
Open-Domain Question Answering Using a
Knowledge Graph and Web Corpus

Uma Sawant, Soumen Chakrabarti and Ganesh Ramakrishnan
IIT Bombay

In Web search, entity-seeking queries often trigger a special Question Answering (QA) system.
It uses syntactic patterns to extract structure from the query, identify a semantic interpretation

and then return direct entity responses from a knowledge graph (KG). Such QA systems tend to

be brittle. Minor query variations may fail to trigger the QA system. Moreover, KG coverage
is patchy at best. Rather than fall off the “structure cliff” in such cases, we propose a more

robust approach that degrades gracefully on a “structure ramp”. Our system, called AQQUCN,

accepts a broad spectrum of queries, between well-formed questions to short “telegraphic” keyword
sequences. In the face of inherent query ambiguities, AQQUCN aggregates signals from KGs and

large corpora to directly rank KG entities, rather than commit to one semantic interpretation of

the query. AQQUCN models the ideal interpretation as an unobservable or latent variable. Pairs
of interpretations and candidate entity responses are scored as pairs, by combining signals from

multiple convolutional networks that operate collectively on the query, KG and corpus. On four

public query workloads amounting to over 8,000 queries in different query formats, we see 16–18%
absolute improvement in mean average precision (MAP), compared to recent systems. Our system

is also competitive when compared to recent KBQA systems.

DOI: 10.1145/3183639.3183643 http://doi.acm.org/10.1145/3183639.3183643

1. INTRODUCTION

A large fraction of Web queries involve and seek entities [Lin et al. 2012]: queries seek-
ing details of celebrities or movies (e.g., kingsman release date), historical events (e.g.,
Who killed Gandhi?), travel (e.g., nearest airport to baikal lake), to name a few. Queries
that match certain patterns are handed off to specialized QA systems that directly return
entity responses from a KG. Often, a semantic parse of the textual query is attempted [Be-
rant et al. 2013; Yih et al. 2015] to translate it to a structured query over the KG, which
is then executed to fetch a set of response entities 1. Although providing precise answers
when everything goes well, this approach to entity-driven QA is fraught with several diffi-
culties.

• The input textual query may range from grammatically well-formed questions (e.g.,
In which band did Jimmy Page perform before Led Zeppelin?) to free-form “telegra-
phic” keyword queries (e.g., band jimmy page was in before led zeppelin). QA sys-
tems are often brittle with regard to input syntax, backing off if the input does not

1These are known as KBQA or “Knowledge Base Question Answering” systems.

SIGWEB Newsletter Winter 2018

2 · Sawant et al.

KG
musical_group

band jimmy page was in before led zeppelin

query

Jimmy_Page

The_Yardbirds

/type/object/type

/music/musical_group/member
… Page’s work in the Yardbirds
prior to Led Zeppelin …

Entity-annotated Web corpus

Fig. 1. QA example using KG and corpus. Parts of the query have different roles and match diverse artifacts in
the KG and corpus, requiring a complex flow of evidence toward the correct response.

match specific syntactic patterns.
• A curated, structured collection of facts in a KG reduces the QA task to “compiling”

the textual query into a structured form which is directly executed on the KG. But KG
coverage is always patchy — with nodes and/or edges missing — particularly when
less popular entities are concerned. Over 70% of people in Freebase do not have a
place of birth in Freebase [West et al. 2014]. If the types and relations expressed
textually in the query cannot be mapped confidently to the KG, most QA systems
back off.
• Alternatively, one can extend IR-style text search by using an entity-annotated corpus

of Web pages. Any text snippet s in the corpus which contains surface form of an
entity e and also matches the query q; is considered supporting evidence for that entity
e to be the answer for q. However, such evidence from the Web corpus can be noisy
due to incorrect entity linking of e in s and imperfect text matching between q and s.

Thus, both the KG and the entity-annotated corpus present challenges when used for QA.
Yet, they can be used to reinforce or complement information when used together, as we
illustrate next.

