
Automating Reading Comprehension
by Generating Question and Answer Pairs

Vishwajeet Kumar†,‡, Kireeti Boorla†, Yogesh Meena†,
Ganesh Ramakrishnan†, and Yuan-Fang Li§

†Indian Institute of Technology Bombay, India
‡IITB-Monash Research Academy, Mumbai, India

§Faculty of Information Technology, Monash University, Australia
vishwajeet@cse.iitb.ac.in,

{kireeti.boorla,yogesiitbcse}@gmail.com,
ganesh@cse.iitb.ac.in,
yuanfang.li@monash.edu

Abstract. Neural network-based methods represent the state-of-the-art in
question generation from text. Existing work focuses on generating only ques-
tions from text without concerning itself with answer generation. Moreover, our
analysis shows that handling rare words and generating the most appropriate
question given a candidate answer are still challenges facing existing approaches.
We present a novel two-stage process to generate question-answer pairs from
the text. For the first stage, we present alternatives for encoding the span of the
pivotal answer in the sentence using Pointer Networks. In our second stage, we
employ sequence to sequence models for question generation, enhanced with rich
linguistic features. Finally, global attention and answer encoding are used for gen-
erating the question most relevant to the answer. We motivate and linguistically
analyze the role of each component in our framework and consider compositions
of these. This analysis is supported by extensive experimental evaluations. Using
standard evaluation metrics as well as human evaluations, our experimental
results validate the significant improvement in the quality of questions generated
by our framework over the state-of-the-art. The technique presented here repre-
sents another step towards more automated reading comprehension assessment.
We also present a live system1 to demonstrate the effectiveness of our approach.

Keywords: Pointer Network, sequence to sequence modeling, question gen-
eration

1 Introduction

Asking relevant and intelligent questions has always been an integral part of human
learning, as it can help assess the user’s understanding of a piece of text (an article, an
essay etc.). However, forming questions manually can be sometimes arduous. Automated
question generation (QG) systems can help alleviate this problem by learning to generate
questions on a large scale and in lesser time. Such a system has applications in a myriad
of areas such as FAQ generation, intelligent tutoring systems, and virtual assistants.

The task for a QG system is to generate meaningful, syntactically correct, semantically
sound and natural questions from text. Additionally, to further automate the assessment

1 Demo of the system is available at https://www.cse.iitb.ac.in/˜vishwajeet/autoqg.html.

ar
X

iv
:1

80
3.

03
66

4v
1

 [
cs

.C
L

]
 7

 M
ar

 2
01

8

https://www.cse.iitb.ac.in/~vishwajeet/autoqg.html

2 Automating reading comprehension by generating question and answer pairs

of human users, it is highly desirable that the questions are relevant to the text and
have supporting answers present in the text.
Figure 1 below shows a sample of questions generated by our approach using a

variety of configurations (vanilla sentence, feature tagged sentence and answer encoded
sentence) that will be described later in this paper.

Fig. 1: Example: sample questions generation from text by our models.
Initial attempts at automated question generation were heavily dependent on a

limited, ad-hoc, hand-crafted set of rules [9,20]. These rules focus mainly on the syn-
tactic structure of the text and are limited in their application, only to sentences of
simple structures. Recently, the success of sequence to sequence learning models [18]
opened up possibilities of looking beyond a fixed set of rules for the task of question
generation [17,7]. When we encode ground truth answers into the sentence along
with other linguistic features, we get improvement of upto 4 BLEU points along with
improvement in the quality of questions generated. A recent deep learning approach
to question generation [17] investigates a simpler task of generating questions only from
a triplet of subject, relation and object. In contrast, we build upon recent works that
train sequence to sequence models for generating questions from natural language text.
Our work significantly improves the latest work of sequence to sequence learning

based question generation using deep networks [7] by making use of (i) an additional
module to predict span of best answer candidate on which to generate the question
(ii) several additional rich set of linguistic features to help model generalize better (iii)
suitably modified decoder to generate questions more relevant to the sentence.

