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Protocol π is secure if for any such cheaters: 
• (privacy) Whatever the adversary learns he could compute by himself

• (correctness) Honest (uncorrupted) parties learn their correct outputs
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• Synchrony: Messages sent in round i are delivered by round i+1
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The adversary

Corruption Types
• Passive (semi-honest): Corrupted parties follow their protocol but 

try to learn more information than allowed from their joint view
• Active (malicious): Corrupted parties misbehave arbitrarily

Computing Power
• Unbounded (information theoretic security): The adversary can 

perform arbitrary (even exponential) computation
• Security is unconditional

• Bounded (Computational or cryptographic security): The 
adversary can perform polynomial-time computation
• Security is guaranteed under hardness assumptions, e.g., 

DDH, RSA, Factoring, …  



Known Feasibility Results

Adv. Type Security Corruption Bound Requires 
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Information 
theoretic (IT)
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[BGW88,CCD88] Sec. channels

Computational t<n 
[GMW87]

Sec. channels + 
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malicious
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information 
theoretic
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[BGW88,CCD88] Sec. channels 

computational 
(or IT w. 

negligible error)

t<n/2 
[GMW87,RB89] Broadcast

computational 
without fairness

t<n 
[GMW87]  Broadcast + OT



Known Feasibility Results

Adv. Type Security Corruption Bound Requires 

semi-honest
(passive)

Information 
theoretic (IT)

t<n/2 
[BGW88,CCD88] Sec. channels

Computational t<n 
[GMW87]

Sec. channels + 
OT

malicious
(active)

information 
theoretic

t<n/3 
[BGW88,CCD88] Sec. channels 

computational 
(or IT w. 

negligible error)

t<n/2 
[GMW87,RB89] Broadcast

computational 
without fairness

t<n 
[GMW87]  Broadcast + OT



MPC Goal

Ideal World Real World

Input 
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates 

pi Inpi
pi

⊕  ⊗
⊕  ⊗

pi Outi pi



MPC Goal

Ideal World Real World

Input 
Gates

Computation:
Addition/

Multiplication
Gates

Output
Gates 

pi Inpi
pi

⊕  ⊗
⊕  ⊗

pi Outi pi



Secret Sharing (Informal)

A secret-sharing scheme allows an honest dealer D to distribute 
a secret s among players in a set P, such that 
• any non-qualified subset of players has no information about s, 
• every qualified subset of players can collaboratively 

reconstruct the secret. 



Threshold Secret Sharing

Secret Sharing: A t-out-of-n secret sharing scheme for P={p1, …, pn} 
consists of a pair of protocols: (Share, Reconstruct) with the following 
properties

• Share  allows a Dealer D to distribute a given value s among the parties 
in P. It is probabilistic and uses secure channels to distribute the 
shares.

• Reconstruct allows to later on reconstruct the shared value.
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Secret Sharing: A t-out-of-n secret sharing scheme for P={p1, …, pn} 
consists of a pair of protocols: (Share, Reconstruct) with the following 
properties

• Share  allows a Dealer D to distribute a given value s among the parties 
in P. It is probabilistic and uses secure channels to distribute the 
shares.

• Reconstruct allows to later on reconstruct the shared value.

Security properties:

• (correctness) Given the shares of any t parties, Reconstruct should output 
the secret s.

• (t-privacy) The shares of any t-1 parties include not information about s. 
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s1 s2 sn

…

Example: (n-out-of-n) Additive Secret Sharing

• Share: Dealer p sharing s:

• Choose n values s1, …, sn ∈ ℤp 

uniformly at random s.t. 

• Send si to player pi

• Reconstruct:
• The parties add their shares to recover s

nX

i=1

si = s (mod p)



Threshold Secret Sharing
P: Inp = s
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…

Example: (n-out-of-n) Additive Secret Sharing

• Share: Dealer p sharing s:

• Choose n values s1, …, sn ∈ ℤp 

uniformly at random s.t. 

• Send si to player pi

• Reconstruct:
• The parties add their shares to recover s

nX

i=1

si = s (mod p)

Security:

• (correctness) Given the shares of any n parties, Reconstruct outputs the 
secret s by summing them.