2. EXAMPLE QUERY AND RESPONSE

Figure 1 demonstrates the advantages and complexities of effective entity-level QA in-
volving both KG and corpus. Tokens in the query have diverse, possibly overlapping
roles. Specifically, a query span may hint at an entity, type or relation, or it can be used
to match passages in the corpus. Understanding the roles and disambiguating the hint to
respective semantic nodes in the KG (wherever applicable) helps interpret that query. For
example, the query band jimmy page was in before led zeppelin has a reference to enti-
ties e1 = Jimmy_Page and Led_Zeppelin. Mentions in both the query and corpus
documents are linked to entity nodes in the KG (e.g. jimmy page). Band hints at target
type t2 = musical_group of the expected answer entity e2 = The_Yardbirds.
The (rather weak) hint was in hints at the relation /music/musical_group/member
connecting e1, e2. Thus, identifying e1, r and t2 can lead us to many candidate e2s,
The_Yardbirds being one of them. Yet, the query interpretation is not complete be-
cause an important token ‘before’ is not considered. If the KG does not have timestamps
on membership, or the QA engine cannot do arithmetic with timestamps, passages in the
corpus can still offer supplementary evidence by matching before with prior to, along with
SIGWEB Newsletter Winter 2018

Open-Domain QA using KG and corpus · 3

Query-
corpus
network

Query-
relation
convnet

Query-
type

convnet

Query-
corpus
network

Query-
corpus
convnet

Score combination network

Aggregation
over snippets

KG Corpus

Entity
ranking

loss

Fig. 2. AQQUCN block diagram.

mentions of e1 and e2. Thus, using both KG and corpus allows combining structured and
unstructured evidence to answer a query.

This example also serves to highlight our challenges. The dotted lines in Figure 1 map
the query hints to the KG or the corpus evidence, either created during pre-processing
stage (e.g. entity linking in the corpus) or at run-time (e.g. matching the target type
t2 = musical_group to the query text Band through a type model). The machine-
learnt models which map the hints to KG entities, types or relations need to handle a lot
of ambiguity, as the same hint may match many correct/incorrect KG artifacts. Thus, there
may be multiple KG subgraphs and corpus text snippets, each appearing to support differ-
ent correct or incorrect entity candidates. There is thus a clear need for robust and seamless
aggregation of supporting evidence across corpus and KG.

3. AQQUCN

AQQUCN, a system we have built based on AQQU [Bast and Haußmann 2015], imple-
ments all the inference pathways shown in Figure 1. A system sketch is shown in Figure 2.
Unlike AQQU and other systems, the end goal of AQQCN is not to “compile” the input
into a structured query to execute on the KG, because broken/missing input syntax can
make this attempt fail in brittle ways. Instead, the end goal of AQQUCN is to directly
create a ranking over entities using KG and corpus.

AQQUCN first extracts entities e1 directly mentioned in the query q [Cornolti et al. 2014].
Each e1 is located in the KG and the entity-annotated corpus. Entities within a small graph
neighborhood in KG become candidate answers, i.e., e2s. Any e2 occurring in textual
context snippets c from the corpus become additional candidates. Each e2 is associated
with one or more tuples of target types t2, relation r connecting e1, e2, and textual contexts
c from the corpus, creating a candidate query interpretation. Candidate e2s paired with
corresponding interpretations are sent to three kinds of convolutional networks (convnets),
along with q (with e1 span/s marked or removed). The overall function of the convnets is
to score the match between the query and the interpretation.

Two of the convnets are similar in form: the query-relation network (QRN) and query-type
network (QTN). QRN tries to find a hint of r in q \ {e1}. QTN tries to find a hint of t2

SIGWEB Newsletter Winter 2018

4 · Sawant et al.

in q \ {e1}. Unlike earlier work [Joshi et al. 2014], we do not seek hard segmentations
of q. The same query segment can hint towards r and t2 (e.g., band is primarily a type
hint, but can also act as a useful relation hint of /music/musical_group/member).
Figure 3 shows the architecture of this multi-label prediction network; which consists of an
embedding layer, convolutional layer, pooling layer, a fully connected layer, followed by a
sigmoid activation function layer that outputs a score for each type. Multiple types can be
given large scores. Apart from the automatically computed features by the convolutional
and pooling layers, we also compute simple word match features between the query text
and the type/relation description text; a strategy quite useful in case of words not seen
while training QTN and QRN.

