
Improving the learnability of classifiers for Sanskrit OCR
corrections

Devaraja Adiga1, Rohit Saluja2, Vaibhav Agrawal3, Ganesh Ramakrishnan1,
Parag Chaudhuri1, K. Ramasubramanian1 and Malhar Kulkarni1

1Indian Institute of Technology, Bombay, Mumbai, India
2IITB-Monash Research Academy, Mumbai, India
3Indian Institute of Technology, Kharagpur, India

pdadiga@iitb.ac.in, rohitsaluja@cse.iitb.ac.in, vaibhav@iitkgp.ac.in
{ganesh,paragc}@cse.iitb.ac.in, {ram,malhar}@hss.iitb.ac.in

Abstract

Sanskrit OCR documents have a lot of errors. Correcting those errors using conventional1

spell checking approaches breaks down due to the limited vocabulary. This is because of2

high inflections of Sanskrit, where words are dynamically formed by Sandhi rules, Samāsa3

rules, Taddhita affixes, etc. Therefore, correcting OCR documents require huge efforts.4

In this paper, we present different machine learning approaches and various ways to5

improve features for ameliorating the error corrections in Sanskrit OCR documents. We6

simulated Subanta Prakaraṇam of VaiyākaraṇaSiddhāntaKaumudī for synthesizing off-7

the-shelf dictionary. Most of the methods we propose can also work for general Sanskrit8

word corrections.9

1 Introduction10

Optical character recognition(OCR) is the process of identifying characters in document images11

for creating editable electronic texts. SanskritOCR by Indsenz, Google OCR and Tesseract are12

major OCRs available for Sanskrit. Word level error analysis for 6 books printed at various places13

of India having different fonts scanned with 300 DPI are listed in Table 1. Correcting the errors14

becomes cumbrous even with the OCR accuracy as high as above 90%, unless complemented15

by a mechanism for correcting the errors. User feedback based OCR correcting mechanisms16

can improve through correcting a contiguous text having uniform font. We discuss different17

approaches for correcting Sanskrit OCR based on available system resources.18

Book Name Publisher Details Year of
Publication

No. of
Pages
OCRed

WER -
IndSenz

WER -
Google

Raghuvaṃśam
Sanjīvinīsametam

Nirṇaya Sāgara
Press, Mumbai 1929 200 19% 35%

Nṛsiṃhapūrvot-
taratāpanīyopaniṣat Ānandāśrama, Pune 1929 160 34% 41%

Siddhānta Śekhara-1 Calcutta University
Press 1932 390 38%* 66%

GaṇakaTarangiṇī Jyotish Prakash
Press, Varanasi 1933 150 34% 46%

Siddhānta Śekhara-2 Calcutta University
Press 1947 241 55%* 53%

Siddhānta Śiromaṇi Sampuranananda
University, Varanasi 1981 596 18% 29%

Table 1: Word Error Rates for Indsenz’s SanskritOCR and Google OCR (*After training 5
pages)

Conventional approaches for spell checking uses Levenshtein-Damerrau edit distance to a19

Figure 1: A screen-shot of our framework.

known dictionary and auto-corrects the errors using a language model (Whitelaw et al., 2009).20

For post-OCR corrections of languages highly rich in inflections, this naive approach results in21

poor accuracy (Sankaran and Jawahar, 2013). It primarily depends upon lookups into a fixed22

vocabulary. Such vocabulary for Sanskrit is always incomplete due to words formed dynamically23

using Sandhi, Samāsa and Taddhita rules.24

In recent works, encoder-decoder Recurrent Neural Networks (RNNs) with character-based25

attention have shown state-of-the-art results in Neural Language Correction (Xie et al., 2016).26

We (Saluja et al., 2017b) proposed a logistic regression based machine learning framework for27

correcting Indic OCRs using dual engine OCR. For correcting OCRs across four Indic languages28

(Sanskrit, Hindi, Kannada and Malayalam) in single engine environment (Saluja et al., 2017a)29

have succeeded in reaching the state of art using a special type of RNNs, called Long Short30

