Oblivious Transfer (OT) and OT Extension

School on Secure Multiparty Computation

Arpita Patra

Computer Science and Automation

Roadmap

- Oblivious Transfer
- Construction from `special' PKE
- OT Extension
- IKNP OT extension
- Tracing the journey of OT extension and some open questions

Oblivious Transfer

- Complete for MPC
- Used in both traditional approaches: Yao (per input) and GMW (per AND gate)
- OT forms the basis for most of the practical MPCs/2PCs, special purpose problems PSI
- OTs are intrinsically expensive- usually based on public key primitives
- AES Circuit: Millions of AND gates

Setting the stage for OT Extension

- X (task/object): executing/generating X is not very efficient
- Small no. $X \rightarrow$ many no. X
- PRG: Truly Random short Seed \rightarrow huge (pseudo-)random string

- Hybrid Encryption (HE): one instance of PKE \rightarrow many instances of PKE @ SKE operations

OT Extension: From small to many

> OT Ext is not possible information theoretically [Bea96]
> OT Ext implies OWF [LZ13]
k: security parameter

Roadmap for Building OT Extension [IKNP03]

k bit
inputs

m (=poly(k)) >k bit inputs

Domain Extension
OT Extension
k OTs with
k bit inputs
k OTs with
$m>k$ bit inputs

Transformation I: Domain Extension

Roadmap for Building OT Extension [IKNP03]

k bit inputs

OT_{2}
 OT_{k}

m (=poly(k)) >k bit inputs

Domain Extension
k OTs with k bit inputs

$$
\begin{gathered}
\text { k OTs with } \\
m>k \text { bit inputs }
\end{gathered}
$$

I bit
inputs

OT Extension
m OTs with $\mathrm{m}>\mathrm{k}$ bit inputs

Transformation II: OT Extension

$$
Q=\left(\begin{array}{l}
Q_{1}=T_{1}\left(\text { if } b_{1}=0\right) / T_{1}+S \text { (otherwise) } \\
Q_{2}=T_{2}\left(\text { if } b_{2}=0\right) / T_{2}+S \text { (otherwise) } \\
Q_{m}=T_{m}\left(\text { if } b_{m}=0\right) / T_{m}+S \text { (otherwise) }
\end{array}\right)
$$

$T=\left(\begin{array}{l}T_{1} \\ T_{2} \\ \cdot \\ T_{m}\end{array}\right)$

Random S is known to P_{0} only

$$
\left|T_{i}\right|=k
$$

Transformation II: OT Extension

$$
\begin{aligned}
& \text { Po There's a Bug! } \\
& \mathrm{x}_{10} \\
& \begin{array}{l}
x_{11} \\
x_{20} \\
x_{21}
\end{array} \quad Q=\left(\begin{array}{l}
\left.Q_{1}=T_{1} \text { (if } b_{1}=0\right) / T_{1}+S \text { (otherwise) } \\
Q_{2}=T_{2}\left(\text { if } b_{2}=0\right) / T_{2}+S \text { (otherwise) } \\
\left.Q_{m}=T_{m} \text { (if } b_{m}=0\right) / T_{m}+S \text { (otherwise) }
\end{array}\right) \\
& x_{m 0} \\
& \mathrm{x}_{\mathrm{m} 1} \\
& \mathrm{y}_{10}=\mathrm{Q}_{1}+\mathrm{x}_{10} \\
& y_{11}=Q_{1}+S+x_{11} \\
& y_{m 0}=Q_{m}+x_{m 0} \\
& \mathrm{y}_{\mathrm{m} 1}=\mathrm{Q}_{\mathrm{m}}+\mathrm{S}+\mathrm{x}_{\mathrm{m} 1}
\end{aligned}
$$

Transformation II: OT Extension

Transformation II: OT Extension

Random S is known to P_{0} only

$$
\left|T_{i}\right|=k
$$

Transformation II: OT Extension

T is a $\{0,1\}^{\mathrm{m} . \mathrm{k}}$ matrix
$\mathrm{T}=\left[\mathrm{T}^{1}, \ldots . . \mathrm{T}^{\mathrm{k}}\right]$
$\mathrm{T}=\left(\begin{array}{l}\mathrm{T}_{1} \\ \mathrm{~T}_{2}\end{array}\right]$