• (n-privacy) The shares of any n-1 parties include not information about s 
since the missing share perfectly blinds the secret. 
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Linear Secret Sharing
We say that a sharing (s1, …, sn) is linear if the shares are 
computed as a linear function of s and random values. That 
is if there exists a constant n x (m+1) matrix A such that for 
random values r1,…, rm : 
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Linear Secret Sharing

When s and s’ are shared by a linear secret sharing then the parties 
can computer a sharing of s’’= s + s’ by locally adding their  shares 
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Secret Sharing: (t+1)-out-of-n

P: Inp = s

s1 s2 sn

…

Example: Polynomial (Shamir [Sha79]) Secret Sharing

• Share: Dealer p sharing s:
• Choose a random degree-t polynomial f(・) with f(0)=s 

• Give si = f(𝛼i) to player pi

• Reconstruct:
• Lagrange interpolation (for all n > t-1): 

𝛼1 𝛼2 𝛼n

s
s1

s2

sn

f(・)

f(x) =
nX

i=1

`i(x)si `i(x) =
nY

j=1
j 6=i

x� ↵j

↵i � ↵j



Secret Sharing: (t+1)-out-of-n

P: Inp = s

s1 s2 sn

…

Example: Polynomial (Shamir [Sha79]) Secret Sharing

• Share: Dealer p sharing s:
• Choose a random degree-t polynomial f(・) with f(0)=s 

• Give si = f(𝛼i) to player pi

• Reconstruct:
• Lagrange interpolation (for all n > t-1): 

𝛼1 𝛼2 𝛼n

s
s1

s2

sn

f(・)

f(x) =
nX

i=1

`i(x)si `i(x) =
nY

j=1
j 6=i

x� ↵j

↵i � ↵j

Choose random 𝑎1,…,𝑎t  and set  
f(x) = s+ a1x+ . . .+ atx

t



Shamir Secret Sharing is Linear
We say that a sharing (s1, …, sn) is linear if the shares are 
computed as a linear function of s and random values. That 
is if there exists a constant n x (m+1) matrix A such that for 
random values r1,…, rm : 
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Addition Protocol

Goal: Addition Gadget 

G(s,s’)= s + s’

 [s]  [s’] 

 [s + s’ ]

In this lecture: 
“gadget” = protocol where 
inputs/outputs are shares or 
field elements



`

𝛼1 𝛼2 𝛼n

s

s1
s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1+s1’
s2+s2’

sn+sn’

f+g(・) = f(・) + g(・)
s’’=s+s’

• Each party locally adds 
his share of s and s’, i.e., 
pi computes si’’ = si+si’

• The result is a sharing of 
s’’ by means of 
polynomial f’’ = f+g



`

𝛼1 𝛼2 𝛼n

s

s1
s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1+s1’
s2+s2’

sn+sn’

f+g(・) = f(・) + g(・)
s’’=s+s’

• Each party locally adds 
his share of s and s’, i.e., 
pi computes si’’ = si+si’

• The result is a sharing of 
s’’ by means of 
polynomial f’’ = f+g

Security proof:

• Correctness: By Lagrange interpolation, the share sums lie on f+g

• Privacy: No information is exchanged (only local computation)



Linear Formulas Protocol 

If I can compute sharing of s + s’  from sharing of s and s’ then I can 
compute any linear combination 𝑎1s(1) + 𝑎2s(2)+ … + 𝑎ms(m) (for 
constants 𝑎1,…, 𝑎m) 

a1s
(1) + . . .+ ams(m) = s(1) + . . .+ s(1)| {z }

a1 times

+ . . .+ s(m) + . . .+ s(m)
| {z }

am times



Linear Formulas Protocol 

If I can compute sharing of s + s’  from sharing of s and s’ then I can 
compute any linear combination 𝑎1s(1) + 𝑎2s(2)+ … + 𝑎ms(m) (for 
constants 𝑎1,…, 𝑎m) 

G(s(1),…, s(m)) = 𝑎1s(1) + 𝑎2s(2)+ … + 𝑎ms(m)