Term Memory Networks (LSTM).31

OCR Word Corrected Word Ground Truth
िवशीआआआआर ्िन िवशीणा िन िवशीणा िन
ष◌्े।पिनषत ्ि◌९ ष◌्ोपिनषदि्◌ षोपिनषिद
भत ुम ुिनराआ◌्ूएतिवरः भत ुम ुिनराि◌तिवरः भत ुम ुिनराितिवरः
मलिननाः मलतयू िननाः मलतयू िननाः
म◌ातपबं महाचबं महाचबं
न◌ै९वा ्ि◌०इषते ह◌ैवाभ ्ि◌ष ्ि◌ते हवैािभिषते
ऊूउगव◌्ू◌ा◌्ुऋउScऊ भगवा भगवा

Table 2: Examples of Sanskrit OCR words corrected by our framework.
OCRed data of over 5k Sanskrit document images and 12k in different languages were

corrected using our framework - OpenOCRCorrect.

Basic dictionary lookup approach requires less system resources where as Neural language32

correcting models demands higher system specifications. So we propose and evaluate different33

Figure 2: Block diagram of our framework.

models for correcting Sanskrit OCR1, starting from simple dictionary look up to Neural attention34

models. For building the vocabulary for Sanskrit, we developed a Subanta-generator. We will be35

using various other auxiliary sources which we will discuss in the next section. Then in section 436

we discuss the results for various error detecting approaches in detail. Suggestion generation37

will be explained in the following section. Table 2 shows the OCR errors corrected by our38

framework and Figure 1 is a screen-shot of our framework. We are using multicolor coding to39

depict compound words, out-of-vocabulary words, auto-corrected words and correct words.40

Our contributions in this paper are i) Suggesting different models for error detection based41

upon amount of training data (if range is 10k and GPU is not available use Plug-in classfier, for42

range of 100k with GPU use LSTM and for range of 1000k with GPU use attention models) ii)43

increasing the learnability of ML classifiers by increasing auxiliary sources and iii) Comparing44

the different ML based and Deep learning based methods for the task of Error detection. It is45

important to note that the Plug-in classifier model we have used and LSTM model and results46

we have shown already exist in the literature for the task of error detection. We have improved47

the results of Plug-in classifier by introducing more auxiliary sources and synthesized words.48

Further, we use attention model to compare the results with LSTM based error detection.49

2 Auxiliary Sources50

Figure 2 depicts the functionality of human-interactive framework for OCR corrections. We51

will be using various auxiliary sources which are helpful in verifying the correct words and52

curating the word-level errors. Our system is leveraged by OCR data from different systems,53

dynamically updated OCR confusions and domain specific vocabulary. We are also using a54

synthesized off-the-shelf dictionary. These features are used for supervised learning by training55

a plug-in classifier for achieving better F-score. Erroneous words are corrected using suggestions56

through human interaction to keep the confidence level high. Later on words having similar57

errors are auto-corrected. In the following sections we discuss various auxiliary sources used by58

1The source code of Sanskrit OCR corrector, OpenOCRCorrect is available at https://goo.gl/WqoVi2

the framework.59

2.1 OCR documents from different systems60

Since different OCR systems are using different models they are likely to make different kinds of61

errors and are likely to be correct on the OCR words that they agree upon. This observation is62

especially leveraged by ensemble-based ML approach (Polikar, 2006). Therefore OCR documents63

from different systems can become a powerful auxiliary source.64

2.2 Off-the shelf dictionary65

Since the vocabulary is incomplete for Sanskrit due to rich inflections, we developed a Subanta66

generator for synthesizing noun variants. Among the different declension generators, (Patel and67

