Secure Multi-Party Computation with Honest Majority

Vassilis Zikas RPI

MPC School
IIT Mumbai

Secure Multi-Party Computation (MPC)

MPC: The general task

Secure Multi-Party Computation (MPC)

MPC: The general task

Secure Multi-Party Computation (MPC)

MPC: The general task

Protocol π is secure if for any such cheaters:

- (privacy) Whatever the adversary learns he could compute by himself
- (correctness) Honest (uncorrupted) parties learn their correct outputs

MPC in Action: A Toy Example

Example:

Cloud Computing on Encrypted Data

MPC in Action: A Toy Example

Example:

Cloud Computing on Encrypted Data

MPC in Action: A Toy Example

Example:

Cloud Computing on Encrypted Data

MPC in Action: A Toy Example

Example:

Cloud Computing on Encrypted Data

MPC in Action: A Toy Example

Example:

Cloud Computing on Encrypted Data

MPC in Action: A Toy Example

MPC in Action: A Toy Example

MPC in Action: A Toy Example

Example:

Cloud Computing on Encrypted Data

MPC in Action: A Toy Example

Example:
 Cloud Computing on Encrypted Data

Inputs: $k_{1}, k_{2}, c=E n c k=k_{1} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{l} \oplus k_{2}$
(2) Decrypt c with key k to obtain m

(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
(4) Re-encrypt m^{\prime} with k to obtain c^{\prime}

MPC in Action: A Toy Example

Example:
 Cloud Computing on Encrypted Data

Inputs: $k_{1}, k_{2}, c=E n c k=k_{1} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{1} \oplus k_{2}$
(2) Decrypt c with key k to obtain m

MPC in Action: A Toy Example

Example:
 Cloud Computing on Encrypted Data

Inputs: $k_{1}, k_{2}, c=E n c k=k_{l} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{1} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
(4) Re-encrypt m^{\prime} with k to obtain c^{\prime}

MPC in Action: A Toy Example

Example:
 Cloud Computing on Encrypted Data

Inputs: $k_{1}, k_{2}, c=E n c k=k_{1} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{1} \oplus k_{2}$

2 Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
(4) Re-encrypt m^{\prime} with k to obtain c^{\prime}

MPC in Action: A Toy Example

Example:
 Cloud Computing on Encrypted Data

Inputs: $k_{1}, k_{2}, c=E n c k=k_{1} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{l} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
4) Re-encrypt m^{\prime} with k to obtain c^{\prime}

MPC in Action: A Toy Example

Example:
 Cloud Computing on Encrypted Data

Inputs: $k_{1}, k_{2}, c=E n c k=k_{l} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{1} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
4) Re-encrypt m ' with k to obtain c^{\prime}

MPC in Action: A Toy Example

Example:
 Cloud Computing on Encrypted Data

Inputs: $k_{1}, k_{2}, c=E n c k=k_{l} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{l} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
4. Re-encrypt m ' with k to obtain c,

Goal: Perform this computation securely

- (privacy) No (corrupted) server learns the key or the plaintext
- (correctness) The result is the encrypted data after the computation

MPC in Action: A Toy Example

Inputs: $k_{1}, k_{2}, c=E n c k=k_{1} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{1} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
(4) Re-encrypt m, with k to obtain c,

MPC in Action: A Toy Example

Inputs: $k_{1}, k_{2}, c=E n c_{k=k_{1} \oplus k_{2}}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{1} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
(4) Re-encrypt m^{\prime} with k to obtain c,

MPC in Action: A Toy Example

Inputs: $k_{1}, k_{2}, c=E n c_{k=k_{1} \oplus k_{2}}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{1} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
4) Re-encrypt m, with k to obtain c^{\prime}

MPC in Action: A Toy Example

Inputs: $k_{1}, k_{2}, c=E n c k=k_{1} \oplus k_{2}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{l} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
4. Re-encrypt m, with k to obtain c,

MPC in Action: A Toy Example

Inputs: $k_{1}, k_{2}, c=E n c_{k=k_{1} \oplus k_{2}}(m)$
Task: Compute $c^{\prime}=E n c_{k}(f(m))$
(1) Reconstruct $k:=k_{1} \oplus k_{2}$
(2) Decrypt c with key k to obtain m
(3) Apply $f(\cdot)$ to m to obtain $m^{\prime}=f(m)$
4) Re-encrypt m, with k to obtain c^{\prime}

MPC in Action: A Toy Example

Example:

$m=m_{L} / l m_{R}$
$E n c_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R}$
$\operatorname{Dec}_{k}(c):=c \oplus k$

MPC in Action: A Toy Example

Example:

$$
\begin{aligned}
& \operatorname{Enc}_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R} \\
& \operatorname{Dec}_{k}(c):=c \oplus k
\end{aligned}
$$

Tool: (Additive) Secret Sharing [s] of secret s

- Choose random s_{1}, s_{2}, s_{3} s.t. $s_{1} \oplus s_{2} \oplus s_{3}=s$
- Hand s_{i} to P_{i}

MPC in Action: A Toy Example

Example:

$$
\begin{aligned}
& \operatorname{Enc}_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R} \\
& \operatorname{Dec}_{k}(c):=c \oplus k
\end{aligned}
$$

Tool: (Additive) Secret Sharing [s] of secret s

- Choose random s_{1}, s_{2}, s_{3} s.t. $s_{1} \oplus s_{2} \oplus s_{3}=s$
- Hand s_{i} to P_{i}

Any subset gets no info on s

MPC in Action: A Toy Example

Example:

$$
\begin{aligned}
& \operatorname{Enc}_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R} \\
& \operatorname{Dec}_{k}(c):=c \oplus k
\end{aligned}
$$

Tool: (Additive) Secret Sharing [s] of secret s

- Choose random s_{1}, s_{2}, s_{3} s.t. $s_{1} \oplus s_{2} \oplus s_{3}=s$
- Hand s_{i} to P_{i}

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of the wires' values compute sharing of these values

MPC in Action: A Toy Example

Example:

$$
\begin{aligned}
& \operatorname{Enc}_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R} \\
& \operatorname{Dec}_{k}(c):=c \oplus k
\end{aligned}
$$

Tool: (Additive) Secret Sharing [s] of secret s

- Choose random s_{1}, s_{2}, s_{3} s.t. $s_{1} \oplus s_{2} \oplus s_{3}=s$
- Hand s_{i} to P_{i}

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of the wires' values compute sharing of these values

MPC in Action: A Toy Example

Example:

$$
\begin{aligned}
& \operatorname{Enc}_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R} \\
& \operatorname{Dec}_{k}(c):=c \oplus k
\end{aligned}
$$

Tool: (Additive) Secret Sharing [s] of secret s

- Choose random s_{1}, s_{2}, s_{3} s.t. $s_{1} \oplus s_{2} \oplus s_{3}=s$
- Hand s_{i} to P_{i}

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of the wires' values compute sharing of these values

MPC in Action: A Toy Example

Example:

$$
\begin{aligned}
& \operatorname{Enc}_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R} \\
& \operatorname{Dec}_{k}(c):=c \oplus k
\end{aligned}
$$

Tool: (Additive) Secret Sharing [s] of secret s

- Choose random s_{1}, s_{2}, s_{3} s.t. $s_{1} \oplus s_{2} \oplus s_{3}=s$
- Hand s_{i} to P_{i}

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of the wires' values compute sharing of these values

MPC in Action: A Toy Example

Example:

$$
\begin{aligned}
& \operatorname{Enc}_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R} \\
& \operatorname{Dec}_{k}(c):=c \oplus k
\end{aligned}
$$

Tool: (Additive) Secret Sharing [s] of secret s

- Choose random s_{1}, s_{2}, s_{3} s.t. $s_{1} \oplus s_{2} \oplus s_{3}=s$
- Hand s_{i} to P_{i}

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of the wires' values compute sharing of these values

MPC in Action: A Toy Example

Example:

$$
\begin{aligned}
& \operatorname{Enc}_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R} \\
& \operatorname{Dec}_{k}(c):=c \oplus k
\end{aligned}
$$

Tool: (Additive) Secret Sharing [s] of secret s

- Choose random s_{1}, s_{2}, s_{3} s.t. $s_{1} \oplus s_{2} \oplus s_{3}=s$
- Hand s_{i} to P_{i}

Any subset gets no info on s

Protocol: Traverse the circuit gate by gate where instead of the wires' values compute sharing of these values

MPC in Action: A Toy Example

Example:
$m=m_{L} / l m_{R}$
$E n c_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R}$
$\operatorname{Dec}_{k}(c):=c \oplus k$

MPC in Action: A Toy Example

Example:

$m=m_{L} / l m_{R}$
$E n c_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R}$
$\operatorname{Dec}_{k}(c):=c \oplus k$