The rest of the paper is organized as follows. In Section 2 we formally describe our
question generation problem, followed by a discussion on related work in Section 3.
In Section 4 we describe our approach and methodology and summarize our main
contributions. In Sections 5 and 6 we describe the two main components of our frame-
work. Implementation details of the models are described in Section 7, followed by
experimental results in Section 8 and conclusion in Section 9.

2 Problem Formulation

Given a sentence S, viewed as a sequence of words, our goal is to generate a question Q,
which is syntactically and semantically correct, meaningful and natural. More formally,
given a sentence S, our model’s main objective is to learn the underlying conditional
probability distribution P (Q|S;θ) parameterized by θ to generate the most appropriate
question that is closest to the human generated question(s). Our model learns θ during
training using sentence/question pairs such that the probability P (Q|S;θ) is maximized
over the given training dataset.

Let the sentence S be a sequence of M words (w1,w2,w3,...wM), and question Q a
sequence of N words (y1,y2,y3,...yN). Mathematically, the model is meant to generate

Automating Reading Comprehension by Generating Question and Answer Pairs 3

Q* such that:
Q∗ = argmax

Q
P(Q|S;θ) (1)

= argmax
y1,..yn

N∏
i=1

P(yi|y1,..yi−1,w1..wM ;θ) (2)

Equation (2) is to be realized using a RNN-based architecture, which is described
in detail in Section 6.1.

3 Related Work

Heilman and Smith [9] use a set of hand-crafted syntax-based rules to generate questions
from simple declarative sentences. The system identifies multiple possible answer phrases
from all declarative sentences using the constituency parse tree structure of each sentence.
The system then over-generates questions and ranks them statistically by assigning
scores using logistic regression.
[20] use semantics of the text by converting it into the Minimal Recursion Seman-

tics notation [5]. Rules specific to the summarized semantics are applied to generate
questions. Most of the approaches proposed for the QGSTEC challenge [12] are also
rule-based systems, some of which put to use sentence features such as part of speech
(POS) tags and named entity relations (NER) tags. [3] use ASSERT (an automatic
statistical semantic role tagger that can annotate naturally occurring text with semantic
arguments) for semantic role parses, generate questions based on rules and rank them
based on subtopic similarity score using ESSK (Extended String Subsequence Kernel).
[1] break sentences into fine and coarse classes and proceed to generate questions based
on templates matching these classes.

All approaches mentioned so far are heavily dependent on rules whose design requires
deep linguistic knowledge and yet are not exhaustive enough. Recent successes in neural
machine translation [18,4] have helped address this problem by letting deep neural nets
learn the implicit rules through data. This approach has inspired application of sequence
to sequence learning to automated question generation. [17] propose an attention-based
[2,11] approach to question generation from a pre-defined template of knowledge base
triples (subject, relation, object). Additionally, recent studies suggest that the sharp
learning capability of neural networks does not make linguistic features redundant in
machine translation. [16] suggest augmenting each word with its linguistic features such
as POS, NER. [8] suggest a tree-based encoder to incorporate features, although for
a different application.
We build on the recent sequence to sequence learning-based method of question

generation by [7], but with significant differences and improvements from all previous
works in the following ways. (i) Unlike [7] our question generation technique is pivoted
on identification of the best candidate answer (span) around which the question should
be generated. (ii) Our approach is enhanced with the use of several syntactic and
linguistic features that help in learning models that generalize well. (iii) We propose a
modified decoder to generate questions relevant to the text.

4 Approach and Contributions

Our approach to generating question-answer pairs from text is a two-stage process:
in the first stage we select the most relevant and appropriate candidate answer, i.e., the

4 Automating reading comprehension by generating question and answer pairs

pivotal answer, using an answer selection module, and in the second stage we encode
the answer span in the sentence and use a sequence to sequence model with a rich set
of linguistic features to generate questions for the pivotal answer.