[s(1)] [s(2)] [s(m)]

[a1s(1) + a2s(2)+ … + ams(m)]

Linear Gadget

a1s
(1) + . . .+ ams(m) = s(1) + . . .+ s(1)| {z }

a1 times

+ . . .+ s(m) + . . .+ s(m)
| {z }

am times
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Multiplication Protocol

Goal: Multiplication Gadget 

G(s,s’)= s ⋅ s’

[s]  [s’ ]

 [s ⋅ s’ ]



Multiplication Protocol

𝛼1 𝛼2 𝛼n

s
s1

s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1⋅s1’

s2⋅s2’

sn⋅sn’
s’’=s⋅s’

Attempt 1: Use the addition protocol idea …  

• Each party locally 
multiplies his share of s 
and s’, i.e., pi computes 
si’’ = si⋅si’

• The result is a sharing of 
s’’ by means of 
polynomial f’’ = f⋅g

f’’(・) = f⋅g(・) = f(・) ⋅ g(・)



Multiplication Protocol

𝛼1 𝛼2 𝛼n

s
s1

s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1⋅s1’

s2⋅s2’

sn⋅sn’
s’’=s⋅s’

Attempt 1: Use the addition protocol idea …  

• Each party locally 
multiplies his share of s 
and s’, i.e., pi computes 
si’’ = si⋅si’

• The result is a sharing of 
s’’ by means of 
polynomial f’’ = f⋅g

Problem: f’’ of degree 2t
• If I multiply again it will 

become degree 3t
• 3t > n hence parties cannot 

reconstruct

f’’(・) = f⋅g(・) = f(・) ⋅ g(・)



Multiplication Protocol

𝛼1 𝛼2 𝛼n

s
s1

s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1⋅s1’

s2⋅s2’

sn⋅sn’
s’’=s⋅s’

Attempt 1: Use the addition protocol idea …  

• Each party locally 
multiplies his share of s 
and s’, i.e., pi computes 
si’’ = si⋅si’

• The result is a sharing of 
s’’ by means of 
polynomial f’’ = f⋅g

Problem: f’’ of degree 2t
• If I multiply again it will 

become degree 3t
• 3t > n hence parties cannot 

reconstruct

f’’(・) = f⋅g(・) = f(・) ⋅ g(・)



Multiplication Protocol

𝛼1 𝛼2 𝛼n

s
s1

s2

sn
f(・)

g(・)s’
s1’

s2’

sn'

s1⋅s1’

s2⋅s2’

sn⋅sn’

f’’(・) = f⋅g(・) = f(・) ⋅ g(・)
s’’=s⋅s’

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)
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Attempt 2: s00 = f 00(0) =
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i=1
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`i(0)(si · s0i)



Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

`i(0) =
nY

j=1
j 6=i

0� ↵j

↵i � ↵j
= �0

degree 2t hence there is 
enough parties to 

interpolate



Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

To compute a sharing of s’’ = s ⋅ s’ it suffices to compute a sharing  of 
nX

i=1

�i(si · s0i) =
nX

i=1

�i(s
00
i ) = �1s

00
1 + . . . �ns

00
n

`i(0) =
nY

j=1
j 6=i

0� ↵j

↵i � ↵j
= �0

degree 2t hence there is 
enough parties to 

interpolate



Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

To compute a sharing of s’’ = s ⋅ s’ it suffices to compute a sharing  of 
nX

i=1

�i(si · s0i) =
nX

i=1

�i(s
00
i ) = �1s

00
1 + . . . �ns

00
n

Multiplication (Gadget) Protocol
• Every  pi  shares si’’ = si ⋅ si’
• Use the linear gadget to compute a sharing of s’’ 

`i(0) =
nY

j=1
j 6=i

0� ↵j

↵i � ↵j
= �0

degree 2t hence there is 
enough parties to 

interpolate



Multiplication Protocol

Attempt 2: s00 = f 00(0) =
nX

i=1

`i(0)s
00
i =

nX

i=1

`i(0)(si · s0i)