	P_{1}	P_{2}	P_{3}	
$\mathrm{P}_{1}\left(\mathrm{k}_{1}\right)$	k_{11}	k_{12}	k_{13}	$\left[k_{1}\right]$
$\mathrm{P}_{2}\left(\mathrm{k}_{2}\right)$	k_{21}	k_{22}	k_{23}	$\left[k_{2}\right]$
$\mathrm{P}_{3}(\mathrm{c})$	c_{1}	c_{2}	c_{13}	$[c]$

MPC in Action: A Toy Example

Example:

$m=m_{L} / l m_{R}$
$E n c_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R}$
$\operatorname{Dec}_{k}(c):=c \oplus k$

	P_{1}	P_{2}	P_{3}	
$\mathrm{P}_{1}\left(\mathrm{k}_{1}\right)$	k_{11}	k_{12}	k_{13}	$\left[k_{1}\right]$
$\mathrm{P}_{2}\left(\mathrm{k}_{2}\right)$	k_{21}	k_{22}	k_{23}	$\left[k_{2}\right]$
$\mathrm{P}_{3}(\mathrm{c})$	c_{1}	c_{2}	c_{13}	$[c]$
$\mathbf{1}$	$k_{11} \oplus k_{21}$	$k_{12} \oplus k_{22}$	$k_{13} \oplus k_{23}$	$\left[k_{1} \oplus k_{2}\right]=[k]$

MPC in Action: A Toy Example

Example:
$m=m_{L} \| m_{R}$
$E n c_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R}$
$\operatorname{Dec}_{k}(c):=c \oplus k$

	P_{1}	P_{2}	P_{3}	
$\mathrm{P}_{1}\left(\mathrm{k}_{1}\right)$	k_{11}	k_{12}	k_{13}	$\left[k_{1}\right]$
$\mathrm{P}_{2}\left(\mathrm{k}_{2}\right)$	k_{21}	k_{22}	k_{23}	$\left[k_{2}\right]$
$\mathrm{P}_{3}(\mathrm{c})$	c_{1}	c_{2}	c_{13}	$[c]$
1	$k_{11} \oplus k_{21}$	$k_{12} \oplus k_{22}$	$k_{13} \oplus k_{23}$	$\left[k_{1} \oplus k_{2}\right]=[k]$
2	$c_{1} \oplus k_{11} \oplus k_{21}$	$c_{2} \oplus k_{12} \oplus k_{22}$	$c_{3} \oplus k_{13} \oplus k_{23}$	$\left[c+k_{1} \oplus k_{2}\right]=[m \Gamma$

MPC in Action: A Toy Example

Example:
$m=m_{L} \| m_{R}$
$E n c_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R}$
$\operatorname{Dec}_{k}(c):=c \oplus k$

	P_{1}	P_{2}	P_{3}	
$\mathrm{P}_{1}\left(\mathrm{k}_{1}\right)$	k_{11}	k_{12}	k_{13}	$\left[k_{1}\right]$
$\mathrm{P}_{2}\left(\mathrm{k}_{2}\right)$	k_{21}	k_{22}	k_{23}	$\left[k_{2}\right]$
$\mathrm{P}_{3}(\mathrm{c})$	c_{1}	c_{2}	c_{13}	$[c]$
$\mathbf{1}$	$k_{11} \oplus k_{21}$	$k_{12} \oplus k_{22}$	$k_{13} \oplus k_{23}$	$\left[k_{1} \oplus k_{2}\right]=[k]$
$\mathbf{2}$	$c_{1} \oplus k_{11} \oplus k_{21}$	$c_{2} \oplus k_{12} \oplus k_{22}$	$c_{3} \oplus k_{13} \oplus k_{23}$	$\left[c+k_{1} \oplus k_{2}\right]=[m]$
3	$m_{1}^{\prime}=f\left({ }^{\downarrow}\right)$	$m_{2}^{\prime}=f\left({ }^{\downarrow}\right)$	$m_{3}^{\prime}=f\left(l^{\downarrow}\right)$	$[f(m)]=\left[m^{\prime}\right]$

MPC in Action: A Toy Example

Example:

$E n c_{k}(m):=m \oplus k, f(m)=m_{L} \oplus m_{R} / / m_{R}$
$D e c_{k}(c):=c \oplus k$

	P_{1}	P_{2}	P_{3}	
$\mathrm{P}_{1}\left(\mathrm{k}_{1}\right)$	k_{11}	k_{12}	k_{13}	$\left[k_{1}\right]$
$\mathrm{P}_{2}\left(\mathrm{k}_{2}\right)$	k_{21}	k_{22}	k_{23}	$\left[k_{2}\right]$
$\mathrm{P}_{3}(\mathrm{c})$	c_{1}	c_{2}	c_{13}	$[c]$
$\mathbf{1}$	$k_{11} \oplus k_{21}$	$k_{12} \oplus k_{22}$	$k_{13} \oplus k_{23}$	$\left[k_{1} \oplus k_{2}\right]=[k]$
$\mathbf{2}$	$c_{1} \oplus k_{11} \oplus k_{21}$	$c_{2} \oplus k_{12} \oplus k_{22}$	$c_{3} \oplus k_{13} \oplus k_{23}$	$\left[c+k_{1} \oplus k_{2}\right]=[m]$
$\mathbf{3}$	$m_{1}^{\prime}=f\left({ }^{\downarrow}\right)$	$m_{2}^{\prime}=f\left({ }^{\downarrow}\right)$	$m_{3}^{\prime}=f\left({ }^{\downarrow}\right)$	$[f(m)]=\left[m^{\prime}\right]$
4	$m_{1}^{\prime} \oplus k_{11} \oplus k_{21}$	$m_{2}^{\prime} \oplus k_{12} \oplus k_{22}$	$m_{3}^{\prime} \oplus \mathrm{k}_{13} \oplus \mathrm{k}_{23}$	$\left[m^{\prime}+k\right]=\left[c^{\prime}\right]$

MPC in Action: A Toy Example

Example:
$m=m_{L} / l m_{R}$
$E n c_{k}(m):=m \oplus k \quad, f(m)=m_{L} \oplus m_{R} / / m_{R}$
$\operatorname{Dec}_{k}(c):=c \oplus k$

	P_{1}	P_{2}	P_{3}	
$\mathrm{P}_{1}\left(\mathrm{k}_{1}\right)$	k_{11}	k_{12}	k_{13}	[k_{1}]
$\mathrm{P}_{2}\left(\mathrm{k}_{2}\right)$	k_{21}	k_{22}	k_{23}	[k_{2}]
$\mathrm{P}_{3}(\mathrm{c})$	c_{1}	c_{2}	c_{13}	[c]
1	$k_{11} \oplus k_{21}$	$k_{12} \oplus k_{22}$	$k_{13} \oplus k_{23}$	$\left[k_{1} \oplus k_{2}\right]=[k]$
2	$c_{l} \oplus k_{11} \oplus k_{2 l}$	$c_{2} \oplus k_{12} \oplus k_{22}$	$c_{3} \oplus k_{13} \oplus k_{23}$	$\left[c+k_{1} \oplus k_{2}\right]=[m]$
	$m_{l}^{\prime}=f\left({ }^{\square}\right)$	$m_{2}^{\prime}=f\left({ }^{\downarrow}\right)$	$m_{3}^{\prime}=f\left({ }^{\downarrow}\right)$	$[f(m)]=\left[m^{\prime}\right]$
4	$m_{1}^{\prime} \oplus k_{1 I} \oplus k_{2 I}$	$m_{2}^{\prime} \oplus k_{12} \oplus k_{22}$	$\mathrm{m}_{3}^{\prime} \oplus \mathrm{k}_{13} \oplus \mathrm{k}_{23}$	$\left[m^{\prime}+k\right]=\left[c^{\prime}\right]$

Back to MPC Security

Ideal World: Specification

Real World: Protocol

Back to MPC Security

Ideal World: Specification

Real World: Protocol

Back to MPC Security

Ideal World: Specification

Real World: Protocol

Model

- n players
- Computation over ($\mathbb{F}, \oplus, \otimes$) - E.g. ($\left.\mathbb{Z}_{\mathrm{p}},+, \cdot\right)$
- Communication: Point-to-point secure channels (and Broadcast)
- Synchrony: Messages sent in round i are delivered by round $i+1$

The adversary

Corruption Types

- Passive (semi-honest): Corrupted parties follow their protocol but try to learn more information than allowed from their joint view
- Active (malicious): Corrupted parties misbehave arbitrarily

Computing Power

- Unbounded (information theoretic security): The adversary can perform arbitrary (even exponential) computation
- Security is unconditional
- Bounded (Computational or cryptographic security): The adversary can perform polynomial-time computation
- Security is guaranteed under hardness assumptions, e.g., DDH, RSA, Factoring, ...