Our sentence encoder transforms the input sentence into a list of fixed-length contin-
uous vector word representation, each input symbol being represented as a vector. The
question decoder takes in the output from the sentence encoder and produces one symbol
at a time and stops at the EOS (end of sentence) marker. To focus on certain important
words while generating questions (decoding) we use a global attention mechanism. The
attention module is connected to both the sentence encoder as well as the question
decoder, thus allowing the question decoder to focus on appropriate segments of the
sentence while generating the next word of the question. We include linguistic features
for words so that the model can learn more generalized syntactic transformations. We
provide a detailed description of these modules in the following sections. Here is a
summary of our three main contributions: (1) a versatile neural network-based answer
selection and Question Generation (QG) approach and an associated dataset of ques-
tion/sentence pairs2 suitable for learning answer selection, (2) incorporation of linguistic
features that help generalize the learning to syntactic and semantic transformations of
the input, and (3) a modified decoder to generate the question most relevant to the text.

5 Answer Selection and Encoding

In applications such as reading comprehension, it is natural for a question to be
generated keeping the answer in mind (hereafter referred to as the ‘pivotal’ answer).
Identifying the most appropriate pivotal answer will allow comprehension be tested more
easily and with even higher automation. We propose a novel named entity selection
model and answer selection model based on Pointer Networks [19]. These models give
us the span of pivotal answer in the sentence, which we encode using the BIO notation
while generating the questions.

5.1 Named Entity Selection

In our first approach, we restrict our pivotal answer to be one of the named entities in the
sentence, extracted using the Stanford CoreNLP toolkit. To choose the most appropriate
pivotal answer for QG from a set of candidate entities present in the sentence we propose
a named entity selection model. We train a multi-layer perceptron on the sentence,
named entities present in the sentence and the ground truth answer. The model learns
to predict the pivotal answer given the sentence and a set of candidate entities. The
sentence S=(w1,w2,...,wn) is first encoded using a 2 layered unidirectional LSTM
encoder into hidden activations H=(hs1,h

s
2,...,h

s
n). For a named entity NE=(wi,...,wj),

a vector representation (R) is created as <hsn;h
s
mean;h

ne
mean>, where h

s
n is the final

state of the hidden activations, hsmean is the mean of all the activations and hnemean

is the mean of hidden activations (hsi ,...,h
s
j) between the span of the named entity.

This representation vector R is fed into a multi-layer perceptron, which predicts the
probability of a named entity being a pivotal answer. Then we select the entity with
the highest probability as the answer entity. More formally,

P(NEi|S)=softmax(Ri.W+B) (3)

2 Publicly available at https://goo.gl/Q67cB7.

https://goo.gl/Q67cB7

Automating Reading Comprehension by Generating Question and Answer Pairs 5

where W is weight, B is bias, and P (NEi|S) is the probability of named entity being
the pivotal answer.

5.2 Answer Selection using Pointer Networks

We propose a novel Pointer Network [19] based approach to find the span of pivotal
answer given a sentence. Using the attention mechanism, a boundary Pointer Network
output start and end positions from the input sequence. More formally, the problem
can be formulated as follows: given a sentence S, we want to predict the start index
astartk and the end index aendk of the pivotal answer. The main motivation in using a
boundary pointer network is to predict the span from the input sequence as output.
While we adapt the boundary pointer network to predict the start and end index
positions of the pivotal answer in the sentence, we also present results using a sequence
pointer network instead. Answer sequence pointer network produces a sequence
of pointers as output. Each pointer in the sequence is word index of some token in
the input. It only ensures that output is contained in the sentence but isn’t necessarily
a substring. Let the encoder’s hidden states be H=(h1,h2,...,hn) for a sentence the
probability of generating output sequence O = (o1,o2,...,om) is defined as,

P(O|S)=
∏
P(oi|o1,o2,o3,...,oi−1,H) (4)

We model the probability distribution as:

ui=vT tanh(W eĤ+WdDi) (5)

P(oi|o1,o2,....,oi−1,H)=softmax(ui) (6)