To compute a sharing of s’’ = s ⋅ s’ it suffices to compute a sharing  of 
nX

i=1

�i(si · s0i) =
nX

i=1

�i(s
00
i ) = �1s

00
1 + . . . �ns

00
n

Multiplication (Gadget) Protocol
• Every  pi  shares si’’ = si ⋅ si’
• Use the linear gadget to compute a sharing of s’’ 

Security proof:

• Correctness: As shown above … 

• Privacy: Follows from the privacy of the linear gadget and the SS

`i(0) =
nY

j=1
j 6=i

0� ↵j

↵i � ↵j
= �0

degree 2t hence there is 
enough parties to 

interpolate
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✔
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Known Feasibility Results

Adv. Type Security Corruption Bound Requires 

semi-honest
(passive)

Information 
theoretic (IT)

t<n/2 
[BGW88,CCD88] Sec. channels

Computational t<n 
[GMW87]

Sec. channels + 
OT

malicious
(active)

information 
theoretic

t<n/3 
[BGW88,CCD88] Sec. channels 

computational 
(or IT w. 

negligible error)

t<n/2 
[GMW87,RB89] Broadcast

computational 
without fairness

t<n 
[GMW87]  Broadcast + OT

✔



Known Feasibility Results

Adv. Type Security Corruption Bound Requires 

semi-honest
(passive)

Information 
theoretic (IT)

t<n/2 
[BGW88,CCD88] Sec. channels

Computational t<n 
[GMW87]

Sec. channels + 
OT

malicious
(active)

information 
theoretic

t<n/3 
[BGW88,CCD88] Sec. channels 

computational 
(or IT w. 

negligible error)

t<n/2 
[GMW87,RB89] Broadcast

computational 
without fairness

t<n 
[GMW87]  Broadcast + OT

✔



Malicious MPC with t<n/2 (GMW)
Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]

Inputs: A party pi called the sender  has input x
Outputs: Every pj outputs yj

• (consistency) There exists y s.t. yj = y for all j
• (validity) If pi is honest then y = x



Malicious MPC with t<n/2 (GMW)
Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]

Inputs: A party pi called the sender  has input x
Outputs: Every pj outputs yj

• (consistency) There exists y s.t. yj = y for all j
• (validity) If pi is honest then y = x

Theorem: 
• Broadcast is possible (unconditionally) iff t < n/3 [LSP82 BGP89]
• Assuming digital signatures and a public-key infrastructure it is 

possible for any t < n [DS83]



Malicious MPC with t<n/2 (GMW)
Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]

Inputs: A party pi called the sender  has input x
Outputs: Every pj outputs yj

• (consistency) There exists y s.t. yj = y for all j
• (validity) If pi is honest then y = x

Theorem: 
• Broadcast is possible (unconditionally) iff t < n/3 [LSP82 BGP89]
• Assuming digital signatures and a public-key infrastructure it is 

possible for any t < n [DS83]

Broadcast + Encryption Setup (keys) = Secure channel 

p1

p2

pn

pi

ki: encryption 
key for pi Enc(x, ki) = c ⋮

c
c
c

can decrypt 
and learn x

??

??



Back to MPC Security

D1 D2

D3D4

π4

π2

π3

π1
D1 D2

D3D4

≈

Model
• n players 
• Computation over (𝔽, ⊕, ⊗) — E.g.  (ℤp, + , ⋅)
• Communication: Point-to-point secure channels (and Broadcast)
• Synchrony: Messages sent in round i are delivered by round i+1

InpInp

Inp Inp

Out Out

Out Out

Ideal World: Specification Real World: Protocol

( (



Back to MPC Security

D1 D2

D3D4

π4

π2

π3

π1

≈

Model
• n players 
• Computation over (𝔽, ⊕, ⊗) — E.g.  (ℤp, + , ⋅)
• Communication: Broadcast + Public-key Infrastructure
• Synchrony: Messages sent in round i are delivered by round i+1

InpInp

Inp Inp

Out Out

Out Out

Ideal World: Specification Real World: Protocol

( (D1, SK1 D2, SK2

D4, SK4 D3, SK3

PK1, … PK4



Malicious MPC with t<n/2 (GMW)

Committer P Verifier V
Input x
Rand. r

Com (x, r) =c

Tools 2/3 : (Non-interactive) Commitments
c

x , r

Commit Phase

Open Phase Ver (c, x , r) ∈ {0,1}



Malicious MPC with t<n/2 (GMW)

Committer P Verifier V
Input x
Rand. r

Com (x, r) =c

Security (informal)
• Correctness: If P follows the protocol, V always accepts (i.e., outputs 1). 
• Hiding: From the Commit phase, V has no information about P’s input x.
• Binding: After the Commit phase, there exists only one value x that will 

be accepted by V in the Open phase. 