Known Feasibility Results

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ {[\mathrm{BGW} 88, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	Computational	$\mathrm{t}<\mathrm{n}$ [GMW87]	Sec. channels + OT
	information theoretic	$\begin{gathered} \mathrm{t}<\mathrm{n} / 3 \\ \text { [BGW88,CCD88] } \end{gathered}$	Sec. channels
malicious (active)	$\begin{aligned} & \text { computational } \\ & \text { (or IT w. } \\ & \text { negligible error) } \end{aligned}$	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ {[\mathrm{GMW} 87, \mathrm{RB} 89]} \end{gathered}$	Broadcast
	computational without fairness	$\mathrm{t}<\mathrm{n}$ [GMW87]	Broadcast + OT

Known Feasibility Results

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\mathrm{t}<\mathrm{n} / 2$ [BGW88,CCD88]	Sec. channels

MPC Goal

MPC Goal

Secret Sharing (Informal)

A secret-sharing scheme allows an honest dealer D to distribute a secret s among players in a set P, such that

- any non-qualified subset of players has no information about s,
- every qualified subset of players can collaboratively reconstruct the secret.

Threshold Secret Sharing

Secret Sharing: A t-out-of-n secret sharing scheme for $\mathrm{P}=\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$ consists of a pair of protocols: (Share, Reconstruct) with the following properties

- Share allows a Dealer D to distribute a given value s among the parties in P. It is probabilistic and uses secure channels to distribute the shares.
- Reconstruct allows to later on reconstruct the shared value.

Threshold Secret Sharing

Secret Sharing: A t-out-of-n secret sharing scheme for $\mathrm{P}=\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$ consists of a pair of protocols: (Share, Reconstruct) with the following properties

- Share allows a Dealer D to distribute a given value s among the parties in P. It is probabilistic and uses secure channels to distribute the shares.
- Reconstruct allows to later on reconstruct the shared value.

Security properties:

- (correctness) Given the shares of any t parties, Reconstruct should output the secret s.
- (t-privacy) The shares of any t-1 parties include not information about s.

Threshold Secret Sharing

Example: (n-out-of-n) Additive Secret Sharing $\quad \mathrm{P}: \operatorname{lnp}=s$

- Share: Dealer p sharing s :
- Choose n values $s_{l}, \ldots, s_{n} \in \mathbb{Z}_{p}$ uniformly at random s.t. $\quad \sum_{i=1}^{n} s_{i}=s \quad(\bmod p)$

- Send s_{i} to player p_{i}
- Reconstruct:
- The parties add their shares to recover s

Threshold Secret Sharing

Example: (n-out-of-n) Additive Secret Sharing $\quad \mathrm{P}: \operatorname{lnp}=s$

- Share: Dealer p sharing s :
- Choose n values $s_{1}, \ldots, s_{n} \in \mathbb{Z}_{p}$ uniformly at random s.t. $\sum_{i=1}^{n} s_{i}=s \quad(\bmod p)$
- \quad Send s_{i} to player p_{i}
- Reconstruct:
- The parties add their shares to recover s

Security:

- (correctness) Given the shares of any n parties, Reconstruct outputs the secret s by summing them.
- (n-privacy) The shares of any n - 1 parties include not information about s since the missing share perfectly blinds the secret.

MPC Goal

MPC Goal

MPC Goal

Linear Secret Sharing

We say that a sharing $\left(s_{1}, \ldots, s_{n}\right)$ is linear if the shares are computed as a linear function of s and random values. That is if there exists a constant $n x(m+1)$ matrix A such that for random values r_{1}, \ldots, r_{m} :

$$
\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right]=\left[\begin{array}{cccc}
A_{10} & A_{11} & \cdots & A_{1 m} \\
\vdots & & & \vdots \\
A_{n 0} & A_{n 1} & \cdots & A_{n m}
\end{array}\right]\left[\begin{array}{c}
s \\
r_{1} \\
\vdots \\
r_{m}
\end{array}\right]
$$

Linear Secret Sharing

We say that a sharing $\left(s_{l}, \ldots, s_{n}\right)$ is linear if the shares are computed as a linear function of s and random values. That is if there exists a constant $n x(m+1)$ matrix A such that for random values r_{1}, \ldots, r_{m} :

$$
\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right]=\left[\begin{array}{cccc}
A_{10} & A_{11} & \cdots & A_{1 m} \\
\vdots & & & \vdots \\
A_{n 0} & A_{n 1} & \cdots & A_{n m}
\end{array}\right]\left[\begin{array}{c}
s \\
r_{1} \\
\vdots \\
r_{m}
\end{array}\right]
$$

Example:
n-out-of-n
(additive) sharing

\vdots

s_{n}\end{array}\right]=\left[$$
\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \ldots & 1 \\
1 & -1 & -1 & \ldots & -1\end{array}
$$\right]\left[$$
\begin{array}{c}s \\
r_{1} \\
\vdots \\
r_{n-1}\end{array}
$$\right]\)

Linear Secret Sharing

When s and s' are shared by a linear secret sharing then the parties can computer a sharing of $s "=s+s$ 'by locally adding their shares if s and s,
$\left[\begin{array}{c}s_{1} \\ \vdots \\ s_{n}\end{array}\right]+\left[\begin{array}{c}s_{1}^{\prime} \\ \vdots \\ s_{n}^{\prime}\end{array}\right]=\left[\begin{array}{cccc}A_{10} & A_{11} & \ldots & A_{1 m} \\ \vdots & & & \vdots \\ A_{n 0} & A_{n 1} & \ldots & A_{n m}\end{array}\right]\left(\left[\begin{array}{c}s \\ r_{1} \\ \vdots \\ r_{m}\end{array}\right]+\left[\begin{array}{c}s^{\prime} \\ r_{1}^{\prime} \\ \vdots \\ r_{m}^{\prime}\end{array}\right]\right)=\left[\begin{array}{c}s^{\prime \prime} \\ r_{1}^{\prime \prime} \\ \vdots \\ r_{n-1}^{\prime \prime}\end{array}\right]$

MPC Goal

MPC Goal

MPC Goal

Secret Sharing: (t+1)-out-of-n

Example: Polynomial (Shamir [Sha79]) Secret Sharing

- Share: Dealer p sharing s :
- Choose a random degree-t polynomial $f(\cdot)$ with $f(0)=s$
- Give $s_{i}=f\left(\alpha_{i}\right)$ to player p_{i}
- Reconstruct:
- Lagrange interpolation (for all $n>t-1$):

$$
f(x)=\sum_{i=1}^{n} \ell_{i}(x) s_{i} \quad \ell_{i}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x-\alpha_{j}}{\alpha_{i}-\alpha_{j}}
$$

Secret Sharing: (t+1)-out-of-n

Example: Polynomial (Shamir [Sha79]) Secret Sharing

- Share: Dealer p sharing s :
- Choose a random degree-t polynomial $f(\cdot)$ with $f(0)=s$
- Give $s_{i}=f\left(\alpha_{i}\right)$ to player p_{i}

Choose random $a_{1}, \ldots, a_{\mathrm{t}}$ and set

- Reconstruct:

$$
f(x)=s+a_{1} x+\ldots+a_{t} x^{t}
$$

- Lagrange interpolation (for all $n>t-1$):

$$
f(x)=\sum_{i=1}^{n} \ell_{i}(x) s_{i} \quad \ell_{i}(x)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{x-\alpha_{j}}{\alpha_{i}-\alpha_{j}}
$$

Shamir Secret Sharing is Linear

We say that a sharing $\left(s_{l}, \ldots, s_{n}\right)$ is linear if the shares are computed as a linear function of s and random values. That is if there exists a constant $n x(m+1)$ matrix A such that for random values r_{1}, \ldots, r_{m} :

$$
\begin{aligned}
& {\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right]=\left[\begin{array}{cccc}
A_{10} & A_{11} & \cdots & A_{1 m} \\
\vdots & & & \vdots \\
A_{n 0} & A_{n 1} & \cdots & A_{n m}
\end{array}\right]\left[\begin{array}{c}
s \\
r_{1} \\
\vdots \\
r_{m}
\end{array}\right]} \\
& {\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \ldots & \alpha_{1}^{t} \\
1 & \alpha_{2} & \alpha_{2}^{2} & \ldots & \alpha_{2}^{t} \\
\vdots & & & & \\
1 & \alpha_{n} & \alpha_{n}^{2} & \ldots & \alpha_{n}^{t}
\end{array}\right]\left[\begin{array}{c}
s \\
a_{1} \\
\vdots \\
a_{t}
\end{array}\right]}
\end{aligned}
$$

MPC Goal

Addition Protocol

Goal: Addition Gadget

- Each party locally adds his share of s and s^{\prime}, i.e., p_{i} computes $s_{i}{ }^{\prime \prime}=s_{i}+s_{i}{ }^{\prime}$
- The result is a sharing of s " by means of polynomial $f^{\prime \prime}=f+g$