The third query-corpus network (QCN) [Severyn and Moschitti 2015] is slightly different.
It measures the similarity between q \ {e1} and snippets and has one copy instantiated
for each corpus snippet mentioning e2. Scores from all snippets are pooled together (sum
works well).

zeppelin

led

before

band

page

jimmy
Pooling

Convolution

Features for
overlap between
query words and t2

O
ne

 s
ig

m
oi

d
la

ye
r

S
co

re
s

fo
r

ea
ch

 ty
pe

Fig. 3. Query-Type Network (QTN) architecture and inputs. Query-Relation Network (QRN) architecture is
identical except that types are replaced by relations in the training data.

QRN, QTN, and multiple QCNs send their scores as features to a final combination net-
work that represents each candidate e2 as a feature vector and scores it in conjunction with
e1, r and t2. We can marginalize over e1, r, t2 in various ways. Max works well, giving the
score of e2 and thereby a ranking among candidate e2s. The set of gold e+2 s is then used to
define a loss and train the combination network. We use a pairwise loss, comparing, for a
fixed query q, a relevant entity e+2 with an irrelevant entity e−2 :

max
e+1 ,t

+
2 ,r

+
w · φ(q, e+1 , t

+
2 , r

+; e+2) + ξq,e+2 ,e
−
2
≥ 1 + max

e−1 ,t
−
2 ,r

−
w · φ(q, e−1 , t

−
2 , r

−; e−2) (1)

Note that the best supporting e+1 , t
+
2 , r

+ for e+2 may be different from the best supporting
e−1 , t

−
2 , r

− for e−2 .

• Q is the set of queries, and q is one query.
• e+2 is a relevant entity, e−2 is an irrelevant entity, for query q.
• φ is the feature vector representing an interpretation, composed of e1 (one or more

entities mentioned in query q), r (relation mentioned or hinted at in q), t2 (type men-
tioned or hinted at in q) and e2 (candidate answer entity). φ incorporates inputs from
the three convnets.
• ξ is a vector of non-negative slack variables.

SIGWEB Newsletter Winter 2018

Open-Domain QA using KG and corpus · 5

• C a balancing regularization parameter.
• w is the weight vector to be learnt.

The max in the LHS of constraint (1) leads to nonconvexity, which we address by intro-
ducing auxiliary variables u(q, e+1 , t

+
2 , r

+; e+2) for each relevant candidate entity in the
following optimization.

min
ξ≥~0,w

1
2‖w‖

2
2 +

C

|Q|
ξ ·~1 such that

∀q, e+2 , e
−
2 ; e

−
1 , t

−
2 , r

− :
∑

e+1 ,t
+
2 ,r

+

u(q, e+1 , t
+
2 , r

+; e+2)w · φ(q, e
+
1 , t

+
2 , r

+; e+2)

≥ 1− ξq,e+2 ,e−2 + w · φ(q, e−1 , t
−
2 , r

−; e−2) (2)

∀q, e+1 , t
+
2 , r

+; e+2 : u(q, e+1 , t
+
2 , r

+; e+2) ∈ {0, 1}

∀q, e+2 :
∑

e+1 ,t
+
2 ,r

+

u(q, e+1 , t
+
2 , r

+; e+2) = 1

∀q, e+2 , e
−
2 : ξq,e+2 ,e

−
2
≥ 0

For tractability, we relax the 0/1 constraint over u variables to the continuous range [0, 1]:

∀q, e+1 , t
+
2 , r

+; e+2 : u(q, e+1 , t
+
2 , r

+; e+2) ∈ [0, 1] (3)

We obtain local optima for (2) by alternately updating w and u. Each of these is a convex
optimization problem. Through optimization (2), AQQUCN integrates query interpretation
and entity response ranking into a unified framework, rather than a two-stage compile-
and-execute strategy common in other QA systems, which effectively gambles on one best
structured interpretation. That being said, QRN, QTN and QCN are trained separately for
their individual goals. This is actually better than end-to-end training [Roth 2017] with
limited QA data with potential idiosyncrasies (e.g., largely well-formed questions, or all
answers verifiable from KG alone).

