe a state-of-the-art approach for this task.
They use a perceptron-style parameter update
scheme adapted to handle latent variables; their
training objective is the conditional likelihood.
Out of the two implementations of this algorithm,
we use the better5 of these two6, as our baseline
(denoted by Hoffmann). For a fair comparison,
the training dataset and the set of features defined
over it are common to all the experiments.

We discuss the results of two of our approaches.
One, is the LatentSVM max-margin formulation
with the simple decomposable Hamming loss
function which minimizes the error rate (denoted by
MM-hamming). The other is the LatentSVM max-
margin formulation with the non-decomposable loss
function which minimizes the negative of Fβ score
(denoted by MM-F-loss)7.

Evaluation Measure: The performance mea-
sure is Fβ which can be expressed in terms of false
positives (FP) and false negatives (FN) as:

Fβ =
Np − FN

β(FP − FN) +Np

where β is the weight assigned to precision (and
1− β to recall). FP , FN and Np are defined as :

FP =
∑
i

∑
`

y′i,`(1− yi,l)

FN =
∑
i

∑
`

yi,`(1− y′i,l)

Np =
∑
i

∑
`

yi,`

5It is not quite clear why the performance of the two imple-
mentations are different.

6nlp.stanford.edu/software/mimlre.shtml
7We use a combination of F1 loss and hamming loss, as us-

ing only F1-loss overfits the training dataset, as observed from
the experiments.

Figure 2: Experiments on 10% Riedel datasets.

Precision Recall F1

Hoffmann 65.93 47.22 54.91
MM-Hamming 59.74 53.81 56.32
MM-F-loss 64.81 61.63 63.44

Table 1: Average results on 10% Riedel datasets.

We use 1−Fβ as the expression for the multivariate-
loss.

4.1 Training on Sub-samples of Data
We performed a number of experiments using differ-
ent randomized subsets of the Riedel dataset (10%
of the positive dataset) for training the max-margin
approaches. This was done in order to empirically
determine a good set of parameters for training.
We also compare the results of the approaches with
Hoffmann trained on the same sub-samples.

Comparison with the Baseline: We report the aver-
age over 15 subsets of the dataset with a 90% confi-
dence interval (using student-t distribution). The re-
sults of these experiments are shown in Figure 2 and
Table 1. We observe that both MM-hamming and
MM-F-loss have higher F1-score compared to the
baseline. There is a significant improvement in F1-
score to the tune of 8.52% for the multivariate per-
formance measure over Hoffmann. There is also
an improvement of F1-score of 7.12% compared to
MM-Hamming. This highlights the importance of
using non-linear loss functions compared to simple
loss functions like error rate during training.

However, Hoffmann has a marginally higher
precision of about 1.13%. We noticed that this was
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Figure 3: Weighting of Precision and Recall (β = 0.833)

due to over-fitting the data, as the performance on
the training datasets were very high. One more
interesting observation of MM-F-loss is that it is
fairly balanced w.r.t both precision and recall which
the other approaches do not exhibit.

Tuning towards Precision/Recall: Often we
come across situations where either precision or
recall is important for a given application. This
is modeled by the notion of Fβ (van Rijsbergen,
1979). One of the main advantages of using a
non-decomposable loss function like Fβ is the
ability to vary the learning algorithm to factor such
situations. For instance we can tune the objective to
favor precision more than recall by “up-weighting”
precision in the Fβ-score.

For instance, in the previous case we observed
that MM-F-loss has a marginally poorer precision
compared to Hoffmann. Suppose we increase
the weight of precision, β = 0.833, we observe
a dramatic increase in precision from 65.83% to
86.59%. As expected, due to the precision-recall
trade-off, we observe a decrease in recall. The
results are shown in Figure 3.