- Each party locally adds his share of s and s', i.e., p_{i} computes $s_{i}{ }^{\prime \prime}=s_{i}+s_{i}{ }^{\prime}$
- The result is a sharing of s " by means of polynomial $f^{\prime \prime}=f+g$

Security proof:

- Correctness: By Lagrange interpolation, the share sums lie on $f+g$
- Privacy: No information is exchanged (only local computation)

Linear Formulas Protocol

If I can compute sharing of $s+s^{\prime}$ from sharing of s and s^{\prime} then I can compute any linear combination $a_{1} \mathrm{~s}^{(1)}+a_{2} \mathrm{~s}^{(2)}+\ldots+a_{\mathrm{m}} \mathrm{s}^{(\mathrm{m})}$ (for constants $a_{1}, \ldots, a_{\mathrm{m}}$)
$a_{1} s^{(1)}+\ldots+a_{m} s^{(m)}=\underbrace{s^{(1)}+\ldots+s^{(1)}}_{a_{1} \text { times }}+\ldots+\underbrace{s^{(m)}+\ldots+s^{(m)}}_{a_{m} \text { times }}$

Linear Formulas Protocol

If I can compute sharing of $s+s^{\prime}$ from sharing of s and s^{\prime} then I can compute any linear combination $a_{1} \mathrm{~s}^{(1)}+a_{2} \mathrm{~s}^{(2)}+\ldots+a_{\mathrm{m}} \mathrm{s}^{(\mathrm{m})}$ (for constants $a_{1}, \ldots, a_{\mathrm{m}}$)

$$
a_{1} s^{(1)}+\ldots+a_{m} s^{(m)}=\underbrace{s^{(1)}+\ldots+s^{(1)}}_{a_{1} \text { times }}+\ldots+\underbrace{s^{(m)}+\ldots+s^{(m)}}_{a_{m} \text { times }}
$$

Linear Gadget

MPC Goal

MPC Goal

Multiplication Protocol

Goal: Multiplication Gadget

Multiplication Protocol

Attempt 1: Use the addition protocol idea ...

Multiplication Protocol

Attempt 1: Use the addition protocol idea ...

Problem: $f^{\prime \prime}$ of degree $2 t$

- If I multiply again it will become degree $3 t$
- $3 t>n$ hence parties cannot reconstruct

Multiplication Protocol

Attempt 1: Use the addrion protocol idea ...

Problem: $f^{\prime \prime}$ of degree $2 t$

- If I multiply again it will become degree $3 t$
- $3 t>n$ hence parties cannot reconstruct

Multiplication Protocol

Attempt 2: $s^{\prime \prime}=f^{\prime \prime}(0)=\sum_{i=1}^{n} \ell_{i}(0) s_{i}^{\prime \prime}=\sum_{i=1}^{n} \ell_{i}(0)\left(s_{i} \cdot s_{i}^{\prime}\right)$

Multiplication Protocol

Attempt 2: $s^{\prime \prime}=f^{\prime \prime}(0)=\sum_{i=1}^{n} \ell_{i}(0) s_{i}^{\prime \prime}=\sum_{i=1}^{n} \ell_{i}(0)\left(s_{i} \cdot s_{i}^{\prime}\right)$

Multiplication Protocol

Attempt 2: $s^{\prime \prime}=f^{\prime \prime}(0)=\sum_{i=1}^{n} \ell_{i}(0) s_{i}^{\prime \prime}=\sum_{i=1}^{n} \ell_{i}(0)\left(s_{i} \cdot s_{i}^{\prime}\right)$
degree $2 t$ hence there is enough parties to interpolate

$$
\ell_{i}(0)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{0-\alpha_{j}}{\alpha_{i}-\alpha_{j}}=\beta_{0}
$$

Multiplication Protocol

To compute a sharing of $s "=s \cdot s^{\prime}$ it suffices to compute a sharing of

$$
\sum_{i=1}^{n} \beta_{i}\left(s_{i} \cdot s_{i}^{\prime}\right)=\sum_{i=1}^{n} \beta_{i}\left(s_{i}^{\prime \prime}\right)=\beta_{1} s_{1}^{\prime \prime}+\ldots \beta_{n} s_{n}^{\prime \prime}
$$

Multiplication Protocol

Attempt 2: $s^{\prime \prime}=f^{\prime \prime}(0)=\sum_{i=1}^{n} \ell_{i}(0) s_{i}^{\prime \prime}=\sum_{i=1}^{n} \ell_{i}(0)\left(s_{i} \cdot s_{i}^{\prime}\right)$	
$\begin{array}{c}\text { degree } 2 t \text { hence there is } \\ \text { enough parties to } \\ \text { interpolate }\end{array}$	$\ell_{i}(0)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{0-\alpha_{j}}{\alpha_{i}-\alpha_{j}}=\beta_{0}$

To compute a sharing of $s "=s \cdot s^{\prime}$ it suffices to compute a sharing of

$$
\sum_{i=1}^{n} \beta_{i}\left(s_{i} \cdot s_{i}^{\prime}\right)=\sum_{i=1}^{n} \beta_{i}\left(s_{i}^{\prime \prime}\right)=\beta_{1} s_{1}^{\prime \prime}+\ldots \beta_{n} s_{n}^{\prime \prime}
$$

Multiplication (Gadget) Protocol

- Every p_{i} shares s_{i} " $=s_{i} \cdot s_{i}{ }^{\prime}$
- Use the linear gadget to compute a sharing of s "

Multiplication Protocol

Attempt 2: $s^{\prime \prime}=f^{\prime \prime}(0)=\sum_{i=1}^{n} \ell_{i}(0) s_{i}^{\prime \prime}=\sum_{\substack{i=1}}^{n} \ell_{i}(0)\left(s_{i} \cdot s_{i}^{\prime}\right)$	
$\begin{array}{c}\text { degree } 2 t \text { hence there is } \\ \text { enough parties to } \\ \text { interpolate }\end{array}$	$\ell_{i}(0)=\prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{0-\alpha_{j}}{\alpha_{i}-\alpha_{j}}=\beta_{0}$

To compute a sharing of $s "=s \cdot s^{\prime}$ it suffices to compute a sharing of

$$
\sum_{i=1}^{n} \beta_{i}\left(s_{i} \cdot s_{i}^{\prime}\right)=\sum_{i=1}^{n} \beta_{i}\left(s_{i}^{\prime \prime}\right)=\beta_{1} s_{1}^{\prime \prime}+\ldots \beta_{n} s_{n}^{\prime \prime}
$$

Multiplication (Gadget) Protocol

- Every p_{i} shares s_{i} " $=s_{i} \cdot s_{i}{ }^{\prime}$
- Use the linear gadget to compute a sharing of s "

Security proof:

- Correctness: As shown above ...
- Privacy: Follows from the privacy of the linear gadget and the SS

MPC Goal

Known Feasibility Results

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ \text { [BGW88,CCD88] } \end{gathered}$	Sec. channels
	Computational	$\mathrm{t}<\mathrm{n}$ [GMW87]	Sec. channels + OT
	information theoretic	$\begin{gathered} \mathrm{t}<\mathrm{n} / 3 \\ {[\mathrm{BGW} 88, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
malicious (active)	computational (or IT w. negligible error)	$\begin{gathered} t<n / 2 \\ {[G M W 87, R B 89]} \end{gathered}$	Broadcast
	computational without fairness	$\mathrm{t}<\mathrm{n}$ [GMW87]	Broadcast + OT

Known Feasibility Results

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ {[\mathrm{BGW} 8, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	Computational	t<n [GMW87]	$\begin{aligned} & \text { Sec. channels + } \\ & \text { OT } \end{aligned}$
malicious (active)	information theoretic	$\begin{gathered} \mathrm{t}<\mathrm{n} / 3 \\ {[\mathrm{BGW} 88, \mathrm{CCD} 8 \text {] }} \end{gathered}$	Sec. channels
	computational (or IT w. negligible error)	$\mathrm{t}<\mathrm{n} / 2$ [GMW87,RB89]	Broadcast
	computational without fairness	$\mathrm{t}<\mathrm{n}$ [GMW87]	Broadcast + OT

Malicious MPC with t<n/2 (GMW)

Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]
Inputs: A party p_{i} called the sender has input x
Outputs: Every p_{j} outputs y_{j}

- (consistency) There exists y s.t. $y_{j}=y$ for all j
- (validity) If p_{i} is honest then $y=x$

Malicious MPC with t<n/2 (GMW)

Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]

Inputs: A party p_{i} called the sender has input x
Outputs: Every p_{j} outputs y_{j}

- (consistency) There exists y s.t. $y_{j}=y$ for all j
- (validity) If p_{i} is honest then $y=x$