4. EXPERIMENTS AND RESULTS

We use both keyword and original natural language forms of the queries from [Joshi et al.
2014], leading to four query sets2 (Table I). By design, all WebQuestions queries can be
answered using the Freebase KG. In contrast, only 57% of TREC-INEX queries can be
answered from KG alone under the restriction that e1 and e2 lie within two hops. Thus
corpus evidence is important for TREC-INEX.

Source Name #train #test Query type
TREC-INEX TI-KW 493 211 Syntax-poor

TI-NLQ 493 211 Syntax-rich
WebQuestions WQ-KW 563 240 Syntax-poor

WQ-NLQ 3778 2032 Syntax-rich

Table I. Summary of different querysets. A portion of the train set is internally set aside for dev.

2WQ-NLQ is exactly the same as the WebQuestions query set.

SIGWEB Newsletter Winter 2018

6 · Sawant et al.

4.1 Entity ranking comparison

We present entity ranking comparison against [Joshi et al. 2014] in Table II. Both AQQUCN
and the system of [Joshi et al. 2014] output a ranking over entities, and we compare using
standard ranking performance measures: Mean Average Precision (MAP), Mean Recipro-
cal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG).

Data System MAP MRR NDCG
TI-KW Joshi et.al. 2014 40.9 41.9 50.2

AQQUCN 56.5 59.1 61.7
WQ-KW Joshi et.al. 2014 37.7 40.1 47.4

AQQUCN 55.6 55.9 59.3
TI-NLQ Joshi et.al. 2014 35.8 36.2 42.6

AQQUCN 51.4 53.6 56.4
WQ-NLQ AQQUCN 60.0 61.2 62.8

Table II. Entity ranking performance comparison with Joshi et. al. 2014. WQ-NLQ scores are not reported due
to scaling issue.

In Table II, we see 16–18% absolute improvement in mean average precision (MAP) over
various querysets. This improvement is largely attributed to better query interpretation (by
avoiding the hard query segmentation strategy and allowing overlapping roles for query
tokens) and improved feature engineering through convnets.

Data System F1
Aqqu 22.5

TI-KW Berant et.al. 2015 12.7
AQQUCN (relative threshold) 43.3
AQQUCN (ideal threshold) 60.7

Aqqu 35.3
WQ-KW Berant et.al. 2015 36.5

AQQUCN (relative threshold) 44.5
AQQUCN (ideal threshold) 58.7

Aqqu 23.6
TI-NLQ Berant et.al. 2015 10.7

AQQUCN (relative threshold) 39.8
AQQUCN (ideal threshold) 55.8

Yao et.al. 2014 33.0
Berant et.al. 2013 35.7
Yao et.al. 2015 44.3
Aqqu 49.5

WQ-NLQ Berant et.al. 2015 49.6
Yih et.al. 2015 52.5
Xu et.al. 2016 53.3
AQQUCN (relative threshold) 50.1
AQQUCN (ideal threshold) 62.7

Table III. F1 comparison with recent KGQA systems. See text for relative vs ideal threshold discussion.

SIGWEB Newsletter Winter 2018

Open-Domain QA using KG and corpus · 7

4.2 Entity set retrieval comparison

In Table III, we present entity set comparison against several KBQA systems [CodaLab
2016]. Each of those KBQA systems reports a set of entities without any ordering between
them. Therefore, to compare these systems, we have to convert our ranking into a set. We
thus report our results in two ways. First, we extract a set from the ranking by including all
entities with score within x% of the top ranked entity’s score (“relative threshold”). Tuned
on held-out data, x turned out to be 0.95. Second, we also report an “ideal threshold” F1
on our results, obtained as the best case or clairvoyant F1 that can be obtained from our
ranking by thresholding at any position consistent with the ground truth. As is obvious,
the first one provides unfair advantage to existing KBQA systems, whereas the second
provides unfair advantage to our system.