Katuri, 2015a) is an open source Subanta generator for Sanskrit. We developed a new Subanta68

generator for the following reasons69

• For ease of integration into the OCR framework70

• For overcoming the errors produced by existing Subanta generator. Examples from (Patel71

and Katuri, 2015b) -72

– ूथमा एकवचनम ्for words ending with ऋ.73

– ितीया िवचनम ्for many of the Sarvanāmas.74

– Declensions for words ending with वस ु affix are wrong in case of भसंा.75

• To have the provision for future enhancements76

Aṣṭādhyāyī rules corresponding to Subanta Prakaraṇam and required Sandhi rules are coded in77

accordance with the rules explanations as given in (Dīkṣita et al., 2006). For resolving the con-78

flicts we chose the order of applicability of rules as per the Paribhāṣā - परिनारापवादानामुरोरं79

बलीयः. Context dependencies of many rules are resolved by collecting the context informations.80

For example, for the rule एकाचो बशो भष झ्ष ःोः (अ.8-2-37), the roots collected are गाध ्, गधु ्, गधृ ्,81

दघ ्, दध ्, भ ्, िाघ ्, बध ्, बीभ ्, बधु ्. And also the roots गाह,् गहु,् गहृ,् मह,् लह,् दह,् िदह,् ह,् ह,् िाह,् िुह,् बाह,् बहृ ्82

are considered after applying ‘दादधेा तोघ ः’ (अ.8-2-32) or ‘हो ढः’ (अ.8-2-31).An example word where83

this rule is applied - कामधकु ् (ूाितपिदकम -् कामह)्. For the rules नाातःु (अ.7-1-78), आीनोन ुम ्84

(अ.7-1-80) and शनोनम ्(अ.7-1-81), we grouped the participles of roots belonging to differ-85

ent conjugations accordingly. Similar way we tried to completely/partially solve the context86

dependencies of many rules.87

We have processed XML file of Monier-Williams Sanskrit Dictionary available in the Cologne88

Digital Sanskrit Dictionary collections, Institue for Indology and Tamilistics, University of89

Cologne (http://www.sanskrit-lexicon.uni-koeln.de/download.html) and extracted more than90

1.8 lakh words with the gender information from the XML file. Vibhakti variants for these91

words are generated using the Subanta generator and around 3.2million unique words are gen-92

erated. We also used the verbs which are listed in the िबयापिनािदका (Verb-forms-Generator) of93

ILTP-DC, which are around 3 lakh unique words. These 3.5 million words are used as off-the-94

shelf dictionary for the OCR corrector.95

2.3 Domain specific vocabulary96

In Sanskrit literature frequency of commonly used words changes from one Śāstra to another.97

So the domain specific vocabulary is most powerful auxiliary resource which will fill the words98

not found in off-the-shelf dictionary. Domain specific vocabulary is created by extracting unique99

strings from the various books available in Göttingen Register of Electronic Texts in Indian100

Languages (GRETIL,). This auxiliary source is also dynamically updated as the user corrects101

the document, which helps in correcting rest of the document.102

2.4 Sandhi Rules103

Due to Sandhi rules and Samāsa, words can change dynamically in Sanskrit documents. We104

are using basic Sandhi rules to find the subwords of a compound word and to match with the105

words from the vocabulary for detecting its correctness. A greedy approach is used for this106

splitting with minimum set of words of maximum length and minimum edit distance as the107

criteria. For examample, the OCR word जागिरतावायाभवेावाऽयमंु will be split into जागिरत,108

अवायाभ ्(this word is matched with अवायाम)्, एव, अवाऽयम ्and उं. This helps in detecting109

out-of-vocabulary words and generating suggestions for them.110

2.5 Document and OCR specific n-gram confusions111

Since different OCR systems use different preprocessing techniques, different classifier models,112

error confusions for a word varies from one OCR engine to another (Abdulkader and Casey,113

2009). Thus, the OCR specific confusions can be helpful in deciding whether the part of the114

erroneous word should be changed or not and also in deciding the tie while changing the part115

of the erroneous word. For example, while changing the erroneous word िनवः, if the dictionary116

lookup suggests िनबः and िनरः as nearest possible words, having higher n-gram confusion to117