Tools 2/3 : (Non-interactive) Commitments
c

x , r

Commit Phase

Open Phase Ver (c, x , r) ∈ {0,1}



Malicious MPC with t<n/2 (GMW)

Committer P Verifier V
Input x
Rand. r

Com (x, r) =c

Security (informal)
• Correctness: If P follows the protocol, V always accepts (i.e., outputs 1). 
• Hiding: From the Commit phase, V has no information about P’s input x.
• Binding: After the Commit phase, there exists only one value x that will 

be accepted by V in the Open phase. 

Tools 2/3 : (Non-interactive) Commitments
c

x , r

Commit Phase

Open Phase Ver (c, x , r) ∈ {0,1}

• Extra property: Additive Homomorphism

Com (x, r) =c Com (x’, r’) =c’ ⇒ c ∗ c’ = Com(x+x’ , r + r’)  



Malicious MPC with t<n/2 (GMW)
Tools 3/3 : Public Zero Knowledge Proofs of Knowledge
Inputs:

• All parties know a value y and a relation R(・, y) ∈ {0,1}

Properties:

• (completess) Someone who knows a (witness) w such that 
R(w, y)=1 can convince everyone about his knowledge 

• (soundness) If there exists no w such that R(w, y)=1, then no 
one can succeed in convincing the others about the opposite 

• (zero-knowledge) The proof reveals no information about w 



Malicious MPC with t<n/2 (GMW)
Tools 3/3 : Public Zero Knowledge Proofs of Knowledge
Inputs:

• All parties know a value y and a relation R(・, y) ∈ {0,1}

Properties:

• (completess) Someone who knows a (witness) w such that 
R(w, y)=1 can convince everyone about his knowledge 

• (soundness) If there exists no w such that R(w, y)=1, then no 
one can succeed in convincing the others about the opposite 

• (zero-knowledge) The proof reveals no information about w 

Example: Proving knowledge of a committed value without revealing 
anything  about the value: 
• y is a commitment c 
• R(w,y) = 1    iff    w=(x,r) and Ver(c,x,r)=1



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Round 0: 
Every Pi commits to its input and 
randomness

Rounds 1 … ρπ + 1: 
Execute π round-by-round over 
Broadcast so that in each round 
• every party proves (in ZK) that 

he follows π
• if the ZKP of some pi fails then 

invoke the Recovery process 
to publicly announce all pi ’s 
shares.

The GMW Compiler



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Round 0: 
Every Pi commits to its input and 
randomness

Rounds 1 … ρπ + 1: 
Execute π round-by-round over 
Broadcast so that in each round 
• every party proves (in ZK) that 

he follows π
• if the ZKP of some pi fails then 

invoke the Recovery process 
to publicly announce all pi ’s 
shares.

The GMW Compiler



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

Recovery gadget:
• When pi  fails then the remaining parties reconstruct all his shares
• For each share si of pi the parties compute  a sharing of si using 

the linearity gadget with ZK proofs and then reconstruct it. 

𝛼1 𝛼2 𝛼n

s
s1

s2

sn

f(・)

𝛼2

si

si = f(↵i) =
X

j2[n]\i

`i(↵i)sj



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

Recovery gadget:
• When pi  fails then the remaining parties reconstruct all his shares
• For each share si of pi the parties compute  a sharing of si using 

the linearity gadget with ZK proofs and then reconstruct it. 