Theorem:

- Broadcast is possible (unconditionally) iff $t<n / 3$ [LSP82 BGP89]
- Assuming digital signatures and a public-key infrastructure it is possible for any $t<n$ [DS83]

Malicious MPC with t<n/2 (GMW)

Tools 1/3 : Broadcast (Byzantine Agreement) [LSP82]
Inputs: A party p_{i} called the sender has input x
Outputs: Every p_{j} outputs y_{j}

- (consistency) There exists y s.t. $y_{j}=y$ for all j
- (validity) If p_{i} is honest then $y=x$

Theorem:

- Broadcast is possible (unconditionally) iff $t<n / 3$ [LSP82 BGP89]
- Assuming digital signatures and a public-key infrastructure it is possible for any $t<n$ [DS83]

Broadcast + Encryption Setup (keys) = Secure channel

k_{i} : encryption
key for p_{i}

Back to MPC Security

Ideal World: Specification

Real World: Protocol

Model

- n players
- Computation over ($\mathbb{F}, \oplus, \otimes$) - E.g. ($\left.\mathbb{Z}_{\mathrm{p}},+, \cdot\right)$
- Communication: Point-to-point secure channels (and Broadcast)
- Synchrony: Messages sent in round i are delivered by round $i+1$

Back to MPC Security

Ideal World: Specification

Real World: Protocol

Model

- n players
- Computation over $(\mathbb{F}, \oplus, \otimes)$ - E.g. $\left(\mathbb{Z}_{\mathrm{p}},+, \cdot\right)$
- Communication: Broadcast + Public-key Infrastructure
- Synchrony: Messages sent in round i are delivered by round $i+1$

Malicious MPC with t<n/2 (GMW)

Tools 2/3 : (Non-interactive) Commitments
Committer \mathbf{P} \qquad

Verifier V

Input x
Rand. r
$\operatorname{Com}(x, r)=c \quad$ Commit Phase
$\xrightarrow[\substack{x, r \\ \text { Open Phase }}]{\operatorname{Ver}(c, x, r) \in\{0,1\}}$

Malicious MPC with t<n/2 (GMW)

Tools 2/3 : (Non-interactive) Commitments

Committer \mathbf{P}
 \qquad
 Verifier V

Input x
Rand. r
$\operatorname{Com}(x, r)=c \quad$ Commit Phase

Open Phase
$\operatorname{Ver}(c, x, r) \in\{0,1\}$
Security (informal)

- Correctness: If P follows the protocol, V always accepts (i.e., outputs 1).
- Hiding: From the Commit phase, V has no information about P's input x .
- Binding: After the Commit phase, there exists only one value x that will be accepted by V in the Open phase.

Malicious MPC with t<n/2 (GMW)

Tools 2/3 : (Non-interactive) Commitments

Committer \mathbf{P}
 \qquad
 Verifier V

Input x
Rand. r
$\operatorname{Com}(x, r)=c \quad$ Commit Phase
x, r
Open Phase $\operatorname{Ver}(c, x, r) \in\{0,1\}$
Security (informal)

- Correctness: If P follows the protocol, V always accepts (i.e., outputs 1).
- Hiding: From the Commit phase, V has no information about P's input x .
- Binding: After the Commit phase, there exists only one value x that will be accepted by V in the Open phase.
- Extra property: Additive Homomorphism
$\operatorname{Com}(x, r)=c \quad \operatorname{Com}\left(x^{\prime}, r^{\prime}\right)=c^{\prime} \quad \Rightarrow \mathrm{c} * \mathrm{c}^{\prime}=\operatorname{Com}\left(x+x^{\prime}, r+r^{\prime}\right)$

Malicious MPC with t<n/2 (GMW)

Tools 3/3 : Public Zero Knowledge Proofs of Knowledge

 Inputs:- All parties know a value y and a relation $R(\cdot, y) \in\{0,1\}$

Properties:

- (completess) Someone who knows a (witness) w such that $R(w, y)=l$ can convince everyone about his knowledge
- (soundness) If there exists no w such that $R(w, y)=1$, then no one can succeed in convincing the others about the opposite
- (zero-knowledge) The proof reveals no information about w

Malicious MPC with t<n/2 (GMW)

Tools 3/3 : Public Zero Knowledge Proofs of Knowledge

 Inputs:- All parties know a value y and a relation $R(\cdot, y) \in\{0,1\}$

Properties:

- (completess) Someone who knows a (witness) w such that $R(w, y)=1$ can convince everyone about his knowledge
- (soundness) If there exists no w such that $R(w, y)=1$, then no one can succeed in convincing the others about the opposite
- (zero-knowledge) The proof reveals no information about w

Example: Proving knowledge of a committed value without revealing anything about the value:

- y is a commitment c
- $R(w, y)=1$ iff $w=(x, r)$ and $\operatorname{Ver}(c, x, r)=1$

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure

Round 0:

Every P_{i} commits to its input and randomness

Rounds $1 \ldots \varrho_{\pi}+1$:
Execute π round-by-round over
Broadcast so that in each round

- every party proves (in ZK) that he follows π
- if the ZKP of some p_{i} fails then invoke the Recovery process to publicly announce all p_{i} 's shares.

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure

Round 0:

Every P_{i} commits to its input and randomness

Rounds $1 \ldots \varrho_{\pi}+1$:
Execute π round-by-round over
Broadcast so that in each round

- every party proves (in ZK) that he follows π
- if the ZKP of some p_{i} fails then invoke the Recovery process to publicly announce all p_{i} 's shares.

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure
Recovery gadget:

- When p_{i} fails then the remaining parties reconstruct all his shares
- For each share s_{i} of p_{i} the parties compute a sharing of $s_{i} u s i n g$ the linearity gadget with ZK proofs and then reconstruct it.

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure
Recovery gadget:

- When p_{i} fails then the remaining parties reconstruct all his shares
- For each share s_{i} of p_{i} the parties compute a sharing of $s_{i} u s i n g$ the linearity gadget with ZK proofs and then reconstruct it.

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure

Round 0:

Every P_{i} commits to its input and randomness

Rounds $1 \ldots \varrho_{\pi}+1$:
Execute π round-by-round over
Broadcast so that in each round

- every party proves (in ZK) that he follows π
- if the ZKP of some p_{i} fails then invoke the Recovery process to publicly announce all p_{i} 's shares.

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure

Security (with abort)

- Privacy: The parties see the following:
- Setup
- Commitments
- Messages from π
- Correctness:
- If all ZKPs succeed this means that the parties follow their protocol
- Only corrupted-prover ZKPs might fail \Rightarrow there will be $n-t>$
$n / 2$ to recover the missing values

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure

What if corrupted parties use bad randomness?

Round 0:
Every P_{i} co nmits to its input and randomness

Rounds $1 \ldots \varrho_{\pi}+1$:
Execute π round-by-round over Broadcast so that in each round

- every party proves (in ZK) that he follows π
- if the ZKP of some p_{i} fails then invoke the Recovery process to publicly announce all p_{i} 's shares.

Security (with abort)

- Privacy: The parties see the following:
- Setup
- Commitments
- Messages from π
- Correctness:
- If all ZKPs succeed this means that the parties follow their protocol
- Only corrupted-prover ZKPs might fail \Rightarrow there will be $n-t>$
$n / 2$ to recover the missing values

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure
Coin-tossing protocol (idea):
Parties can make p_{i} committed to a random R_{i}

- Every p_{j} (including p_{i}) commits to a random $R_{i j}$, i.e., computes and broadcasts $c_{i j}=\operatorname{Com}\left(R_{i j}, r_{i j}\right)$
- Every p_{j} sends $r_{i j}$ to p_{i}
- picomputes $c_{i l} * \ldots * c_{i n}$ which (using the homomorphic property) is a commitment to $R_{i}=R_{i l}+\ldots+R_{i n}$ with opening-randomness $r_{i}=r_{i l}+\ldots+r_{i n}$.