Transformation II: OT Extension

Transformation II: Putting everything together

X_{10}
$\begin{array}{ll}x_{11} & Q \text { is a }\{0,1\}^{m \cdot k} \text { matrix } \\ x_{20} & Q=\left[Q^{1}, \ldots . . Q^{k}\right] \\ x_{21} & Q=\left(\begin{array}{l}Q_{1} \\ Q_{2} \\ a_{1} \\ Q_{k}\end{array}\right]^{2} \\ x_{m 1} & \end{array}$

$$
\mathrm{x}_{1 \mathrm{~b} 1}=\mathrm{H}\left(1, \mathrm{~T}_{1}\right)+\mathrm{y}_{1 \mathrm{~b} 1}
$$

$$
\mathrm{y}_{10}=\mathrm{H}\left(1, \mathrm{Q}_{1}\right)+\mathrm{x}_{10}
$$

T is a $\{0,1\}^{\mathrm{m} . \mathrm{k}}$ matrix
$\mathrm{T}=\left[\mathrm{T}^{1}\right.$
$T=\left(\begin{array}{l}T_{1} \\ T_{2} \\ \cdot \\ T_{k}\end{array}\right)$

$$
y_{11}=H\left(1, Q_{1}+S\right)+x_{11}
$$

$$
y_{m 0}=H\left(m, Q_{m}\right)+x_{m 0}
$$

$$
\left(\mathrm{y}_{10}, \mathrm{y}_{11}\right) \ldots \ldots . .\left(\mathrm{y}_{\mathrm{m} 0}, \mathrm{y}_{\mathrm{m} 1}\right)
$$

$$
y_{m 1}=H\left(1, Q_{m}+S\right)+x_{m 1}
$$

Roadmap for Building OT Extension [IKNP03]

k bit
inputs

m (=poly(k)) >k bit inputs

Domain Extension
OT Extension
k OTs with
k bit inputs
k OTs with
$m>k$ bit inputs

Security For Receiver

X_{10}

x_{11}	Q is a $\{0,1\}^{m \cdot k}$ matrix
x_{20}	$Q=\left[Q^{1}, \ldots . . Q^{k}\right]$
x_{21}	$Q=\left\{\begin{array}{l}Q_{1} \\ Q_{2} \\ \cdot \\ Q_{k}\end{array}\right]^{x_{m 0}}$
$x_{m 1}$	

$$
\mathrm{y}_{10}=\mathrm{H}\left(1, \mathrm{Q}_{1}\right)+\mathrm{x}_{10}
$$

$$
y_{11}=H\left(1, Q_{1}+S\right)+x_{11}
$$

$$
\mathrm{y}_{\mathrm{m} 0}=\mathrm{H}\left(\mathrm{~m}, \mathrm{Q}_{\mathrm{m}}\right)+\mathrm{x}_{\mathrm{m0}}
$$

$$
y_{m 1}=H\left(1, Q_{m}+S\right)+x_{m 1}
$$

T is a $\{0,1\}^{\text {m.k }}$ matrix

$\mathrm{T}=\mathrm{T}_{1}$
T_{2}

$$
\mathrm{x}_{1 \mathrm{~b} 1}=\mathrm{H}\left(1, \mathrm{~T}_{1}\right)+\mathrm{y}_{1 \mathrm{~b} 1}
$$

Reduces to the sender's security of $\mathrm{OT}_{1} \ldots \mathrm{OT}_{\mathrm{k}}$

Security For Sender

[IKNP03]: Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In CRYPTO ,pages 145-161, 2003.

$\mathbf{P}_{\mathbf{0}}$	
x_{10}	
x_{11}	Q is a $\{0,1\}^{\text {m.k }}$ matrix
x_{20}	$Q=\left[Q^{1}, \ldots . Q^{k}\right]$
x_{21}	$Q=\left[\begin{array}{l}Q_{1} \\ Q_{2} \\ Q_{2} \\ Q_{k}\end{array}\right]$
$x_{m 0}$	
$x_{m 1}$	

$$
B=\left[b_{1}, \ldots b_{m}\right]
$$

$$
\mathrm{T} \text { is a }\{0,1\}^{\mathrm{m} . \mathrm{k}} \text { matrix }
$$

$$
\mathrm{T}=\left[\mathrm{T}^{1}, \ldots . . \mathrm{T}^{\mathrm{k}}\right]
$$

$$
\mathrm{T}=\left(\begin{array}{l}
\mathrm{T}_{1} \\
\mathrm{~T}_{2} \\
\cdot \\
\mathrm{~T}_{\mathrm{k}}
\end{array}\right)
$$

Reduces to the receiver's security of OT_{1}

$$
x_{1 b 1}=H\left(1, T_{1}\right)+y_{1 b 1}
$$

$$
\begin{aligned}
& y_{10}=H\left(1, Q_{1}\right)+x_{10} \\
& y_{11}=H\left(1, Q_{1}+S\right)+x_{11}
\end{aligned}
$$

$$
y_{m 0}=H\left(m, Q_{m}\right)+x_{m 0}
$$

$$
y_{m 1}=H\left(1, Q_{m}+S\right)+x_{m 1}
$$

IKNP and Its Successors

KK13 and Its Successors

Used in PSI, PIR etc

Semi-honest: KK13
Active: PSS17, OOS17
k: security parameter

OT Study Group

The list will be updated as and when needed.
| Basic Definitions \& Reductions | Meeting 1 (18.05.15; 11am-1pm) | Leaders: Abhishek, Ajith, Priyanka|

