
A Comparative Study of Alternative Middle Tier

Caching Solutions to Support Dynamic Web Content

Acceleration

Anindya Datta, Kaushik Dutta, Helen Thomas, Debra VanderMeer
Chutney Technologies and Georgia Tech

fanindya,kaushik,helen,debg@chutneytech.com

Krithi Ramamritham
IIT Bombay and Univ. of Mass.

krithi@cse.iitb.ernet.in

Dan Fishman
BEA Systems
danf@bea.com

1 Introduction

E-business sites are increasingly utilizing dynamic web
pages since they enable a much wider range of in-
teraction than static HTML pages can provide. Dy-
namic page generation technologies allow a Web site
to generate pages at run-time, based on various pa-
rameters. Delaying content decisions until run-time
a�ords a Web site signi�cant exibility in customiz-
ing page content, thereby enriching users' Web expe-
riences. At the same time, however, dynamic page
generation technologies have resulted in serious per-
formance problems due to the increased load placed
on the server-side infrastructure. Consequently, end
users experience increased response times. According
to recent research [1], 40% of the total page deliv-
ery delay experienced by end users can be attributed
to server-side latency. As server-side techniques such
as dynamic page generation techologies become more
widespread, this percentage will only increase.

There has been very little work so far to address
the delays associated with dynamic page generation.
One proposed approach is to cache entire pages of dy-
namically generated content (e.g., [3, 5]). However,
caching dynamically generated pages in this manner
is infeasible, since two calls to the same script with
the same input parameters are not guaranteed to pro-
duce the same output. Our approach to this problem

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,

Roma, Italy, 2001

is to cache fragments or components of dynamically
generated pages. Consider a dynamically generated
page in an online news site. This page may consist
of a Current Headlines component, a Navigation Bar
component, an Ad component, and perhaps a Person-
alized component, (e.g., containing a personal greeting
for the returning visitor). Even though the Personal-
ized and Ad components are likely to be di�erent for
each request, the Current Headlines and Navigation
components will likely be the same across all requests,
and therefore, can be cached to serve future requests.

Based on this notion, we have built a dynamic
content accelerator, a server-side caching engine that
caches such dynamic page fragments in order to reduce
dynamic page generation processing delays on a Web
site. The novelty of our approach lies not only in the
caching of dynamic page fragments, but also in the
intelligent cache management strategies utilized. In
particular, we have developed a set of prediction-based
and observation-based techniques that are used in both
cache replacement and cache invalidation. The end re-
sult is a substantial reduction in processing load on the
web/application server, allowing the server to handle
signi�cantly higher user loads. In a later section, we
present performance results which demonstrate that
our solution signi�cantly outperforms existing middle
tier caching solutions.

2 Background and Related Work

Dynamic scripting technologies, such as Active Server
Pages (ASP) (www.microsoft.com) and Java Server
Pages (JSP) (www.sun.com), allow Web sites to as-
semble pages \on the y" based on various run-time
parameters in an attempt to tailor content to each in-
dividual user. A major disadvantage of such dynamic



scripting technologies, however, is that they reduce
Web and application server scalability because of the
additional load placed on the Web/application server.
In addition to pure script execution overhead, the de-
lays caused by dynamic scripting technologies include:
delays due to fetching content from persistent storage
(e.g., database systems), delays due to data transfor-
mations (e.g., XML to HTML transformations), and
delays due to executing business logic (e.g., personal-
ization software).

There has been very little work so far to address
the problem of dynamic page generation delays. As
mentioned previously, one approach is to cache entire
pages of dynamically generated content (e.g., [3, 5]).
Clearly, this approach has very limited applicability
since two identical requests for the same script are
not guaranteed to produce the same output. Another
recent approach proposes a 3-tier customizable cache
system which supports data materialization at various
levels, such as database output, XML or HTML frag-
ments [4]. A major limitation of this approach is that
it requires that the site be designed using a particular
declarative web site speci�cation language.

A number of commercial dynamic con-
tent caching solutions are beginning to enter
the market. Dynamai (www.dynamai.com),
SpiderCache (www.spidercache.com), and
XCache (www.xcache.com) are all solutions that
cache dynamically generated pages, essentially
commercializing the work described in [3], and suf-
fering from the same limitations. Another class of
commercial solutions that can be used to mitigate
page generation delays are middle tier database
caching solutions. These products include main
memory database solutions from vendors such as
TimesTen (www.timesten.com), and application
server-speci�c solutions such as the Oracle 9-i
Cache (www.oracle.com). These solutions can miti-
gate local database access latency by caching database
tables. However, these solutions do not a�ect other
types of delay associated with page generation, such
as XML to HTML transformations. Furthermore,
these solutions do not remove the need to establish a
database connection, perhaps the scarcest resource on
high-traÆc, data-intensive Web sites.