Malicious MPC with t<n/2 (GMW)

The GMW Compiler

Compile a semi-honest SFE protocol π into (malicious) secure

Security (with abort)

- Privacy: The parties see the following:
- Setup
- Commitments
- Messages from π
- Correctness:
- If all ZKPs succeed this means that the parties follow their protocol
- Only corrupted-prover ZKPs might fail \Rightarrow there will be $n-t>$
$n / 2$ to recover the missing values

Known Bounds

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\begin{gathered} t<n / 2 \\ {[B G W 88, C C D 88]} \end{gathered}$	Sec. channels
	Computational	t<n [GMW87]	$\begin{aligned} & \text { Sec. channels + } \\ & \text { OT } \end{aligned}$
malicious (active)	information theoretic	$\begin{gathered} \mathrm{t}<\mathrm{n} / 3 \\ {[\mathrm{BGW} 8, \mathrm{CCD} 8 \mathrm{~B}} \end{gathered}$	Sec. channels
	$\begin{aligned} & \text { computational } \\ & \text { (or IT w. } \\ & \text { negligible error) } \end{aligned}$	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ {[\mathrm{GMW} 87, \mathrm{RB} 89]} \end{gathered}$	Broadcast
	computational without fairness	t<n [GMW87]	Broadcast + OT

Known Bounds

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\begin{gathered} t<n / 2 \\ {[B G W 88, C C D 88]} \end{gathered}$	Sec. channels
	Computational	t<n [GMW87]	$\begin{aligned} & \text { Sec. channels + } \\ & \text { OT } \end{aligned}$
malicious (active)	information theoretic	$\begin{gathered} \mathrm{t}<\mathrm{n} / 3 \\ {[\mathrm{BGW} 88, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	computational (or IT w. negligible error)	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ {[\mathrm{GMW} 87, \mathrm{RB} 89]} \end{gathered}$	Broadcast
	computational without fairness	t<n [GMW87]	Broadcast + OT

Known Bounds

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ {[\mathrm{BGW} 88, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	Computational	[GMW87]	$\begin{aligned} & \text { Sec. channels + } \\ & \text { OT } \end{aligned}$
malicious (active)	information theoretic	$\begin{gathered} \mathrm{t}<\mathrm{n} / 3 \\ {[\mathrm{BGW} 8, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	computational (or IT w. negligible error)	t<n/2 [GMW87,RB89]	$\begin{aligned} & \text { Broadcast } \\ & \text { ??? } \end{aligned}$
	computational without fairness	t<n [GMW87]	Broadcast + OT

Broadcast for t<n/3

Consensus:(Inputs: x_{1}, \ldots, x_{n}, Outputs: $\left.y_{1}, \ldots, y_{n}\right)$

- (consistency) There exists y s.t. $y_{j}=y$ for all p_{j}
- (validity) If all honest p_{i} has input $x_{i}=x$ then $y=x$

Broadcast for t<n/3

Consensus:(Inputs: x_{1}, \ldots, x_{n}, Outputs: y_{1}, \ldots, y_{n})

- (consistency) There exists y s.t. $y_{j}=y$ for all p_{j}
- (validity) If all honest p_{i} has input $x_{i}=x$ then $y=x$

Theorem:

- Consensus is possible (unconditionally) iff $t<n / 3$ [LSP82,BGP89]

Broadcast for t<n/3

Consensus:(Inputs: x_{1}, \ldots, x_{n}, Outputs: y_{1}, \ldots, y_{n})

- (consistency) There exists y s.t. $y_{j}=y$ for all p_{j}
- (validity) If all honest p_{i} has input $x_{i}=x$ then $y=x$

Theorem:

- Consensus is possible (unconditionally) iff $t<n / 3$ [LSP82,BGP89]

Consensus \Rightarrow Broadcast:

1. Sender sends his input to every p_{i}
2. The parties runs consensus on inputs the received values

Broadcast for t<n/3

Consensus:(Inputs: x_{1}, \ldots, x_{n}, Outputs: $\left.y_{1}, \ldots, y_{n}\right)$

- (consistency) There exists y s.t. $y_{j}=y$ for all p_{j}
- (validity) If all honest p_{i} has input $x_{i}=x$ then $y=x$

Theorem:

- Consensus is possible (unconditionally) iff $t<n / 3$ [LSP82,BGP89]

Consensus \Rightarrow Broadcast:

1. Sender sends his input to every p_{i}
2. The parties runs consensus on inputs the received values

Security proof of Consensus \Rightarrow Broadcast:

- (consistency) Follows from consistency of consensus
- (validity) If the sender is honest then consensus is executed with all honest pi's having input the sender's input

Known Bounds

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ {[\mathrm{BGW} 88, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	Computational	[GMW87]	$\begin{aligned} & \text { Sec. channels + } \\ & \text { OT } \end{aligned}$
malicious (active)	information theoretic	$\begin{gathered} \mathrm{t}<\mathrm{n} / 3 \\ {[\mathrm{BGW} 8, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	computational (or IT w. negligible error)	t<n/2 [GMW87,RB89]	$\begin{aligned} & \text { Broadcast } \\ & \text { ??? } \end{aligned}$
	computational without fairness	t<n [GMW87]	Broadcast + OT

Known Bounds

| Adv. Type | Security | Corruption Bound |
| :---: | :---: | :---: | Requires

Impossibility of Broadcast for $\mathrm{n}=3, \mathrm{t}=1$

Assume a protocol $\left(\Pi_{1}, \Pi_{2}, \Pi_{3}\right)$ allowing p_{3} to broadcast a bit.

Impossibility of Broadcast for $\mathrm{n}=3, \mathrm{t}=1$

Assume a protocol $\left(\Pi_{1}, \Pi_{2}, \Pi_{3}\right)$ allowing p_{3} to broadcast a bit.

Impossibility of Broadcast for $n=3, \mathrm{t}=1$

Assume a protocol $\left(\Pi_{1}, \Pi_{2}, \Pi_{3}\right)$ allowing p_{3} to broadcast a bit.
p_{1} is corrupted
p_{3} has input 1

Correctness \Rightarrow
p_{2} outputs 1

Impossibility of Broadcast for $n=3, \mathrm{t}=1$

Assume a protocol $\left(\Pi_{1}, \Pi_{2}, \Pi_{3}\right)$ allowing p_{3} to broadcast a bit.
p_{2} is corrupted
p_{3} has input 0

Correctness \Rightarrow
p_{1} outputs 0

Impossibility of Broadcast for $n=3, \mathrm{t}=1$

Assume a protocol $\left(\Pi_{1}, \Pi_{2}, \Pi_{3}\right)$ allowing p_{3} to broadcast a bit.
p_{3} is corrupted

consistency \Rightarrow
p_{1} outputs the same as p_{2}

Impossibility of Broadcast for $n=3, \mathrm{t}=1$

Assume a protocol $\left(\Pi_{1}, \Pi_{2}, \Pi_{3}\right)$ allowing p_{3} to broadcast a bit.

Correctness \Rightarrow p_{2} outputs 1

Correctness \Rightarrow
p_{1} outputs 0

consistency \Rightarrow
p_{1} outputs the same as p_{2}

Known Bounds

Adv. Type	Security	Corruption Bound	Requires
semi-honest (passive)	Information theoretic (IT)	$\begin{gathered} \mathrm{t}<\mathrm{n} / 2 \\ {[\mathrm{BGW} 88, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	Computational	[GMW87]	$\begin{aligned} & \text { Sec. channels + } \\ & \text { OT } \end{aligned}$
malicious (active)	information theoretic	$\begin{gathered} \mathrm{t}<\mathrm{n} / 3 \\ {[\mathrm{BGW} 8, \mathrm{CCD} 88]} \end{gathered}$	Sec. channels
	computational (or IT w. negligible error)	t<n/2 [GMW87,RB89]	PKI
	computational without fairness	$\mathrm{t}<\mathrm{n}$ $[\mathrm{GMW} 87]$	Broadcast + OT

MPC Goal

MPC Goal

MPC Goal

MPC with Malicious Adversary - t<n/3

The $\mathrm{t}<\mathrm{n} / 2$ solution does not even work given broadcast

- Let's look at 3 parties with 1 corruption
- Secrets s shared as $\left(s_{1}, s_{2}, s_{3}\right)$, i.e., p_{i} holds s_{i}

MPC with Malicious Adversary - t<n/3

The $\mathrm{t}<\mathrm{n} / 2$ solution does not even work given broadcast

- Let's look at 3 parties with 1 corruption
- Secrets s shared as (s_{1}, s_{2}, s_{3}) , i.e., p_{i} holds s_{i}

correctness \Rightarrow
$\forall s_{3}{ }^{\prime} \operatorname{Rec}\left(s_{1}, s_{2}, s_{3}{ }^{\prime}\right)=s$
$\Rightarrow \exists \operatorname{Rec}_{12}$ s.t.
$\operatorname{Rec}_{12}\left(s_{1}, s_{2}\right)=s$

MPC with Malicious Adversary - t<n/3

The $\mathrm{t}<\mathrm{n} / 2$ solution does not even work given broadcast

- Let's look at 3 parties with 1 corruption
- Secrets s shared as (s_{1}, s_{2}, s_{3}) , i.e., pi holds s_{i}

correctness \Rightarrow
$\forall s_{3}{ }^{\prime} \operatorname{Rec}\left(s_{1}, s_{2}, s_{3}{ }^{\prime}\right)=s$
$\Rightarrow \exists \operatorname{Rec}_{12}$ s.t.
$\operatorname{Rec}_{12}\left(s_{1}, s_{2}\right)=s$

$$
\begin{aligned}
& \text { correctness } \Rightarrow \\
& \forall s_{2}^{\prime} \operatorname{Rec}\left(s_{1}, s_{2}^{\prime}, s_{3}\right)=s \\
& \Rightarrow \exists \operatorname{Rec}_{13} \mathrm{s.t.} \\
& \operatorname{Rec}_{13}\left(s_{1}, s_{3}\right)=s
\end{aligned}
$$