Here,W e∈Rd×2d,WD∈Rd×d, v∈Rd are the model parameters to be learned. Ĥ is
<H;0>, where a 0 vector is concatenated with LSTM encoder hidden states to produce
an end pointer token.Di is produced by taking the last state of the LSTM decoder with in-
puts<softmax(ui)Ĥ;Di−1>.D0 is a zero vector denoting the start state of the decoder.
Answer boundary pointer network produces two tokens corresponding to the
start and end index of the answer span. The probability distribution model remains
exactly the same as answer sequence pointer network. The boundary pointer network
is depicted in Figure 2.
We take sentence S = (w1,w2,...,wM) and generate the hidden activations H by

using embedding lookup and an LSTM encoder. As the pointers are not conditioned
over a second sentence, the decoder is fed with just a start state.
Example: For the Sentence: “other past residents include composer jour-

nalist and newspaper editor william henry wills , ron goodwin , and jour-
nalist angela rippon and comedian dawn french”, the answer pointers produced
are:
Pointer(s) by answer sequence: [6,11,20]→ journalist henry rippon
Pointer(s) by answer boundary: [10,12]→ william henry wills

Fig. 2: Answer selection using boundary pointer network.

6 Automating reading comprehension by generating question and answer pairs

6 Question Generation

After encoding the pivotal answer (prediction of the answer selection module) in a
sentence, we train a sequence to sequence model augmented with a rich set of linguistic
features to generate the question. In sections below we describe our linguistic features
as well as our sequence to sequence model.

6.1 Sequence to Sequence Model

Sequence to sequence models [18] learn to map input sequence (sentence) to an
intermediate fixed length vector representation using an encoder RNN along with
the mapping for translating this vector representation to the output sequence (ques-
tion) using another decoder RNN. Encoder of the sequence to sequence model first
conceptualizes the sentence as a single fixed length vector before passing this along
to the decoder which uses this vector and attention weights to generate the out-
put.

Sentence Encoder: The sentence encoder is realized using a bi-directional LSTM. In
the forward pass, the given sentence along with the linguistic features is fed through a
recurrent activation function recursively till the whole sentence is processed. Using one
LSTM as encoder will capture only the left side sentence dependencies of the current
word being fed. To alleviate this and thus to also capture the right side dependencies of
the sentence for the current word while predicting in the decoder stage, another LSTM
is fed with the sentence in the reverse order. The combination of both is used as the
encoding of the given sentence.

−→
ĥt=f(

−→
Wwt+

−→
V
−−→
ĥt−1+

−→
b) (7)

←−
ĥt=f(

←−
Wwt+

←−
V
←−−
ĥt+1+

←−
b) (8)

ĥt=g(Uht+c)=g(U [
−→
ĥt,
←−
ĥt]+c) (9)

The hidden state ĥt of the sentence encoder is used as the intermediate representation
of the source sentence at time step t whereas W,V,U∈Rn×m are weights, where m is
the word embedding dimensionality, n is the number of hidden units, and wt∈Rp×q×r

is the weight vector corresponding to feature encoded input at time step t.
Attention Mechanism: In the commonly used sequence to sequence model ([18]),

the decoder is directly initialized with intermediate source representation (ĥt). Whereas
the attention mechanism proposed in [11] suggests using a subset of source hidden
states, giving more emphasis to a, possibly, more relevant part of the context in the
source sentence while predicting a new word in the target sequence. In our method
we specifically use the global attention mechanism. In this mechanism a context vector
ct is generated by capturing relevant source side information for predicting the current
target word yt in the decoding phase at time t. Relevance between the current decoder

hidden state ht and each of the source hidden states (ĥ1,ĥ2...ĥN) is realized through

a dot similarity metric: score(ht,ĥi)=h
T
t ·ĥi.

A softmax layer (10) is applied over these scores to get the variable length alignment
vector αt which in turn is used to compute the weighted sum over all the source hidden

states (ĥ1,ĥ2,...,ĥN) to generate the context vector ct (11) at time t.