𝛼1 𝛼2 𝛼n

s
s1

s2

sn

f(・)

𝛼2

si

si = f(↵i) =
X

j2[n]\i

`i(↵i)sj Works because t<n/2, 
hence there are 
enough (i.e, t+1) 
parties to interpolate 



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

Round 0: 
Every Pi commits to its input and 
randomness

Rounds 1 … ρπ + 1: 
Execute π round-by-round over 
Broadcast so that in each round 
• every party proves (in ZK) that 

he follows π
• if the ZKP of some pi fails then 

invoke the Recovery process 
to publicly announce all pi ’s 
shares.



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Security (with abort)

• Privacy: The parties see the 
following: 
• Setup
• Commitments
• Messages from π

• Correctness:
• If all ZKPs succeed this means 

that the parties follow their 
protocol

• Only corrupted-prover ZKPs 
might fail  ⇒ there will be n - t > 

n/2 to recover the missing values

The GMW Compiler

Round 0: 
Every Pi commits to its input and 
randomness

Rounds 1 … ρπ + 1: 
Execute π round-by-round over 
Broadcast so that in each round 
• every party proves (in ZK) that 

he follows π
• if the ZKP of some pi fails then 

invoke the Recovery process 
to publicly announce all pi ’s 
shares.



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Security (with abort)

• Privacy: The parties see the 
following: 
• Setup
• Commitments
• Messages from π

• Correctness:
• If all ZKPs succeed this means 

that the parties follow their 
protocol

• Only corrupted-prover ZKPs 
might fail  ⇒ there will be n - t > 

n/2 to recover the missing values

The GMW Compiler

Round 0: 
Every Pi commits to its input and 
randomness

Rounds 1 … ρπ + 1: 
Execute π round-by-round over 
Broadcast so that in each round 
• every party proves (in ZK) that 

he follows π
• if the ZKP of some pi fails then 

invoke the Recovery process 
to publicly announce all pi ’s 
shares.

What if corrupted 
parties use bad 
randomness?



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)
The GMW Compiler

Coin-tossing protocol (idea):
Parties can make pi committed to a random Ri 
• Every pj (including pi) commits to a random Rij, i.e., computes and 

broadcasts cij = Com(Rij, rij)

• Every pj sends rij  to pi

• pi computes ci1 ∗ …  ∗ cin  which (using the homomorphic property) 
is a commitment to Ri = Ri1 + … + Rin with opening-randomness 
ri=ri1 + … + rin.



 Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

Security (with abort)

• Privacy: The parties see the 
following: 
• Setup
• Commitments
• Messages from π

• Correctness:
• If all ZKPs succeed this means 

that the parties follow their 
protocol

• Only corrupted-prover ZKPs 
might fail  ⇒ there will be n - t > 

n/2 to recover the missing values

The GMW Compiler

coin-tossing

Round 0: 
Every Pi commits to its input and 
randomness

Rounds 1 … ρπ + 1: 
Execute π round-by-round over 
Broadcast so that in each round 
• every party proves (in ZK) that 

he follows π
• if the ZKP of some pi fails then 

invoke the Recovery process 
to publicly announce all pi ’s 
shares.



Known Bounds

Adv. Type Security Corruption Bound Requires 
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Information 
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[BGW88,CCD88] Sec. channels

Computational t<n 
[GMW87]

Sec. channels + 
OT

malicious
(active)

information 
theoretic

t<n/3 
[BGW88,CCD88] Sec. channels 
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(or IT w. 

negligible error)

t<n/2 
[GMW87,RB89] Broadcast
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without fairness

t<n 
[GMW87]  Broadcast + OT

✔

✔
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• (consistency) There exists y s.t. yj = y for all pj

• (validity) If all honest pi has input xi = x  then y = x 

Theorem: 
• Consensus is possible (unconditionally) iff t < n/3 [LSP82,BGP89]

Consensus ⇒ Broadcast:

1. Sender sends his input to every pi 
2. The parties runs consensus on inputs the received values

Security proof of Consensus ⇒ Broadcast: 

• (consistency) Follows from consistency of consensus 
• (validity) If the sender is honest then consensus is executed with 

all honest pi’s having input the sender’s input 
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• Secrets s shared as (s1, s2, s3) , i.e., pi holds si
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The t<n/2 solution does not even work given broadcast 