व->ब biases the selection towrds िनबः.118

3 Methodologies Followed119

3.1 Learning by Optimizing Performance Measures though Plug-in Approach120

We rephrase our basic problem of error detection as that of continuously evolving a classifier that121

labels the OCR of a word as correct or incorrect. The classifier should be trained to optimize122

a performance measure that is not necessarily the conventional likelihood function or sum of123

squares error. An example performance measure to be maximized and that is coherent with124

our needs of maximizing recall (coverage) in detecting erroneous words while also being precise125

in this detection is the F−score, which, unfortunately does not decompose over the training126

examples and can be hard to optimize. We adapt a plug-in approach (Narasimhan et al., 2014)127

to train our binary classifier over such non-decomposable objectives while also being efficient for128

incremental re-training.129

Consider a simple binary classification problem where the task is to assign every data point130

x ∈ X , a binary label y ∈ ±1. Plug-in classifiers achieve this by first learning to predict Class131

Probability Estimate (CPE) scores. A function g : X → [0, 1] is learned such that g(x) ≈132

Pr (y = 1). Various tools such as logistic regression may be used to learn this CPE model g.133

The final classifier is of the form sign(g(x)−η) where η is a threshold that is tuned to maximize134

the performance measure being considered, e.g. F-measure, G-mean etc.135

In (Saluja et al., 2017b), various features based on dictionary n-grams and language rules136

have been used in Sanskrit, Hindi and Marathi. Our major work in this paper is to improve137

features for such a classifier and verify their effect in three different domains in Sanskrit. We use138

train:val:test ratio as 48:12:40 for all our experiments that use Plugin classifier since we wanted139

to explore the possiblity of using the classifier to correct last 40% of book, once initial 60% of140

the book is corrected.141

3.2 LSTM with fixed delay142

The basic RNN (Recurrent Neural Network) can be represented by Equations 1 and 2.143

ht = g(Whhht−1 +Whxxt + bh) (1)

yt = Wyhht (2)

g can be sigmoid(σ(xi) = exp(xi)∑
j [exp(xj)]

) or tanh (tanh(x) = 2σ(2x)−1) or Rectified Linear Unit144

(ReLU) (f(x) = max(0, x)) (Talathi and Vartak., 2014). The matrices Whx and Wyh connect the145

input to the hidden layer and hidden layer to output respectively. These matrices are common146

for instance in the sequence. The matrix Whh is the feedback from past input and is responsible147

for remembrance and forgetfulness of the past sequence based on context.148

Equation 2 at each time t can be unfolded back in time, to time t = 1 for the 1st character149

of the word sequence, using Equation 1 and the network can be trained using back-propagation150

through time (BPTT) (Schuster and Paliwal., 1997).151

Since we have taken care to ensure equal byte length per letter with ASCII transliteration152

scheme, for the loss function we used negative log-likelihood of Log SoftMax (multi-class) func-153

tion. The Log SoftMax function is given in 3, where yti is the value at ith index of output vector154

yt.155

f(yti) = log(
exp(yti)∑
j [exp(ytj)]

) (3)

The equations are similar for the LSTM with each unit as a memory unit, instead of a neuron.156

Such memory unit remembers, forgets, and transfers cell state to the output(or next state) based157

on input history. The cell state at time t is given by equation 4 where the forget gate ft and158

the input gate it fire according to equations 5 and 6 respectively.159

ct = ftct−1 + itg1(Whcht−1 +Wxcxt + bc) (4)

ft = g2(Wxfxt +Whfht−1 +Wcfct−1 + bf) (5)

it = g2(Wxixt +Whiht−1 +Wcict−1 + bi) (6)

The data is selectively transferred from the cell to hidden state ht according to equation 7160

where the selection is done by the firing of output gate ot as per equation 8.161

ht = otg3(ct) (7)

g1 and g3 are generally tanh and g2 is generally sigmoid.162

ot = g2(Wxoxt +Whoht−1 +Wcoct−1 + bo) (8)