3 Our Solution

Our Dynamic Content Acceleration (DCA) solution
utilizes a fragment-level caching approach which fo-
cuses on re-using HTML fragments of dynamic pages.
A dynamic script typically consists of a number of
code blocks, where each code block performs some work
that is required to generate the page and produces
an HTML fragment as output. A write to out state-
ment, which follows each code block, places the re-
sulting HTML fragment in a bu�er. When a dynamic
script runs, each code block is executed and the re-

sulting HTML fragment placed in the bu�er. Once all
code blocks have executed, the entire HTML page is
sent as a stream to the user. A high-level depiction
of the dynamic scripting process for our earlier news
page example is shown in Figure 1A.

As indicated by the dotted lines in the �gure, each
code block corresponds to a component. If we know
that the Current Headlines and Navigation compo-
nents are reusable, we may choose to cache these com-
ponents. This is accomplished by marking or tagging
the corresponding code blocks within the script. When
the script is executed, the tags instruct the applica-
tion server to �rst check the cache before executing
the code block. If the requested fragment is found in
cache, then the code block logic is bypassed. If the re-
quested fragment is not found in cache, then the code
block is executed and the requested fragment is gen-
erated and subsequently placed in the cache.

A critical aspect of any caching solution is cache
management. As the cache becomes full, the e�ec-
tiveness of the cache replacement policy dictates the
hit rates of the cache, and thus its performance. Our
cache replacement algorithm, which we refer to as
Least Likely to be Used (LLU), is based on a predictive
technique. When choosing a replacement \victim", it
takes into account not only how recently a cached item
has been referenced, but also whether any user is likely
to need the item in the near future. Also, as the under-
lying source data changes, some mechanism is required
to keep the cached components fresh. Our solution
supports several existing invalidation techniques (e.g.,
time-based and event-based invalidation) which have
been adapted to work in the context of our component-
level cache. We have also developed additional invali-
dation techniques, such as observation-based invalida-
tion, which observes changes to data without contact-
ing the data source.

A simpli�ed depiction (without routers, �rewalls,
etc.) of an end-to-end web site architecture is shown in
Figure 1B. As the �gure shows, the DCA sits adjacent
to the server rack, along with other resources, such as
site content databases.

4 Performance Results

In this section, we present the results of a set of tests in
which we demonstrate the performance of our caching
solution. The metrics recorded in our tests are aver-
age page generation time and average response time.
The average page generation time measures the page
generation latency and is the average time required to
construct a complete HTML page. Response time is
an important metric from the user's perspective, and
is the end-to-end delay in delivering an HTML page,
including the time required to fetch rich content.

The test site used for these experiments is a catalog-
based e-commerce site (a variant of Bluestone Soft-
ware's Sonic site). The pages in the site are gen-



Code Block

Code Block

Code Block

Write to Out

Write to Out

Write to Out

Dynamic Script

Navigation
Component

Current Headlines
Component

Personalized
Component

����������
����������
����������
����������

����������
����������
����������
����������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������

Dynamically Generated Page

Ad Component

[A]

Client

Client

Client Dynamic Content
Accelerator

C
om

m
un

ic
at

io
ns

M
an

ag
er

Cache
Manager

Cache

Content

C
lie

nt
 A

PI
C

lie
nt

 A
PI

Server Rack

[B]

Figure 1: Dynamic Scripting Process and Architecture

erated using JSP scripts, which retrieve the prod-
uct catalog data from a database. The site content
database is based on the Dublin Core Metadata Open
Standard (http://purl.org/dc), and contains approxi-
mately 200,000 products and 44,000 categories. Each
page in the site consists of three components, where
each component invokes a call to the database.

For the comparison, the two products we have
selected are (1) a main memory database solution,
TimesTen, and (2) an application server caching so-
lution, BEA's WebLogic Server JSP Cache tags (WLS
Cache). In these experiments, the TimesTen cache
is large enough to hold the entire database so that
no disk accesses will be required. For both the WLS
Cache and DCA solutions, two page components are
marked as cacheable.

A clustered web/application server architecture is
used. The web/application server cluster consists
of two server-class Intel-based machines, each having
1 GB RAM and dual Pentium III 933 Mhz processors,
running WebLogic 6.0 on a Windows 2000 Advanced
Server platform. The content database resides on a
similar machine running Oracle 8.1.6. All other ma-
chines are Pentium III-600 machines having 512 MB
RAM running Windows 2000 Advanced Server.

User load is varied by sending requests
from client machines using RadView's We-
bLoad (www.radview.com). To model the locality
that is often present in site navigation patterns, user
navigation is simulated according to a Zipf 80-20
distribution (i.e., 80% of the users follow 20% of the
navigation links). The DCA cache size, the percentage
of fragments or components that �t in cache, is 0.75
(i.e., 75% of the total number of fragments may reside
in the cache). Finally, the cache replacement policy
used is LLU.

The baseline results are shown in Figure 2a. This
�gure shows page generation times (in milliseconds) as
load is varied from 1 to 1000 users for each of the solu-
tions under consideration, as well as the No Cache case
(the uppermost curve). Each of the four curves ex-
hibits an increasing trend as load increases. However,
the rate of increase di�ers among the curves, which we
now discuss in more detail.