Comparing with KBQA systems in Table III, we see that AQQUCN also performs better
than all the related work in three out of four query sets. On the fourth query set (WQ-NLQ),
our system performs better than many related works even when at a disadvantage (relative
threshold). The superior performance of our system is again attributed to better feature
engineering through convnets, as well as the use of corpus as a supplementary information
source.

5. CONCLUSION

We presented AQQUCN, a system that unifies structured interpretation of queries with
ranking of response entities. Apart from seamlessly integrating corpus and KG informa-
tion, AQQUCN has two salient features: it can deal with the full spectrum of query styles
between keyword queries and well-formed questions; and it directly ranks response enti-
ties, rather than ‘compile’ the input to a structured query and execute that on the KG alone.
AQQUCN code was based on the AQQU code base [Bast and Haußmann 2015] and is
available from the CSAW project [CSAW 2017] site.

Acknowledgment. Thanks to Saurabh Sarda for initial adaptation of [Joshi et al. 2014] code
leading to our move to AQQU code base. Thanks to Elmar Haußmann for generous help
with AQQU code.

REFERENCES

BAST, H. AND HAUSSMANN, E. 2015. More accurate question answering on freebase. In CIKM. 1431–1440.

BERANT, J., CHOU, A., FROSTIG, R., AND LIANG, P. 2013. Semantic parsing on Freebase from question-
answer pairs. In EMNLP Conference. 1533–1544.

CODALAB. 2016. Webquestions benchmark for question answering. http://bit.ly/2kvXroJ.

CORNOLTI, M., FERRAGINA, P., CIARAMITA, M., RUED, S., AND SCHUETZE, H. 2014. The SMAPH system
for query entity recognition and disambiguation. In ERD Challenge Workshop.

CSAW. 2017. The csaw project at iit bombay. http://www.cse.iitb.ac.in/˜soumen/doc/CSAW/.

JOSHI, M., SAWANT, U., AND CHAKRABARTI, S. 2014. Knowledge graph and corpus driven segmentation
and answer inference for telegraphic entity-seeking queries. In EMNLP Conference. 1104–1114. Download
http://bit.ly/1OCKbVW.

LIN, T., PANTEL, P., GAMON, M., KANNAN, A., AND FUXMAN, A. 2012. Active objects: Actions for entity-
centric search. In WWW Conference. ACM, 589–598.

SIGWEB Newsletter Winter 2018

8 · Sawant et al.

ROTH, D. 2017. On the necessity of learning and reasoning: A perspective from natural language under-
standing. McCarthy award acceptance speech at IJCAI 2017: https://www.youtube.com/watch?
v=tAKn3Gt75rg.

SEVERYN, A. AND MOSCHITTI, A. 2015. Learning to rank short text pairs with convolutional deep neural
networks. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 373–382.

WEST, R., GABRILOVICH, E., MURPHY, K., SUN, S., GUPTA, R., AND LIN, D. 2014. Knowledge base
completion via search-based question answering. In WWW Conference. 515–526.

YIH, S. W.-T., CHANG, M.-W., HE, X., AND GAO, J. 2015. Semantic parsing via staged query graph genera-
tion: Question answering with knowledge base. In ACL Conference. 1321–1331.

BIOGRAPHIES

Uma Sawant is a PhD candidate in computer science and engineering at IIT Bombay.
Her interests include question answering, search and recommendation systems. She has
previously worked at Yahoo and is currently working at LinkedIn.

Soumen Chakrabarti is professor of computer science and engineering at IIT Bombay.
His interests include robust query interpretation, continuous knowledge graph represen-
tation, corpus annotation with types, entities and relations, and the integration of these
capabilities into question answering systems. During 2014–2016 he worked in the NLP
group at Google. He is author of a popular book titled Mining the Web.

Ganesh Ramakrishnan is an associate professor of computer science and engineering at
IIT Bombay. His interests include incorporation of domain knowledge and human inter-
action in machine learning models and multi-instance multi-label learning. He worked at
IBM India research labs between 2004 and 2009.

SIGWEB Newsletter Winter 2018