(Saluja et al., 2017a) uses 512 X 2 LSTM (Long Short-Term Memory based neural network)163

with the fixed delay (between input sequence and output sequence) trained and tested on char-164

acters from 86k OCR word correction pairs with train:val:test split as 64:16:20. The model when165

trained on large data is able to learn OCR specific error patterns as well as language model. The166

model abstains from changing the correct word. Thus, for error detection, the word changed167

by such model is marked as incorrect whereas the word unchanged by the model is marked as168

correct. Such model over-fits the OCR system and domain. It works well with dataset range of169

hundred thousand OCR word correction pairs.170

3.3 Attention Model171

Here, we use the model with more number of layers than LSTM based model discussed in172

previous section. Attention models are the models with a separate encoder as well as a decoder173

as compared to LSTM based model wherin the same layers encode as well as decode a sequence.174

Attention models contain RNN layers as encoder that can take characters from OCR words,175

and similar RNN based decoders decode the encoder’s output to correct word when trained176

with large amount of data. The attention layers, which are applied on encoder’s ourput to help177

the decoder, learn to give attention to different context around the character being corrected178

based on the input. We train and test such model with the 86k OCR word correction pairs used179

in (Saluja et al., 2017a). We use open source library OpenNMT (http://opennmt.net/) for180

this purpose with the default model that includes 500 X 2 LSTM encoder as well as 500 X 2181

LSTM decoder. Such model is able to learn dataset of order of millions of OCR word correction182

pairs as per our experiences for French and English in ICDAR Post-OCR Competition 2017.183

Here again, we mark words changed by the model as incorrect for error detection and the words184

that remained unchanged as correct. As we will see later, even when trained on 86k pairs, such185

model is able to perform close to LSTM based model for error detection task.186

4 Error Detection Methods and Results187

4.1 Unsupervised approach188

Approach TP FP TN FN Precision Recall F-Score
1. General Dict. Lookup 89.18 40.12 59.87 10.82 29.75 89.18 44.61
2. Sandhi Rules 54.34 13.23 86.77 45.66 43.89 54.34 48.56
3. Secondary OCR Lookup 90.68 23.59 76.40 9.31 42.79 90.68 58.14

Table 3: Error Detection Results with unsupervised methods. Using Sandhi rules while dic-
tionary lookup increase true detections(TN) but increase false detections(FN) as well which is
balanced by secondary OCR lookup.

We applied various methods for detecting errors in the OCR text. To189

start with, we used the book named “Āryabhaṭīyabhāṣya of Nīlakaṇṭha III Go-190

lapāda(AnantaśayanaSaṃskṛtaGranthāvaliḥ, 1957)” for which we had the OCR text (OCRed191

from indsenz) and the ground truth data available.192

Using unsupervised methods, commonly used dictionary lookup based approach gave poor193

F-Scores due to lot of correct words marked as errors, i.e. lower True Negative percentage as194

shown in Table 3. Marking the words that are formed by applying Sandhi rules on dictionary195

lexicons as correct increased detection of correct words(True Negatives) but not the detection196

of errors (True Positives) as compared to previous approach. For this book, lookup into OCR197

output of other engine (Google Docs) for the same document images improved the F-Score to a198

decent value.199

4.2 Single Engine Environment200

Approach TP FP TN FN Prec. Recall F-Score

1.
Classifier with ngrams
frequency + word lookup in
General Dict. as features

73.38 22.86 77.13 26.61 38.88 73.38 50.83

2.

Classifier with ngrams
frequency + word lookup in
Synthesised Dict.(superset of
gen. dict.) as features

74.06 21.02 78.98 25.94 41.14 74.06 52.89

3.

Classifier with ngrams
frequency + word lookup in
Synthesised Dict. as well as
Domain Dict. as features

66.37 13.08 86.92 33.63 50.38 66.37 57.28

4.
Classifier with features in row 3
+ no. of Sandhi components in
OCR word as features

68.50 13.53 86.47 31.50 50.10 68.50 57.87

Table 4: ML Classifier’s Error Detection Results in Single Engine Environment. Here we
achieved the F-score close to that of Secondary OCR lookup using Unsupervised approach

For supervised learning using the plug-in classifier as explained in section 3.1, we are splitting201

the data with train:val:test ratio as 48:12:40, we train the plug-in classifier with various features.202