As expected, the DCA case outperforms the No
Cache case by a signi�cant margin, ranging from about
an 8 times improvement for low loads (e.g., 100 users)
to about a 19 times improvement for higher loads (e.g.,
1000 users).

The TimesTen case does provide some improvement
in page generation times over the No Cache case. For
the most part, the TimesTen solution reduces page
generation times by about half. This reduction is
due to the fact that no disk access is required (recall
that the entire database is cached in this case). How-
ever, the TimesTen solution does not perform nearly
as well as the DCA solution. At low loads (e.g., 100
users), the DCA case outperforms the TimesTen case
by about a factor of 4, while for higher loads (e.g.,
1000 users), DCA outperforms TimesTen by about 11
times. This phenomenon can be explained by the fact
that TimesTen does not address many of the delays
associated with dynamic page generation.

The WLS Cache solution also provides improve-
ment in page generation times and outperforms the
TimesTen solution. The WLS Cache solution is es-
pecially interesting because, like the DCA solution, it
also takes the approach of caching HTML fragments.
However, the DCA case outperforms the WLS Cache
case. The di�erence in performance occurs mostly at
medium to higher loads. For instance, at a load of
500 users, the DCA solution is about 3 times faster
than WLS Cache, and at a load of 1000 users, DCA
is nearly 7 times faster than WLS Cache. The di�er-
ence in performance is primarily due to architectural
di�erences. For instance, one major di�erence is that
the WLS Cache runs in the same process space as the
WebLogic application server. Thus, the caching oper-
ations compete with the numerous other application
server tasks for both CPU and memory resources. In
addition, since this is a clustered environment, WLS
Cache utilizes multiple caches. This results in redun-
dancy of information across the caches, causing poor
memory utilization. The DCA solution, on the other
hand, does not su�er from these problems since it runs
as a single logical cache instance, separate from the ap-
plication server.

We now examine the impact of varying the cache re-



0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

P
ag

e 
G

en
er

at
io

n 
T

im
e 

(m
ill

is
ec

on
ds

)

Load (Number of Users)

No Cache
TimesTen

WLS Cache
DCA

(a) DCA vs. other Caching Middleware

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

P
ag

e 
G

en
er

at
io

n 
T

im
e 

(m
ill

is
ec

on
ds

)

Load (Number of Users)

LLU
LRU

(b) Sensitivity to Cache Replacement Policy

Figure 2: Comparison Results: Baseline and Sensitivity to Replacement Policy

placement policy. In particular, we compare the per-
formance of the LLU cache replacement policy with
that of the commonly used LRU policy. Figure 2b
shows the resulting page generation times. Interest-
ingly, LLU outperforms LRU over the entire range.
The di�erence ranges from about a 1.5 times improve-
ment for a single user, to a more than 3.5 times im-
provement for 1000 users. The better performance of
LLU can be explained by the additional information
(e.g., historical site visitation patterns, current loca-
tion of users) that the algorithm utilizes in making
replacement decisions. Additional sensitivity results
can be found in [2].

5 Conclusion

As e-business sites increasingly adopt dynamic page
generation technologies, web and application server
scalability is signi�cantly reduced because of the ad-
ditional load placed on these servers. In response to
this problem of dynamic page generation latency, we
have developed a Dynamic Content Accelerator. This
fragment-level caching solution, combined with intel-
ligent cache management strategies, can signi�cantly
reduce the processing load on the web/application
server, allowing the server to handle higher user loads.
Our performance results indicate that our solution sig-
ni�cantly outperforms existing middle tier caching so-
lutions.

References

[1] Microsoft Corp. C. Huitema. Network vs. server issues
in end-to-end performance. Keynote address, Perfor-
mance and Architecture of Web Servers Workshop, held
in conjunction with ACM SIGMETRICS, June 2000.

[2] A. Datta, K. Dutta, D. Fishman, K. Ramamritham,
H. Thomas, and D. VanderMeer. Dynamic page gen-
eration delays and the role of chutney's acceleration

solution. Technical Report CIR-0012, Chutney Tech-
nologies, Inc., February 2001.

[3] A. Iyengar and J. Challenger. Improving web server
performance by caching dynamic data. In Proceedings

of the USENIX Symposium on Internet Technologies

and Systems, December 1997.

[4] Khaled Yagoub, Daniela Florescu, Val�erie Issarny, and
Patrick Valduriez. Caching strategies for data-intensive
web sites. In VLDB 2000, Proceedings of 26th Interna-

tional Conference on Very Large Data Bases, Septem-

ber 10-14, 2000, Cairo, Egypt, pages 188{199. Morgan
Kaufmann, 2000.

[5] H. Zhu and T. Yang. Cachuma: Class-based cache
management for dynamic web content. Technical Re-
port TRCS00-13, Dept. of Computer Science, The Uni-
versity of California at Santa Barbara, June 2000.