Automating Reading Comprehension by Generating Question and Answer Pairs 7

αt(i)=align(ht,ĥi)=
exp(score(ht,ĥi)∑

i′
exp(score(ht,ĥi′))

(10)

ct=
∑
i

αtiĥi (11)

Question Decoder: Question decoder is a two layer LSTM network. It takes output
of sentence encoder and decodes it to generate question. The question decoder is
designed to maximize our objective in equation 2. More formally decoder computes
probability P(Q|S;θ) as:

P(Q|S;θ)=softmax(Ws(tanh(Wr[ht,ct]+b))) (12)

where Ws and Wr are weight vectors and tanh is the activation function. The hidden
state of the decoder along with the context vector ct is used to predict the target word
yt. It is a known fact that decoder may output words which are not even present in the
source sentence as it learns a probability distribution over the words in the vocabulary.
To generate questions relevant to the text we suitably modified decoder and integrated
an attention mechanism (described in Section 6.1) with the decoder to attend to words
in source sentence while generating questions. This modification to the decoder increases
the relevance of question generated for a particular sentence.

6.2 Linguistic Features

We propose using a set of linguistic features so that the model can learn better gen-
eralized transformation rules, rather than learning a transformation rule per sentence.
We describe our features below:
POS Tag: Parts of speech tag of the word. Words having same POS tag have similar
grammatical properties and demonstrate similar syntactic behavior. We use the Stanford
ConeNLP -pos annotator to get POS Tag of words in the sentence.
Named Entity Tag: Name entity tag represent coarse grained category of a word
for example PERSON, PLACE, ORGANIZATION, DATE, etc. In order to help the
model identify named entities present in the sentence, named entity tag of each word
is provided as a feature. This ensures that the model learns to pose a question about
the entities present in the sentence. We use the Stanford CoreNLP -ner annotator to
assign named entity tag to each word.
Dependency Label: Dependency label of a word is the edge label connecting each
word with the parent in the dependency parse tree. Root node of the tree is assigned label
‘ROOT’. Dependency label help models to learn inter-word relations. It helps in under-
standing the semantic structure of the sentence while generating question. Dependency
structure also helps in learning syntactic transformations between sentence and question
pair. Verbs and adverbs present in the sentence signify the type of the question (which,
who .. etc.) that would be posed for the subject it refers to. We use dependency parse
trees generated using the Stanford CoreNLP parser to obtain the dependency labels.
Linguistic features are added by the conventional feature concatenation of tokens

using the delimiter ‘|’. We create separate vocabularies for words (encoded using glove’s
pre-trained word embedding) and features (using one-hot encoding) respectively.

8 Automating reading comprehension by generating question and answer pairs

7 Implementation Details

We implement our answer selection and question generation models in Torch3. The
sentence encoder of QG is a 3 layer bi-directional LSTM stack and the question
decoder is a 3 layer LSTM stack. Each LSTM has a hidden unit of size 600 units. we
use pre-trained glove embeddings4 [14] of 300 dimensions for both the encoder and
the decoder. All model parameters are optimized using Adam optimizer with a learning
rate of 1.0 and we decay the learning rate by 0.5 after 10th epoch of training. The
dropout probability is set to 0.3. We train our model in each experiment for 30 epochs,
we select the model with the lowest perplexity on validation set.

The linguistic features for each word such as POS, named entity tag etc., are
incorporated along with word embeddings through concatenation.

8 Experiments and Results

We evaluate performance of our models on the SQUAD [15] dataset (denoted S). We
use the same split as that of [7], where a random subset of 70,484 instances from S
are used for training (Str), 10,570 instances for validation (Sval), and 11,877 instances
for testing (Ste).

We performed both human-based evaluation as well as automatic evaluation to assess
the quality of the questions generated. For automatic evaluation, we report results
using a metric widely used to evaluate machine translation systems, called BLEU [13].
We first list the different systems (models) that we evaluate and compare in our