We are able to improve the row 1 results in Table 3 by including frequency of ngrams (upto 8)203

in general dictionary as features. We also include the binary feature based on lookup in general204

dictionary. The results are shown in first row of Table 4.205

We further include more words in the dictionary by synthesizing nouns and collecting the206

verbs as explained in 2.2. This help us to achieve the results shown in row 2 of Table 4.207

Adding frequencies of n-grams from OCR word as features from domain dictionary generated208

as explained in 2.3 along with synthesized dictionary improved the results as shown in row 3 of209

Table 4.210

For improving the results further as shown in row 3 of Table 4, we used three splitting based211

features. i) Split the OCR words using commonly used Sandhi rules and used the no. of lexicon212

components obtained from the general dictionary as features. ii) We also used no. of lexicon213

components obtained by splitting the OCR word as lexicons of domain dictionary (for Jyotiṣa)214

as a feature. Herein, the no. of characters from unknown sub-strings in the OCR word are added215

to the feature. iii) The product of features obtained in (i) and (ii) is also used as the feature.216

We normalized all these features about the mean and standard deviation of training data.217

The results are shown in row 4 of Table 4. It is important to note that here in single engine218

environment we are able to reach closer to the dual engine environment based Secondary OCR219

Lookup approach given in the row 3 of Table 3.220

4.3 Multi Engine Environment221

Approach TP FP TN FN Prec. Recall F-Score

1.
Classifier with features in
table 4 row 2 along with dual
engine agreement*

85.13 17.84 82.16 14.87 48.62 85.13 61.89

2.
Classifier with features in
table 4 row 3 along with dual
engine agreement

78.04 13.67 86.33 21.96 53.11 78.04 63.20

3.
Classifier with features in
table 4 row 4 along with dual
engine agreement

83.49 15.26 84.74 16.51 52.25 83.49 64.28

4.
Classifier with features in
table 4 row 4 along with triple
engine agreements

83.43 14.95 85.04 16.56 52.74 83.43 64.63

Table 5: ML Classifier’s Error Detection Results in Multi Engine Environments. (*state of the
art (Saluja et al., 2017b)). Here TP is significantly increased when compared to single engine
environment.

We further include the dual engine OCR agreement as feature in addition to the features used222

in previous sections and achieve the results obtained in Table 5. Here we have used Indsenz as223

primary OCR engine and Google docs as secondary OCR engine.224

We improve the results further by using the feature of dual OCR agreement between Indsenz225

and Tesseract in addition to previous features to obtain the results shown in row 4 of Table 5.226

We present the results of Plug-in Classifier trained and tested on the dataset of books with227

different domains in Table 6 for proving its consistency over various domains. Row 1 in this table228

shows the baseline for the book ‘Nṛsiṃhapūrvottaratāpanīyopaniṣat’ (ĀnandāśramaSaṃskṛta-229

Granthāvaliḥ, 1929) and row 2 shows the results achieved using all the features (obtained using230

triple engine environment, off-the-shelf dictionary, domain vocabulary and ngram frequency231

from general, synthesized and domain vocabularies). It is important to note that the TP (Er-232

rors detected as errors) is high for the baseline in this case as compared to TP for baseline233

in other domains. However, TN (Correct words detected as correct) for the dictionary lookup234

baselines are however close to each other for all domains as shown in row 1 of Table 3 and row235

Approach TP FP TN FN Prec. Recall F-Score

1. Vedānta gen. dict. lookup
baseline 85.52 34.35 65.65 14.48 49.71 85.52 62.87

2. Vedānta Plug-in Classifier 79.95 9.80 90.20 20.05 77.95 79.95 78.94

3. Sāhitya gen. dict. lookup
baseline 64.24 35.36 64.64 35.76 32.86 64.24 43.49

4. Sāhitya Plug-in Classifier 87.88 13.37 86.62 12.12 66.52 87.88 75.72

Table 6: ML Classifier’s Error Detection Results for other domains. Above results shows the
generality of the model for different domains of Sanskrit literature.