• Let’s look at 3 parties with 1 corruption 
• Secrets s shared as (s1, s2, s3) , i.e., pi holds si

p1

p2

p3

s1

correctness ⇒ 

∀ s2’ Rec(s1, s2’, s3) = s  
⇒ ∃ Rec13  s.t.  
Rec13(s1, s3) = s

s3

s2’

p1

p2

s1

p3

correctness ⇒ 

∀ s3’ Rec(s1, s2, s3’) = s 
⇒ ∃ Rec12 s.t. 
Rec12(s1, s2) = s

s2

s3’

p1

p2

p3

s1

1-privacy ⇒ 
s1 has no info about s
• ∀ s’ ∃ s2’ s.t.

Rec12(s1, s2’) = s’

s3

s2’s or s’?

We need a secret sharing scheme that ensures honest 
parties do not loose their shared state 



Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme 
is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following 
properties:

• (correctness) If the dealer is honest during Share, then given the shares of 
any t parties, Reconstruct outputs the secret s.

• (t-privacy) The shares of any set of t-1 parties include not information about s. 

• (commitment) At the end of Share there is a unique value s’ such that if the 
parties invoke Reconstruct the output will be s’
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Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme 
is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following 
properties:

• (correctness) If the dealer is honest during Share, then given the shares of 
any t parties, Reconstruct outputs the secret s.

• (t-privacy) The shares of any set of t-1 parties include not information about s. 

• (commitment) At the end of Share there is a unique value s’ such that if the 
parties invoke Reconstruct the output will be s’

(correctness)  ⇒  s’ = s when Dealer is honest in Share

In a VSS the adversary cannot make the parties loose a shared value

Previous argument shows that VSS (without 
signatures) exists only if t<n/3
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from secure channels iff   
t<n/3 [LSP82 BGP89]
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⋮
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t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y): 

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least 
2t+1 points from the announces s1j, …, snj  

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)
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Reconstruct:
1. For each gj(y): 

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least 
2t+1 points from the announces s1j, …, snj  

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)
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t-out-of-n VSS (t<n/3)

Claim: Gj(y) = gj(y)

Proof: 
• Gj(y) passes through the t+1 values from the honest parties 

which all lie on gj. 
• By the Lagrange interpolation, there exists no other degree-t 

polynomial with this property, hence this is the only polynomial 
that might be reconstructed. 
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1. For each gj(y): 

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least 
2t+1 points from the announces s1j, …, snj  

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)



t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y): 

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least 
2t+1 points from the announces s1j, …, snj  

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)
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t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y): 

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least 
2t+1 points from the announces s1j, …, snj  

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)
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t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y): 

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least 
2t+1 points from the announces s1j, …, snj  

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)
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t-out-of-n VSS (t<n/3)
Reconstruct:
1. For each gj(y): 

1. pj announces sij

2. Find the degree-t polynomial Gj(y) which passes through at least 
2t+1 points from the announces s1j, …, snj  

3. Use G1(0), …, Gn(0) to interpolate f0(x) and compute s=f0(0)
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⋯
⋮ ⋮
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gi(y) = F(𝛼i, y)
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⋮⋮

⋯

⋮

g1(0) g2(0) gi(0) gn(0)
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t-out-of-n VSS (t<n/3)
Properties:
• At the end of the sharing  phase 

• t parties have no information ⇒ VSS privacy

• The dealer is committed to the shared secret ⇒ VSS commitment

• If the dealer is honest then the sharing is of s ⇒ VSS correctness

• Every party (even malicious) is committed to his share (i.e., 
polynomial gi(y)): the honest parties can reconstruct it 
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pi Outi pi

✔

✔
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Malicious MPC: Addition
Goal: Addition Gadget 

G(s,s’)= s + s’

 [s]  [s’ ]

 [s + s’] 



Malicious MPC: Addition
Goal: Addition Gadget 

G(s,s’)= s + s’

 [s]  [s’ ]

 [s + s’] 

F’(x,y) s.t. F’(0,0)=s’F(x,y) s.t. F(0,0)=s



Malicious MPC: Addition
Goal: Addition Gadget 

G(s,s’)= s + s’