Local vs. Exhaustive Grid Search: As we
described in Section 3.3, we devise a simple yet
efficient local search strategy to search the space
of (FP, FN) grid-points. This enables a speed
up of three orders of magnitude in solving the
dual-optimization problem. In Table 2, we compare
the average time per iteration and the F1-score
when each of these techniques is used for training
on a sub-sample dataset. We observe that there

Figure 4: Overall accuracies Riedel dataset

avg. time per iter. F1

Local Search 0.09s 58.322
Exhaustive Search 630s 58.395

Table 2: Local vs. Exhaustive Search.

is a significant decrease in training time when we
use local search (almost 7000 times faster), with a
negligible decrease in F1-score (0.073%).

4.2 The Overall Results

Figure 4 and Table 3 present the overall results of
our approaches compared to the baseline on the pos-
itive dataset. We observe that MM-F-loss has an
increase in F1-score to the tune of ∼8% compared
to the baseline. This confirms our observation on
the sub-sample datasets we saw earlier.

By assigning more weight to precision, we are
able to improve over the precision of Hoffmann
by ∼1.6% (Table 4). When precision is tuned with
a higher weight during training of MM-F-loss, we
see an improvement in precision without much dip
in recall.

Precision Recall F1

Hoffmann 75.436 46.615 57.623
MM-Hamming 76.839 50.462 60.918
MM-F-loss 65.991 65.211 65.598

Table 3: Overal results on the positive dataset.
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Precision Recall Fβ

Hoffmann 75.44 46.62 57.62
MM-F-loss-wt 77.04 53.44 63.11

Table 4: Increasing weight on Precision in Fβ .

4.3 Discussion

So far we have discussed the performance of var-
ious approaches on the positive evaluation dataset.
Our approach is shown to improve overall Fβ-score
having better recall than the baseline. By suitably
tweaking the Fβ we show an improvement in preci-
sion as well.

The performance of the approaches when evalu-
ated on the entire test dataset (consisting of both nil
and non-nil datapoints) is shown in Table 5. Max-
margin based approaches generally perform well
when trained only on the positive dataset compared
to Hoffmann. However, our F1-scores are ∼8%
less when we train on the entire dataset consisting
of both nil and non-nil datapoints.

Trained On→ entire dataset positive dataset
Hoffmann 23.14 3.269

MM-Hamming 13.20 16.26
MM-F-loss 13.94 21.93

Table 5: F1-scores on the entire test set.

In a recent work, Xu et al. (2013) provide some
statistics about the incompleteness of the Riedel
dataset. Out of the sampled 1854 sentences from
NYTimes corpus most of the entity pairs expressing
a relation in Freebase correspond to false negatives.
This is one of the reasons why we do not consider nil
labeled datapoints during training and evaluation.

MIMLRE (Surdeanu et al., 2012) is another state-
of-the-art system which is based on the EM algo-
rithm. Since that system uses an additional set of
features for the relation variables y, it is not our pri-
mary baseline. On the positive dataset, our model
MM-F-loss achieves a F1-score of 65.598% com-
pared to 65.341% of MIMLRE. As part of the future
work, we would like to incorporate the additional
features present in MIMLRE into our approach.

5 Conclusion

In this paper, we described a novel max-margin
approach to optimize non-linear performance mea-
sures, such as Fβ , in distant supervision of infor-
mation extraction models. Our approach is general
and can be applied to other latent variable models
in NLP. Our approach involves solving the hard-
optimization problem in learning by interleaving
Concave-Convex Procedure with dual decomposi-
tion. Dual decomposition allowed us to solve the
hard sub-problems independently. A key aspect
of our approach involves a local-search algorithm
which has led to a speed up of 7,000 times in our ex-
periments. We have demonstrated the efficacy of our
approach in distant supervision of relation extrac-
tion. Under several conditions, we have shown our
technique outperforms very strong baselines, and re-
sults in up to 8.5% improvement in F1-score.

For future work, we would like to maximize other
performance measures, such as area under the curve,
for information extraction models. Furthermore, we
would like to explore our approach for other latent
variable models in NLP, such as those in machine
translation.
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