1 and row 3 of Table 6. The reason for high TN could be less ambiguity (as compared to other236

domains) in incorrect words, since TP (unlike TN) does not depend on the presence of correct237

OCR words in dictionary. Hence we are getting F-score as high as 62.87 for the baseline in238

this case. We also evaluated the system for Sāhitya domain. For this we have used the book239

‘Raghuvaṃśam Sanjīvinīsametam’ (Nirṇaya Sāgara Press, 1929, 1-9 Sarga) and row 3 in table240

6 shows the baseline, whereas row 4 shows the results obtained using our framework.241

4.4 Deep Neural Network based approaches242

Approach TP FP TN FN Prec. Recall F-Score
1. LSTM with fixed delay* 92.64 5.45 94.54 7.36 94.84 92.64 93.72
2. Char. level Attention model 81.53 7.74 92.26 18.47 91.92 81.53 86.41

Table 7: Neural Network’s Error Detection Results. (*state of the art (Saluja et al., 2017a))

Here, in Table 7, we present the results for the approaches described in Sections 3.2 and 3.3243

for 86k pairs used in (Saluja et al., 2017a) with 64:16:20 as train:val:test split. The first row244

shows the Sanskrit results from (Saluja et al., 2017a). The second row present the results for245

character level attention model. For attention model, we use characters from OCR word and its246

preceding OCR word (as context) at input and characters from correct word at output. We tried247

other contexts at input as well. Using the context of characters from one word gave optimized248

F-Score.249

F-scores show that, using these approaches we can outperform all other ML techniques, but250

requires large amount of training data for generic adaptations. Since, these models learn er-251

ror patterns and language based on dataset, if the test data differs (in terms of OCR confu-252

sions/system and/or domain from training data), we can make use of approaches mentioned in253

the previous sections. Since Plug-in-classifier is uses general auxiliary sources, we recommend254

to use it for practical purposes.255

5 Suggestion Generation256

The results for various ways of exploiting auxiliary sources, to generate appropriate suggestions,257

are given in (Saluja et al., 2017b) for “Āryabhaṭīyabhāṣya of Nīlakaṇṭha III Golapāda(1957)”.258

Here, in Table 8, we show the improvement in results due to adaptations of do-259

main dictionary and OCR Confusions on-the-fly for “Āryabhaṭīyabhāṣya of Nīlakaṇṭha III260

Kālakriyāpāda(AnantaśayanaSaṃskṛtaGranthāvaliḥ, 1931)”.261

We synthetically generated word images for the words in Sanskrit dictionaries, and OCR-262

ed them using ind.senz (Indsenz,), and extracted around 0.5 million erroneous-correct word263

pairs. We used the longest common subsequence algorithm (Hirschberg, 1977) for generating264

around 0.78 million OCR character confusions. The row 1 of Table 8 shows the total percentage265

of correct suggestions obtained using various auxiliary sources with i) words common to dual266

Sources Included Percentage of Correct Suggestions
Domain words with dual OCR agreement
+ Synthesized Confusions 36.26
Prev. + adapting Domain Words/Page 36.38
Prev. + adapting Confusions/Page 37.14
Prev. - Synthesized + Real Confusions 39.40

Table 8: Improvement in Suggestions with Adaptive sources for “Āryabhaṭīyabhāṣya of
Nīlakaṇṭha III Kālakriyāpāda(AnantaśayanaSaṃskṛtaGranthāvaliḥ, 1931)”.