MPC with Malicious Adversary - t<n/3

The $\mathrm{t}<\mathrm{n} / 2$ solution does not even work given broadcast

- Let's look at 3 parties with 1 corruption
- Secrets s shared as (s_{1}, s_{2}, s_{3}), i.e., pi holds s_{i}

correctness \Rightarrow
$\forall s_{3}{ }^{\prime} \operatorname{Rec}\left(s_{1}, s_{2}, s_{3}{ }^{\prime}\right)=s$
$\Rightarrow \exists \operatorname{Rec}_{12}$ s.t.
$\operatorname{Rec}_{12}\left(s_{1}, s_{2}\right)=s$

$$
\begin{aligned}
& \text { correctness } \Rightarrow \\
& \forall s_{2}^{\prime} \operatorname{Rec}\left(s_{1}, s_{2}^{\prime}, s_{3}\right)=s \\
& \Rightarrow \exists \operatorname{Rec}_{13} \mathrm{s.t.} \\
& \operatorname{Rec}_{13}\left(s_{1}, s_{3}\right)=s
\end{aligned}
$$

1-privacy \Rightarrow
s_{1} has no info about s

- $\forall s^{\prime} \exists s_{2}$'s.t.
$\operatorname{Rec}_{12}\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}{ }^{\prime}\right)=\mathrm{s}^{\prime}$

MPC with Malicious Adversary - t<n/3

The $\mathrm{t}<\mathrm{n} / 2$ solution does not even work given broadcast

- Let's look at 3 parties with 1 corruption
- Secrets s shared as (s_{1}, s_{2}, s_{3}) , i.e., p_{i} holds s_{i}

correctness \Rightarrow
$\forall s_{3}{ }^{\prime} \operatorname{Rec}\left(s_{1}, s_{2}, s_{3}{ }^{\prime}\right)=s$
$\Rightarrow \exists \operatorname{Rec}_{12}$ s.t.
$\operatorname{Rec}_{12}\left(s_{1}, s_{2}\right)=s$

correctness \Rightarrow
$\forall s_{2}{ }^{\prime} \operatorname{Rec}\left(s_{1}, s_{2}{ }^{\prime}, s_{3}\right)=s$
$\Rightarrow \exists \operatorname{Rec}_{13}$ s.t.
$\operatorname{Rec}_{13}\left(s_{1}, s_{3}\right)=s$

1-privacy \Rightarrow
s_{1} has no info about s

- $\forall s^{\prime} \exists s_{2}$'s.t.
$\operatorname{Rec}_{12}\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}{ }^{\prime}\right)=\mathrm{s}^{\prime}$

MPC with Malicious Adversary - t<n/3

The $\mathrm{t}<\mathrm{n} / 2$ solution does not even work given broadcast

- Let's look at 3 parties with 1 corruption
- Secrets s shared as (s_{1}, s_{2}, s_{3}) , i.e., p_{i} holds s_{i}

correctness \Rightarrow

correctness \Rightarrow

$$
\text { 1-privacy } \Rightarrow
$$

$\forall s_{3}$, We need a secret sharing scheme that ensures honest out s $\Rightarrow \exists \quad$ parties do not loose their shared state
$\operatorname{Rec}_{12}\left(s_{1}, s_{2}\right)=s$
$\operatorname{Rec}_{13}\left(s_{1}, s_{3}\right)=s$

Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following properties:

- (correctness) If the dealer is honest during Share, then given the shares of any t parties, Reconstruct outputs the secret s.
- (t-privacy) The shares of any set of $t-1$ parties include not information about s.
- (commitment) At the end of Share there is a unique value s' such that if the parties invoke Reconstruct the output will be s'

Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following properties:

- (correctness) If the dealer is honest during Share, then given the shares of any t parties, Reconstruct outputs the secret s.
- (t-privacy) The shares of any set of $t-1$ parties include not information about s.
- (commitment) At the end of Share there is a unique value s' such that if the parties invoke Reconstruct the output will be s'
(correctness) $\Rightarrow s^{\prime}=s$ when Dealer is honest in Share

Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following properties:

- (correctness) If the dealer is honest during Share, then given the shares of any t parties, Reconstruct outputs the secret s.
- (t-privacy) The shares of any set of $t-l$ parties include not information about s.
- (commitment) At the end of Share there is a unique value s' such that if the parties invoke Reconstruct the output will be s'
(correctness) $\Rightarrow s^{\prime}=s$ when Dealer is honest in Share
In a VSS the adversary cannot make the parties loose a shared value

Verifiable t-out-of-n Secret Sharing

Verifiable Secret Sharing: A t-out-of-n verifiable secret sharing (VSS) scheme is a t-out-of-n secret sharing scheme (Share, Reconstruct) with the following properties:

- (correctness) If the dealer is honest during Share, then given the shares of any t parties, Reconstruct outputs the secret s.
- (t-privacy) The shares of any set of $t-l$ parties include not information about s.
- (commitment) At the end of Share there is a unique value s' such that if the parties invoke Reconstruct the output will be s'

$$
\text { (correctness) } \Rightarrow s^{\prime}=s \text { when Dealer is honest in Share }
$$

In a VSS the adversary cannot make the parties loose a shared value
Previous argument shows that VSS (without signatures) exists only if $t<n / 3$

(t+1)-out-of-n VSS (t<n/3)

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$
3. Each pair ($\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$) confirms that $s_{i j}=f_{i}\left(\alpha_{j}\right)=g_{j}\left(\alpha_{i}\right)$ and $s_{j i}=f_{j}\left(\alpha_{i}\right)=g_{i}\left(\alpha_{j}\right)$.
4. Resolve conflict by public accusations answered by the dealer.
p_{2} 's "share"

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$
3. Each pair ($\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$) confirms that $s_{i j}=f_{i}\left(\alpha_{j}\right)=g_{j}\left(\alpha_{i}\right)$ and $s_{j i}=f_{j}\left(\alpha_{i}\right)=g_{i}\left(\alpha_{j}\right)$.
4. Resolve conflict by public accusations answered by the dealer.
p_{2} 's "share"
Requires Broadcast

- Recall: Can be constructed from secure channels iff t<n/3 [LSP82 BGP89]
$F\left(\alpha_{1}, y\right)=g_{1}(y)$

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$
3. Each pair ($\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$) confirms that $s_{i j}=f_{i}\left(\alpha_{j}\right)=g_{j}\left(\alpha_{i}\right)$ and $s_{j i}=f_{j}\left(\alpha_{i}\right)=g_{i}\left(\alpha_{j}\right)$.
4. Resolve conflict by public accusations answered by the dealer.
p_{2} 's "share"

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$
3. Each pair ($\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$) confirms that $s_{i j}=f_{i}\left(\alpha_{j}\right)=g_{j}\left(\alpha_{i}\right)$ and $s_{j i}=f_{j}\left(\alpha_{i}\right)=g_{i}\left(\alpha_{j}\right)$.
4. Resolve conflict by public accusations answered by the dealer.

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$
3. Each pair ($\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$) confirms that $s_{i j}=f_{i}\left(\alpha_{j}\right)=g_{j}\left(\alpha_{i}\right)$ and $s_{j i}=f_{j}\left(\alpha_{i}\right)=g_{i}\left(\alpha_{j}\right)$.
4. Resolve conflict by public accusations answered by the dealer.