 [s]  [s’ ]

 [s + s’] 

Define F’’(x,y)=F(x,y) + F’(x,y) ⇒ F’’(0,0) = F(0,0) + F’(0,0) = s’ + s’

F’(x,y) s.t. F’(0,0)=s’F(x,y) s.t. F(0,0)=s



Malicious MPC: Addition
Goal: Addition Gadget 

G(s,s’)= s + s’

 [s]  [s’ ]

 [s + s’] 

Define F’’(x,y)=F(x,y) + F’(x,y) ⇒ F’’(0,0) = F(0,0) + F’(0,0) = s’ + s’

Addition protocol

• Each party locally adds his share-shares of s and s’, i.e., pi computes 
sij’’ = sij+sij’  and  sji’’ = sji+sji’

• The result is a sharing of s’’  by means of polynomial F’’ = F + F’

F’(x,y) s.t. F’(0,0)=s’F(x,y) s.t. F(0,0)=s
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Ideal World Real World

Input 
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Addition/
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⊕  ⊗

pi Outi pi

✔

✔
Any linear

 combination
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Addition/
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pi Outi pi

✔

✔
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 combination



Multiplication Protocol: Malicious

Goal: Multiplication Gadget 

G(s,s’)= s ⋅ s’

 [s]  [s’] 

 [s ⋅ s’ ]



t-out-of-n VSS
Properties (recall):
• At the end of the sharing  phase 

• t-1 parties have no information ⇒ VSS privacy

• The dealer is committed to the shared secret ⇒ VSS commitment

• If the dealer is honest then the sharing is of s ⇒ VSS correctness

• Every party (even malicious) is committed to his share (i.e., 
polynomial gi(y)): the honest parties can reconstruct it 



t-out-of-n VSS
Properties (recall):
• At the end of the sharing  phase 

• t-1 parties have no information ⇒ VSS privacy

• The dealer is committed to the shared secret ⇒ VSS commitment

• If the dealer is honest then the sharing is of s ⇒ VSS correctness

• Every party (even malicious) is committed to his share (i.e., 
polynomial gi(y)): the honest parties can reconstruct it 

p2 ’s “share”

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)



t-out-of-n VSS
Properties (recall):
• At the end of the sharing  phase 

• t-1 parties have no information ⇒ VSS privacy

• The dealer is committed to the shared secret ⇒ VSS commitment

• If the dealer is honest then the sharing is of s ⇒ VSS correctness

• Every party (even malicious) is committed to his share (i.e., 
polynomial gi(y)): the honest parties can reconstruct it 

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)

s



Multiplication Protocol: Malicious

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)

si : commitment to si held by pi

siLinearity: si si + si’+ =

s



Multiplication Protocol: Malicious

𝛼1 𝛼2 𝛼n

s s1

s2

sn

F(x,y)F(𝛼2,y) = g2(y)

F(𝛼n,y) = gn(y)

𝛼1
𝛼2

𝛼n

s11
s12

s1n

f0(x) = F(x,0)

F(𝛼1,y) = g1(y)

si : commitment to si held by pi

siLinearity: si si + si’+ =



Multiplication Protocol: Malicious

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)

s

si : commitment to si held by pi

siLinearity: si si + si’+ =



Multiplication Protocol: Malicious

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)
s

As in the semi honest setting to multiply shared s and s’

• Every  pi  computes si’’    =    si ⋅ si’

• Use the linearity to compute a VSS of s’’ 

si : commitment to si held by pi

siLinearity: si si + si’+ =



Multiplication Protocol: Malicious

sn

𝛼1 𝛼2 𝛼n

s1

s2

f0(x) = F(x,0)
s

As in the semi honest setting to multiply shared s and s’

• Every  pi  computes si’’    =    si ⋅ si’

• Use the linearity to compute a VSS of s’’ 

we need a commitment 
multiplication protocol
• Similar idea to the 

semi honest protocol: 
Have every party 
commit to its share 
product and use 
linearity to combine 
them.

• + a check that the 
commitment is correct

si : commitment to si held by pi

siLinearity: si si + si’+ =
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