experiments. A note about abbreviations: Whereas components in blue are different al-
ternatives for encoding the pivotal answer, the brown color coded component represents
the set of linguistic features that can be optionally added to any model.
Baseline System (QG): Our baseline system is a sequence-to-sequence LSTM model
(see Section 6) trained only on raw sentence-question pairs without using features or
answer encoding. This model is the same as [7].
System with feature tagged input (QG+F): We encoded linguistic features (see
Section 6.2) for each sentence-question pair to augment the basic QG model. This
was achieved by appending features to each word using the “|” delimiter. This model
helps us analyze the isolated effect of incorporating syntactic and semantic properties
of the sentence (and words in the sentence) on the outcome of question generation.
Features + NE encoding (QG+F+NE): We also augmented the feature-enriched
sequence-to-sequence QG+F model by encoding each named entity predicted by the
named entity selection module (see section 5.1) as a pivotal answer. This model helps us
analyze the effect of (indiscriminate) use of named entity as potential (pivotal) answer,
when used in conjunction with features.
Ground truth answer encoding (QG+GAE): In this setting we use the encoding
of ground truth answers from sentences to augment the training of the basic QG model
(see Section 5). For encoding answers into the sentence we employ the BIO notation.
We append “B” as a feature using the delimiter “|” to the first word of the answer and
“I” as a feature for the rest of the answer words. We used this model to analyze the
effect of answer encoding on question generation, independent of features and named
entity alignment.

3 http://torch.ch/
4 http://nlp.stanford.edu/data/glove.840B.300d.zip

http://torch.ch/
http://nlp.stanford.edu/data/glove.840B.300d.zip

Automating Reading Comprehension by Generating Question and Answer Pairs 9

We would like to point out that any direct comparison of a generated question with
the question in the ground truth using any machine translation-like metric (such as
the BLEU metric discussed in Section 8.1) makes sense only when both the questions
are associated with the same pivotal answer. This specific experimental setup and the
ones that follow are therefore more amenable for evaluation using standard metrics
used in machine translation.
Features + sequence pointer network predicted answer encoding (QG+F+AES):
In this setting, we encoded the pivotal answer in the sentence as predicted by the
sequence pointer network (see Section 5.2) to augment the linguistic feature based
QG+F model. In this and in the following setting, we expect the prediction of the
pivotal answer in the sentence to closely approximate the ground truth answer.
Features + boundary pointer network predicted answer encoding (QG+F+AEB):
In this setting, we encoded the pivotal answer in the sentence as predicted by the
boundary pointer network (see Section 5.2) to augment the linguistic feature based
QG+F model.
Features + ground truth answer encoding (QG+F+GAE): In this experi-
mental setup, building upon the previous model (QG+F), we encoded ground truth
answers to augment the QG model.

8.1 Results and Analysis

We compare the performance of the 7 systems QG, QG+F, QG+F+NE, QG+GAE,
QG+F+AES, QG+F+AEB and QG+F+GAE described in the previous sections on
(the train-val-test splits of) S and report results using both human and automated
evaluation metrics. We first describe experimental results using human evaluation
followed by evaluation on other metrics.
Human Evaluation: We randomly selected 100 sentences from the test set (Ste)
and generated one question using each of the 7 systems for each of these 100 sentences
and asked three human experts for feedback on the quality of questions generated.
Our human evaluators are professional English language experts. They were asked to
provide feedback about a randomly sampled sentence along with the corresponding
questions from each competing system, presented in an anonymised random order. This
was to avoid creating any bias in the evaluator towards any particular system. They
were not at all primed about the different models and the hypothesis.

We asked the following binary (yes/no) questions to each of the experts: a) is this
question syntactically correct?, b) is this question semantically correct?, and c) is this
question relevant to this sentence?. Responses from all three experts were collected and
averaged. For example, suppose the cumulative scores of the 100 binary judgements
for syntactic correctness by the 3 evaluators were (80,79,73). Then the average response
would be 77.33. In Table 1 we present these results on the test set Ste.
Evaluation on other metrics: We also evaluated our system on other standard
metrics to enable comparison with other systems. However, as explained earlier, the
standard metrics used in machine translation such as BLEU [13], METEOR [6], and
ROUGE-L [10], might not be appropriate measures to evaluate the task of question
generation. To appreciate this, consider the candidate question “who was the widow
of mcdonald ’s owner ?” against the ground truth “to whom was john b. kroc married
?” for the sentence “it was founded in 1986 through the donations of joan
b. kroc , the widow of mcdonald ’s owner ray kroc.”. It is easy to see that
the candidate is a valid question and makes perfect sense. However its BLEU-4 score is