(t+1)-out-of-n VSS (t<n/3)

Share:

1. D chooses a random bivariate polynomial $F(x, y)$ of degree t in each variable, such that $f(0,0)=s$. Denote: $f_{i}(x)=F\left(x, \alpha_{i}\right), g_{j}(y)=F\left(\alpha_{j}, y\right)$
2. Each party p_{i} receives $f_{i}(x)$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{y})$
3. Each pair ($\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$) confirms that $s_{i j}=f_{i}\left(\alpha_{j}\right)=g_{j}\left(\alpha_{i}\right)$ and $s_{j i}=f_{j}\left(\alpha_{i}\right)=g_{i}\left(\alpha_{j}\right)$.
4. Resolve conflict by public accusations answered by the dealer.

t-out-of-n VSS (t<n/3)

Reconstruct:

1. For each $g_{j}(y)$:
2. p_{j} announces $s_{i j}$
3. Find the degree-t polynomial $G_{j}(y)$ which passes through at least $2 t+l$ points from the announces $s_{l j}, \ldots, s_{n j}$
4. Use $G_{l}(0), \ldots, G_{n}(0)$ to interpolate $f_{0}(x)$ and compute $s=f_{0}(0)$

t-out-of-n VSS (t<n/3)

Reconstruct:

1. For each $g_{j}(y)$:
2. p_{j} announces $s_{i j}$
3. Find the degree-t polynomial $G_{j}(y)$ which passes through at least $2 t+l$ points from the announces $s_{l j}, \ldots, s_{n j}$
4. Use $G_{l}(0), \ldots, G_{n}(0)$ to interpolate $f_{0}(x)$ and compute $s=f_{0}(0)$

t-out-of-n VSS (t<n/3)

Reconstruct:

1. For each $g_{j}(y)$:
2. p_{j} announces $s_{i j}$
3. Find the degree-t polynomial $G_{j}(y)$ which passes through at least $2 t+1$ points from the announces $s_{l j}, \ldots, s_{n j}$
4. Use $G_{l}(0), \ldots, G_{n}(0)$ to interpolate $f_{0}(x)$ and compute $s=f_{0}(0)$

Claim: $G_{j}(y)=g_{j}(y)$

Proof:

- $G_{j}(y)$ passes through the $t+1$ values from the honest parties which all lie on g_{j}.
- By the Lagrange interpolation, there exists no other degree-t polynomial with this property, hence this is the only polynomial that might be reconstructed.

t-out-of-n VSS (t<n/3)

Reconstruct:

1. For each $g_{j}(y)$:
2. p_{j} announces $s_{i j}$
3. Find the degree-t polynomial $G_{j}(y)$ which passes through at least $2 t+1$ points from the announces $s_{l j}, \ldots, s_{n j}$
4. Use $G_{l}(0), \ldots, G_{n}(0)$ to interpolate $f_{0}(x)$ and compute $s=f_{0}(0)$

t-out-of-n VSS (t<n/3)

Reconstruct:

1. For each $g_{j}(y)$:
2. p_{j} announces $s_{i j}$
3. Find the degree-t polynomial $G_{j}(y)$ which passes through at least $2 t+1$ points from the announces $s_{l j}, \ldots, s_{n j}$
4. Use $G_{l}(0), \ldots, G_{n}(0)$ to interpolate $f_{0}(x)$ and compute $s=f_{0}(0)$

t-out-of-n VSS (t<n/3)

Reconstruct:

1. For each $g_{j}(y)$:
2. p_{j} announces $s_{i j}$
3. Find the degree-t polynomial $G_{j}(y)$ which passes through at least $2 t+1$ points from the announces $s_{l j}, \ldots, s_{n j}$
4. Use $G_{l}(0), \ldots, G_{n}(0)$ to interpolate $f_{0}(x)$ and compute $s=f_{0}(0)$

t-out-of-n VSS (t<n/3)

Reconstruct:

1. For each $g_{j}(y)$:
2. p_{j} announces $s_{i j}$
3. Find the degree-t polynomial $G_{j}(y)$ which passes through at least $2 t+1$ points from the announces $s_{l j}, \ldots, s_{n j}$
4. Use $G_{l}(0), \ldots, G_{n}(0)$ to interpolate $f_{0}(x)$ and compute $s=f_{0}(0)$

t-out-of-n VSS (t<n/3)

Properties:

- At the end of the sharing phase
- t parties have no information \Rightarrow VSS privacy
- The dealer is committed to the shared secret \Rightarrow VSS commitment
- If the dealer is honest then the sharing is of $s \Rightarrow$ VSS correctness
- Every party (even malicious) is committed to his share (i.e., polynomial $\left.g_{i}(y)\right)$: the honest parties can reconstruct it

MPC Goal

MPC Goal

Malicious MPC: Addition

Goal: Addition Gadget

Malicious MPC: Addition

Goal: Addition Gadget

Malicious MPC: Addition

Goal: Addition Gadget

Define $F^{\prime \prime}(x, y)=F(x, y)+F^{\prime}(x, y) \Rightarrow F^{\prime \prime}(0,0)=F(0,0)+F^{\prime}(0,0)=s^{\prime}+s^{\prime}$

Malicious MPC: Addition

Goal: Addition Gadget

Define $F^{\prime \prime}(x, y)=F(x, y)+F^{\prime}(x, y) \Rightarrow F^{\prime \prime}(0,0)=F(0,0)+F^{\prime}(0,0)=s^{\prime}+s^{\prime}$

Addition protocol

- Each party locally adds his share-shares of s and s^{\prime}, i.e., picomputes $s_{i j}{ }^{\prime \prime}=s_{i j}+s_{i j}{ }^{\prime}$ and $s_{j i}{ }^{\prime \prime}=s_{j i}+s_{j i}{ }^{\prime}$
- The result is a sharing of s " by means of polynomial $F^{\prime \prime}=F+F$,

MPC Goal

MPC Goal

Multiplication Protocol: Malicious

Goal: Multiplication Gadget

t-out-of-n VSS

Properties (recall):

- At the end of the sharing phase
- t-l parties have no information \Rightarrow VSS privacy
- The dealer is committed to the shared secret \Rightarrow VSS commitment
- If the dealer is honest then the sharing is of $s \Rightarrow$ VSS correctness
- Every party (even malicious) is committed to his share (i.e., polynomial $\left.g_{i}(y)\right)$: the honest parties can reconstruct it

t-out-of-n VSS

Properties (recall):

- At the end of the sharing phase
- t-1 parties have no information \Rightarrow VSS privacy
- The dealer is committed to the shared secret \Rightarrow VSS commitment
- If the dealer is honest then the sharing is of $s \Rightarrow$ VSS correctness
- Every party (even malicious) is committed to his share (i.e., polynomial $\left.g_{i}(y)\right)$: the honest parties can reconstruct it

t-out-of-n VSS

Properties (recall):

- At the end of the sharing phase
- t-1 parties have no information \Rightarrow VSS privacy
- The dealer is committed to the shared secret \Rightarrow VSS commitment
- If the dealer is honest then the sharing is of $s \Rightarrow$ VSS correctness
- Every party (even malicious) is committed to his share (i.e., polynomial $\left.g_{i}(y)\right)$: the honest parties can reconstruct it

Multiplication Protocol: Malicious

$s_{i}:$ commitment to s_{i} held by p_{i}

Multiplication Protocol: Malicious

$s_{i}:$ commitment to s_{i} held by p_{i}

Multiplication Protocol: Malicious

$s_{i}:$ commitment to s_{i} held by p_{i}

Multiplication Protocol: Malicious

s_{i} : commitment to s_{i} held by p_{i}

As in the semi honest setting to multiply shared s and s'

- Every pi computes $s_{i}{ }^{\prime \prime}=s_{i} \cdot s_{i}{ }^{\prime}$
- Use the linearity to compute a VSS of s"

Multiplication Protocol: Malicious

s_{i} : commitment to s_{i} held by p_{i}

$$
\text { Linearity: } s_{i}+s_{i}=s_{i}+s_{i}
$$

As in the semi honest setting to multiply shared s and s^{\prime}

- Every p_{i} computes $s_{i}{ }^{\prime \prime}=s_{i} \cdot s_{i}{ }^{\prime}$
- Use the linearity to compute a VSS of s"

we need a commitment multiplication protocol
- Similar idea to the semi honest protocol: Have every party commit to its share product and use linearity to combine them.
- + a check that the commitment is correct

References

- [Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22:612-613, 1979.
- [LSP82] L. Lamport, R. Shostak, and M. Pease. 1982. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (July 1982), 382-401. DOI=http://dx.doi.org/10.1145/357172.357176
- [DS83] D. Dolev and H. Strong. Authenticated algorithms for Byzantine agreement. SIAM J. Computing, 12(4):656-666, 1983.
- [BCR86] :G. Brassard, C. Crepeau, and J.-M. Robert. 1986. Information theoretic reductions among disclosure problems. FOCS '86. IEEE Computer Society, Washington, DC, USA, 168-173.
- [GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game - a completeness theorem for protocols with honest majority. In Proc. 19th ACM Symposium on the Theory of Computing (STOC), pages 218-229, 1987.

References

- [BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant dis- tributed computation. In Proc. 20th ACM Symposium on the Theory of Computing (STOC), pages 1-10, 1988.
- [CCD88] D. Chaum, C. Cre'peau, and I. Damga rd. Multi- party unconditionally secure protocols (extended abstract). In Proc. 20th ACM Symposium on the Theory of Computing (STOC), pages 11-19, 1988.
- [BGP89] P. Berman, J. A. Garay, and K. J. Perry. 1989. Towards optimal distributed consensus. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (SFCS '89). IEEE Computer Society, Washington, DC, USA, 410-415. DOI=http://dx.doi.org/10.1109/SFCS. 1989.63511
- [RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In Proc. 21st ACM Symposium on the Theory of Computing (STOC), pages 73-85, 1989.