- 1-out-of-2 OT, Rabin OT, equivalence: [Ost_LN],[Cramer_LN], [Crepeau87]
- 1-out-of-n OT, k-out-of-n OT, Reduction to 1-out-of-2 OT [Katz_LN],[Cramer_LN]
- Reducing 1-out-of-2 OT to Random OT: [WW06], [Lin09],[Katz_LN]
- Symmetricity of 1-out-of-2 OT: [WW06]
| Various Security Notions | Meeting 2 (22.05.15; 3:30-5:50 pm),3 (25.05.15; 3:30-5:50 pm),4 (27.05.15; 3:30-5:50 pm) | Leaders: Dheeraj, Divya, Kuljeet|
- Privacy only Security \& Constructions: Hazay \& Lindell
- One-sided Simulation \& Constructions: Hazay \& Lindell
- Full Simulation \& Constructions: Hazay \& Lindell
| OT from Generic Assumptions | Meeting 5 (29.05.15; 3:30-5:50 pm) | Leaders: Ajith, Anchita |
- OT from Enhanced TDF/ CPA-secure PKE with PK samplability (EGL): Chapter 3 of [Rothblum], [Katz_LN1],[Katz_LN2], Section 2 of [Hai08]
- OT from Homomorphic Encryption: Hazay \& Lindell
| OT Extensions | Meeting 6 (09.06.15; 3:30-5:50 pm),7 (11.06.15; 3:30-5:50 pm) ,8 (12.06.15; 3:30 - 5:50 pm) | Leaders: Ajith, Dheeraj, Divya, Kuljeet|

Thank you!

OT Extension- Recent Advances

[KK13]: From k 1-out-2 OTs to m 1-out-of-n OTs Most efficient in semi-honest setting Uses Walsh-Hadamard Code
[KOS15]: Most efficient maliciously secure IKNP
[PSS17]: Most efficient maliciously secure KK13

OT from CPA-secure PKE with Public Key Samplability [EvenGoldreichLempel85]

A public-key encryption scheme is a collection of 3 PPT algorithms $\Pi=$ (Gen, Enc, Dec)

> Syntax: $(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}\left(1^{\mathrm{k}}\right)$
> Randomized Algo

$$
\text { Syntax: } \mathrm{c} \leftarrow \mathrm{Enc}_{\mathrm{pk}}(\mathrm{~m})
$$

Randomized algo

Syntax: m:= $\operatorname{Dec}_{\text {sk }}(\mathrm{c})$
Deterministic (w.l.o.g)

Except with a negligible probability over (pk, sk) output by Gen $\left(1^{k}\right)$, we require the following for every (legal) plaintext m
$\operatorname{Dec}_{\mathrm{sk}}\left(\operatorname{Enc}_{\mathrm{pk}}(\mathrm{m})\right):=\mathrm{m}$

CPA Security

Π is CPA-secure if for every PPT attacker A taking part in the above experiment, the probability that A wins the experiment is at most negligibly better than $1 / 2$

$$
\operatorname{Pr}\left(\begin{array}{c}
{ }^{\text {cpa }} \\
\operatorname{PubK}(k) \\
A, \Pi
\end{array}\right) \leq 1 / 2+\operatorname{negl}(k)
$$

PKE with Public Key Samplability

A public-key encryption scheme is a collection of 5 PPT algorithms Π = (Gen, Enc, Dec, oGen, fGen)

Syntax: $(p k, r) \leftarrow o \operatorname{Gen}\left(1^{k}\right)$

$$
\text { Syntax: } r^{\prime} \leftarrow \mathrm{fGen}(\mathrm{pk})
$$

($p k, r^{\prime}$) and ($p k, r$) look indistinguishable

Key Samplability

	ksamp	
Indistinguishability experiment	$\operatorname{PubK}_{A, \Pi^{(k)}}$	$\Pi=($ Gen, Enc, Dec, oGen, fGen)

I can break Π

1 --- attacker won
(pk,r)

$$
b^{\prime} \in\{0,1\}
$$

$(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}\left(1^{k}\right)$
$\mathrm{r} \leftarrow \mathrm{fGen}(\mathrm{pk})$
Π is key-samplable if for every PPT attacker A taking part in the above experiment, the probability that A wins the experiment is at most negligibly better than $1 / 2$

$$
\left.\operatorname{Pr}\left(\begin{array}{cc}
\text { ksamp } \\
\operatorname{PubK}(k) & =1 \\
A, \Pi &
\end{array}\right) \leq 1 / 2+\operatorname{neg} \right\rvert\,(n)
$$