10 Automating reading comprehension by generating question and answer pairs

System Syntactically correct (%) Semantically correct (%) Relevant (%)

QG [7] 51.6 48 52.3

QG+F 59.6 57 64.6

QG+F+NE 57 52.6 67

QG+GAE 44 35.3 50.6

QG+F+AES 51 47.3 55.3

QG+F+AEB 61 60.6 71.3

QG+F+GAE 63 61 67

Table 1: Human evaluation results on Ste. Parameters are, p1: percentage of
syntactically correct questions, p2: percentage of semantically correct questions, p3:
percentage of relevant questions.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

QG [7] 39.97 22.39 14.39 9.64 14.34 37.04

QG+F 41.89 24.37 15.92 10.74 15.854 37.762

QG+F+NE 41.54 23.77 15.32 10.24 15.906 36.465

QG+GAE 43.35 24.06 14.85 9.40 15.65 37.84

QG+F+AES 43.54 25.69 17.07 11.83 16.71 38.22

QG+F+AEB 42.98 25.65 17.19 12.07 16.72 38.50

QG+F+GAE 46.32 28.81 19.67 13.85 18.51 41.75

Table 2: Automatic evaluation results on Ste. BLEU, METEOR and ROUGE-L scores
vary between 0 and 100, with the upper bound of 100 attainable on the ground truth.
QG[7]:Result obtained using latest version of Torch.

almost zero. Thus, it may be the case that the human generated question against which
we evaluate the system generated questions may be completely different in structure
and semantics, but still be perfectly valid, as seen previously. While we find human
evaluation to be more appropriate, for the sake of completeness, we also report the
BLEU, METEOR and ROUGE-L scores in each setting.In Table 2, we observe that
our models, QG+F+AEB, QG+F+AES and QG+F+GAE outperform the state-of-the
art question generation system QG [7] significantly on all standard metrics.
Our model QG+F+GAE, which encodes ground truth answers and uses a rich

set of linguistic features, performs the best as per every metric. And in Table 1, we
observe that adding the rich set of linguistic features to the baseline model (QG) further
improves performance. Specifically, addition of features increases syntactic correctness
of questions by 2%, semantic correctness by 9% and relevance of questions with respect
to sentence by 12.3% in comparison with the baseline model QG [7].

In Figure 3 we present some sample answers predicted and corresponding questions
generated by our model QG+F+AEB. Though not better, the performance of models
QG+F+AES and QG+F+AEB is comparable to the best model (that is QG+F+GAE,
which additionally uses ground truth answers). This is because the ground truth
answer might not be the best and most relevant pivotal answer for question generation,
particularly since each question in the SQUAD dataset was generated by looking at an
entire paragraph and not any single sentence. Consider the sentence “manhattan was on
track to have an estimated 90,000 hotel rooms at the end of 2014 , a 10 % increase from

Automating Reading Comprehension by Generating Question and Answer Pairs 11

Fig. 3: Sample output: the pivotal answer predicted and the question generated about
the answer using model QG+F+AEB - that is comparable to the best performing
system that also used ground truth answers.

2013 .”. On encoding the ground truth answer, “90,000”, the question generated using
model QG+GAE is “what was manhattan estimated hotel rooms in 2014 ?” and and
additionally, with linguistic features (QG+F+GAE), we get “how many hotel rooms did
manhattan have at the end of 2014 ?”. This is indicative of how a rich set of linguistic
features help in shaping the correct question type as well generating syntactically and
semantically correct question. Further when we do not encode any answer (either pivotal
answer predicted by sequence/boundary pointer network or ground truth answer) and
just augment the linguistic features (QG+F) the question generated is “what was
manhattan ’s hotel increase in 2013 ?”, which is clearly a poor quality question. Thus,
both answer encoding and augmenting rich set of linguistic features are important
for generating high quality (syntactically correct, semantically correct and relevant)
questions. When we select pivotal answer from amongst the set of named entities
present in the sentence (i.e., model QG+F+NE), the question generated on encoding
the named entity “manhattan” is “what was the 10 of hotel ’s city rooms ?”, which is
clearly a poor quality question. The poor performance of QG+F+NE can be attributed
to the fact that only 50% of the answers in SQUAD dataset are named entities.

