Circuit Garbling and Yao's 2-party Computation

School on Secure Multiparty Computation

Arpita Patra

© Arpita Patra

Roadmap

- Yao's millionaire's problem- triggered fundamental area of secure computation
- Generic secure 2-party computation (2PC)
 - Security goal
- Yao's 2PC
 - Garbled circuit
 - Oblivious Transfer
- Tracing the journey of garbled circuits and some open questions

Yao's Millionaires' Problem

?

<

>

Protocols for Secure Computations (Extended Abstract). FOCS 1982: 160-164

Turing award winner Andrew Yao

Yao's millionaires' problem

₹X

₹Y

Find the richer without disclosing exact value of individual assets

- Mutually distrusting entities with individual private data

- Want to compute a joint function of their inputs without revealing anything beyond

Secure Multiparty Computation (MPC)

MPC – holy grail

Setup:

- **n** parties P₁,...,P_n; 'some' are corrupted
- P_i has private input x_i
- A common n-input function f

Goals:

- **Correctness:** Compute $f(x_1, x_2, ..., x_n)$
- Privacy: Nothing beyond function output must be leaked

Applications: (Dual need of data privacy & data usability)

Preventing Satellite Collision

E-auction Data Analytics

Privacy-preserving ML

Outsourcing E-voting

Application of 2PC- Privacy-preserving Data mining

- How many patients suffering from AIDS in total ?
- Are there any common patient registered for disease X in all the hospitals ?
- Varieties of other statistics ...

AIIIVIS (All India Institute of Medical Sciences)

Can Stock Photo - csp10117894

How to solve 2PC?

- Trusted third party (TTP) \rightarrow solution for secure 2PC
 - Send input to TTP, obtain function output : Ideal solution

IDEAL world secure 2PC protocol

TTPs exist only in fairy tales!!

Security goal of 2PC

- Goal of a secure 2PC protocol : emulate the role of a TTP
 - De-centralizing the trust

Circuit Representation of function

- Circuit abstraction
 - f : represented as a Boolean circuit C
 - Any efficiently computable f can be represented as a C
 - C: DAG with input gates, output gates and internal Boolean gates ((AND, OR, NOT), (NAND), (NOR): universal gates)

Circuit Abstraction Example: \geq

• X, Y: L-bit non-negative integers

Circuit Garbling

What we do?

- Encode/Garble the circuit
- Encode input
- Evaluate encoded circuit on encoded input and get encoded output
- Decode output using decoding information

What is the goal?

- Nothing beyond function output is leaked
 - ✓ Preserves input privacy
 - No leaking of intermediate gate outputs
 - No leaking of output if decoding info is withheld

Yao: secure circuit evaluation

- Parties jointly evaluate the circuit securely
- Only final outcome revealed during evaluation
- Intermediate values remain private

The making of Garbled Circuit

Evaluating a Garbled circuit vs. Evaluating a circuit

Is all Okay?

Replacing key-box with Cryptographic Mechanisms

Evaluating a Garbled circuit vs. Evaluating a circuit

Something may be wrong...

Making things all right...

(G,E,D) has `special correctness'

 for two distinct keys (k₁,k₂), encryption under k₁ will result in ⊥ when decrypted under k₂ (with overwhelming probability)

$$\Pr\left[D_{k_2}\left(E_{k_1}(m)\right) \neq \bot\right] \leq \mathcal{E}(n) \quad \forall m$$

(G, E, D) = Symmetric Key Encryption (SKE)

Evaluating Garbled circuit vs. Evaluating a circuit

(G, E, D) = Symmetric Key Encryption (SKE) with `special correctness'

What security from SKE is needed?

- an **bad** evaluator should have no info about what the three unopened ciphertext contain

 - if it can guess the unopened message are same for an AND gate, then it knows the meaning of the key it decrypted!

+ `chosen double ciphertext security'

(G, E, D) = Symmetric Key Encryption (SKE) with `special correctness'

Oblivious Transfer

Yao's 2-Party Protocol

Ζ

- Garbled Circuit + decoding information
- The keys for X

$$\begin{array}{c} k^{0}_{1} \\ k^{1}_{1} \end{array} \xrightarrow{\mathbf{OT}_{1}} \begin{array}{c} \mathbf{Y}_{1} \\ k^{y^{1}}_{1} \end{array}$$

$$\overset{k^{0}_{k}}{\overset{k^{1}_{k}}{\overset{k^{k}}}}\overset{k^{k}_{k}}{\overset{k^{k}_{k}}}}}}}}$$

Circuit Garbling- Tracing the history

- Point-and-permute [NPS99]: No `special correctness' needed
 - Only one ciphertext needs to be decrypted

- Garbled Row Reduction:

- [NPS99]: 4-to-3 ciphertexts
- [PSSW09,GNLP15,ZRE15]: 4-to-2 ciphertexts (optimal for AND)
- [KKKS15]: 4 bits (for formulaic circuits)
- [Kol05]: 0 bits (for formulaic circuits + key length dependent on depth)
- Free XOR/FleXOR [KS08,KMR14]: No ciphertext and no crypto operations for XOR gates

- From technique to primitive [BHR12a,BHR12b]: Privacy, Obliviousness, Authenticity and verifiability

- Applications in ZK, outsourcing computation [JKO13]: Privacy-free GC

Stay tuned to our reading group

Disaster (Deading Travelling Versus India Comparing) Mr. Comparington

				Blogging/Reading	Traveiling	Know India Campaign!	My Co-conspirator
Arpita Patra	HOME	RESEARCH	TEACHING	PROFESSIONAL ACTIVITIES	STUDENTS	6 RECOGNITIONS	PHOTOGRAPHY
Session 1	 Speaker: Ya Logistics: 8 Theme: Fo Description References 	ash 3 March 201 undations. n: Recap of I s: [BHR12a,]	7, 3:30-6 pm, notation and BHR12b].	, CrIS Lab (Room 329, CS language of garbled circ	A, IISc) cuits		
Session 2	 Speaker: D Logistics: 1 Theme: Yac Description References 	ivya, Swati 2 March 20 o's scheme a n: Consisten s: [LP09]	17, 10:00 am and proof t notation fo	- 1 pm, CrIS Lab (Room r Yao's garbling scheme	329, CSA, and simul	IISc) ation	
Session 3	 Speaker: P Logistics: 1 Theme: Op Description References 	ratik, Swati, 6 March 20 otimizations n: Historical s: [NPS99,KS	Rishabh 17, 3:00 - 6 p GC optimiza 08, PSSW09,	m, CrIS Lab (Room 329, tions KMR14, KKKS15]	CSA, IISc)		

Circuit Garbling- Recent Results

- Size-zero Privacy-free Garbled circuits for Formulas [KP17]: Under submission
- Zero knowledge Protocols from Garbled circuits [GKPS17]: Under submission
 - 3,2 and 1 round protocols
 - Any private garbled circuits is also authentic
- Non-interactive Secure Computation [PS17]: Under submission