1-out-of-2 Oblivious Transfer

$$
\begin{aligned}
& \mathrm{c}_{0} \leftarrow \mathrm{Enc}_{\mathrm{pk} 0}\left(\mathrm{~m}_{0}\right) \\
& \mathrm{c}_{1} \leftarrow \mathrm{Enc}_{\mathrm{pk} 1}\left(\mathrm{~m}_{1}\right)
\end{aligned}
$$

$$
\left(\mathrm{pk}_{0}, \mathrm{pk}_{1}\right)
$$

$$
\begin{gathered}
b \\
\left(\mathrm{pk}_{\mathrm{b}}, \mathrm{sk}_{\mathrm{b}}\right) \leftarrow \operatorname{Gen}\left(1^{\mathrm{k}}\right) \\
\left(\mathrm{pk}_{1-\mathrm{b}}, \mathrm{r}_{1-\mathrm{b}}\right) \leftarrow \mathrm{oGen}\left(1^{\mathrm{k}}\right)
\end{gathered}
$$

$$
\mathrm{m}_{\mathrm{b}} \leftarrow \operatorname{Dec}_{\text {skb }}\left(\mathrm{m}_{\mathrm{b}}\right)
$$

- OTs are intrinsically expensive- usually based on public key primitives
- AES Circuit: Millions of AND gates

EIGamal PKE

Gen(1 $\left.{ }^{\mathrm{k}}\right)$
$(\mathrm{G}, \mathrm{o}, \mathrm{q}, \mathrm{g})$
$\mathrm{h}=\mathrm{g}^{\mathrm{x} .}$ For random x
$\mathrm{pk}=(\mathrm{G}, \mathrm{o}, \mathrm{q}, \mathrm{g}, \mathrm{h}), \mathrm{sk}=\mathrm{x}$

```
Enc
c
c}=\mp@subsup{h}{}{\textrm{r}}.\textrm{m
c=(c
```

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }}(\mathrm{c}) \\
& c_{2} /\left(c_{1}\right)^{x}=c_{2} \cdot\left[\left(c_{1}\right)^{x}\right]^{-1}
\end{aligned}
$$

Transformation II: OT Extension

$$
\begin{aligned}
& \text { Random Oracle } \\
& \text { Every time query an input: same output } \\
& \text { New input: output is completely random in the range } \\
& \text { Every RO is Correlation-Robust (HR) Hash function } \\
& \mathrm{Q}=\left[\mathrm{Q}_{1}=\mathrm{T}_{1} \text { (if } \mathrm{b}_{1}=0 \text {) / } \mathrm{T}_{1}+\mathrm{S}\right. \text { (otherwise) } \\
& Q_{2}=T_{2}\left(\text { if } b_{2}=0\right) / T_{2}+S \text { (otherwise) } \\
& B=\left[b_{1}, \ldots b_{m}\right] \\
& \mathrm{T}=\left[\mathrm{T}_{1}\right. \\
& \mathrm{T}_{2} \\
& T_{k} \text {] } \\
& Q_{m}=T_{m}\left(\text { if } b_{m}=0\right) / T_{m}+S \text { (otherwise)] } \\
& r_{m 0} \\
& r_{m 1} \\
& \mathrm{y}_{10}=\mathrm{H}\left(1, \mathrm{Q}_{1}\right)+\mathrm{r}_{10} \\
& r_{1 \mathrm{~b} 1}=\mathrm{T}_{1}+\mathrm{y}_{1 \mathrm{~b} 1} \\
& y_{11}=H\left(1, Q_{1}+S\right)+r_{11} \\
& y_{m 0}=H\left(m, Q_{m}\right)+r_{m 0} \\
& \mathrm{y}_{\mathrm{m} 1}=\mathrm{H}\left(\mathrm{~m}, \mathrm{Q}_{\mathrm{m}}+\mathrm{S}\right)+\mathrm{r}_{\mathrm{m} 1} \\
& r_{m b m}=T_{m}+y_{m b m} \\
& \text { Random Function H: }[\mathrm{m}] \times\{0,1\}^{k}->\{0,1\}^{\prime}
\end{aligned}
$$

A little diversion to RO Model

>> Love and hate relationship with this model
>> Many protocols have proof in RO model which otherwise does not have any proof.
>> Real protocol: RO replaced with hash functions
>> Protocol analyzed for Security: Hash functions replaced with RO box.
>> Proof is for any good?: Existence of such a proof implies the real protocol go wrong only when hash function does not simulate RO. Some proof better than no proof
>> Examples: RSA-OEAP (practically in use). CCA-secure extension of RSA
>> Finding proof under relatively realistic assumption (e.g. CR) than RO has been very challenging and considered to be great achievement!!