9 Conclusion

We introduce a novel two-stage process to generate question-answer pairs from text. We
combine and enhance a number of techniques including sequence to sequence models,
Pointer Networks, named entity alignment, as well as rich linguistic features to identify
potential answers from text, handle rare words, and generate questions most relevant to
the answer. To the best of our knowledge this is the first attempt in generating question-
answer pairs. Our comprehensive evaluation shows that our approach significantly
outperforms current state-of-the-art question generation techniques on both human
evaluation and evaluation on common metrics such as BLEU, METEOR, and ROUGE-L.

References

1. Ali, H., Chali, Y., Hasan, S.A.: Automation of question generation from sentences. In:
3rd Workshop on Question Generation. pp. 58–67 (2010)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Chali, Y., Hasan, S.A.: Towards topic-to-question generation. Computational Linguistics
41(1), 1–20 (2015)

12 Automating reading comprehension by generating question and answer pairs

4. Cho, K., Van Merrïenboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)

5. Copestake, A., Flickinger, D., Sag, I.A., Pollard, C.: Minimal recursion semantics: an
introduction (1999), http://www-csli.stanford.edu/˜sag/sag.html, draft

6. Denkowski, M., Lavie, A.: Meteor universal: Language specific translation evaluation for
any target language. In: EACL 2014 Workshop on Statistical Machine Translation (2014)

7. Du, X., Shao, J., Cardie, C.: Learning to ask: Neural question generation for reading
comprehension. In: 55th Annual Meeting of the ACL. vol. 1, pp. 1342–1352 (2017)

8. Eriguchi, A., Hashimoto, K., Tsuruoka, Y.: Tree-to-sequence attentional neural machine
translation. CoRR abs/1603.06075 (2016), http://arxiv.org/abs/1603.06075

9. Heilman, M., Smith, N.A.: Good question! statistical ranking for question generation.
In: HLT-NAACL 2010. pp. 609–617. Association for Computational Linguistics (2010)

10. Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: ACL-04 Workshop
on Text Summarization Branches Out. pp. 74–81. ACL (2004)

11. Luong, M., Pham, H., Manning, C.D.: Effective approaches to attention-based neural
machine translation. CoRR abs/1508.04025 (2015), http://arxiv.org/abs/1508.04025

12. Mannem, P., Prasad, R., Joshi, A.: Question generation from paragraphs at upenn:
Qgstec system description. In: 3rd Workshop on Question Generation. pp. 84–91 (2010)

13. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation
of machine translation. In: 40th annual meeting of the ACL. pp. 311–318. ACL (2002)

14. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation.
In: Empirical Methods in Natural Language Processing (EMNLP). pp. 1532–1543 (2014)

15. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

16. Sennrich, R., Haddow, B.: Linguistic input features improve neural machine translation.
CoRR abs/1606.02892 (2016), http://arxiv.org/abs/1606.02892

17. Serban, I.V. et al: Generating factoid questions with recurrent neural networks: The
30m factoid question-answer corpus. arXiv preprint arXiv:1603.06807 (2016)

18. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks.
In: Advances in neural information processing systems. pp. 3104–3112 (2014)

19. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: NIPS. pp. 2692–2700 (2015)
20. Yao, X., Bouma, G., Zhang, Y.: Semantics-based question generation and implementation.

Dialogue and Discourse, Special Issue on Question Generation 3(2), 11–42 (2012)

http://www-csli.stanford.edu/~sag/sag.html
http://arxiv.org/abs/1603.06075
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1606.02892

	Lecture Notes in Computer Science
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 Approach and Contributions
	5 Answer Selection and Encoding
	5.1 Named Entity Selection
	5.2 Answer Selection using Pointer Networks

	6 Question Generation
	6.1 Sequence to Sequence Model
	Question Decoder:

	6.2 Linguistic Features

	7 Implementation Details
	8 Experiments and Results
	8.1 Results and Analysis

	9 Conclusion