OCR systems as Domain Vocabulary throughout the document and ii) obtained synthesized267

confusions. As shown in row 2, we further improved the quality of suggestions by uploading268

the corrected domain words on-the-fly after the user corrects the page. Adapting the confusions269

on-the-fly page by page further improved results as shown in row 3. Using real confusions from270

the primary OCR text and ground truth from other books further helped in improving results271

as shown in row 4 of Table 8.272

6 Conclusions273

In this paper we demonstrate different ML approaches for Sanskrit OCR corrections. Our274

framework leverages synthesized dictionary, n-gram error confusions and domain vocabularies.275

Error confusions and domain specific vocabularies grow on-the-fly with user corrections. We276

have presented a multi-engine environment which is useful in detecting potential errors. Using277

various auxiliary sources along with plug-in classifier we succeed in achieving F-Scores better278

than (Saluja et al., 2017b). LSTM with fixed delay is outperforming other approaches. Deep279

neural network based approaches, however, require higher level resources like GPU and large280

amount of training data. Our system is able to generate correct suggestions for the errors having281

edit distance as high as 15. As shown in (Saluja et al., 2017b), our GUI is able to reduce the282

overall cognitive load of the user by providing adequate color coding, generating suggestions and283

auto-correcting similar erroneous words. For Sandhi splitting using Saṃsādhanī’s सििविेदका2284

can be a better option than the greedy approach which can be considered for future enhancement285

to the framework.286

References287

Ahmad Abdulkader and Matthew R. Casey. 2009. Low cost correction of ocr errors using learning in a288
multi-engine environment. In Proceedings of the 10th international conference on document analysis289
and recognition.290

Bhaṭṭojī Dīkṣita, Vāsudeva Dīkṣita, and Jñānendra Sarasvatī. 2006. Vaiyākaraṇasiddhāntakaumudī with291
the commentary Bālamanoramā and Tattvabodhinī. Motilal Banarasidas.292

GRETIL. -Göttingen Register of Electronic Texts in Indian Languages. http://gretil.sub.uni-293
goettingen.de/gretil.htm.294

Daniel S Hirschberg. 1977. Algorithms for the longest common subsequence problem. Journal of the295
ACM (JACM), 24(4):664–675.296

Indsenz. SanskritOCR. http://www.indsenz.com/. Last accessed on 09/15/2017.297

Harikrishna Narasimhan, Rohit Vaish, and Shivani Agarwal. 2014. On the statistical consistency of298
plug-in classifiers for non-decomposable performance measures. In Proceedings of NIPS.299

Dhaval Patel and Shivakumari Katuri. 2015a. Prakriyāpradarśinī - an open source subanta generator.300
In 16th World Sanskrit Conference.301

2ससंाधनी - सििविेदका http://scl.samsaadhanii.in/ by Amba Kulkarni

Dhaval Patel and Sivakumari Katuri. 2015b. Subanta generator.302
http://www.sanskritworld.in/sanskrittool/SanskritVerb/subanta.html. Last accessed on 09/30/2017.303

R. Polikar. 2006. Ensemble based systems in decision making. In IEEE Circuits and Systems Magazine.304

Rohit Saluja, Devaraj Adiga, Parag Chaudhuri, Ganesh Ramakrishnan, and Mark Carman. 2017a. Error305
detection and corrections in Indic OCR using LSTMs. International Conference on Document Analysis306
and Recognition (ICDAR).307

Rohit Saluja, Devaraj Adiga, Parag Chaudhuri, Ganesh Ramakrishnan, and Mark Carman. 2017b. A308
framework for document specific error detection and corrections in Indic OCR. 1st International309
Workshop on Open Services and Tools for Document Analysis (ICDAR- OST).310

Naveen Sankaran and C.V. Jawahar. 2013. Error detection in highly inflectional languages. In Pro-311
ceedings of 12th International Conference on Document Analysis and Recognition, pages 1135–1139.312
IEEE.313

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional recurrent neural networks. In IEEE Transac-314
tions on Signal Processing.315

Sachin S. Talathi and Aniket Vartak. 2014. Improving performance of recurrent neural network with316
relu nonlinearity. In In the International Conference on Learning Representations workshop track.317

Casey Whitelaw, Ben Hutchinson, Grace Y Chung, and Gerard Ellis. 2009. Using the web for language318
independent spellchecking and autocorrection. In Proceedings of the Conference on Empirical Methods319
in Natural Language Processing: Volume 2, pages 890–899. Association for Computational Linguistics.320

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y. Ng. 2016. Neural language321
correction with character-based attention. arXiv preprint arXiv:1603.09727.322

