
Constant-Rate 
Oblivious Transfer 

from Noisy Channels
  Yuval Ishai
   Eyal Kushilevitz
 Rafail Ostrovsky
Manoj Prabhakaran
  Amit Sahai
   Jürg Wullschleger



Noisy Channel & Crypto
From our point of view, an ideal communication 
line is a sterile, cryptographically uninteresting 
entity. Noise, on the other hand, breeds disorder, 
uncertainty, and confusion. Thus, it is the 
cryptographer’s natural ally.

Claude Crépeau & Joe Kilian, 1988.



Noisy Channel & Crypto
• Wyner’s wire-tap channel: information-theoretically 

secret communication, without shared keys [W’75]

• Oblivious Transfer from noise [CK’88]

• OT is complete for secure computation [K’88]

X0,X1               b
                      Xb

               
OT

   X              
                    X⊕b
               

BSC



Constant Rate
• cf. Shannon’s Channel Coding Theorem: O(1) many uses of 

BSC per bit of communication 

• How many uses of BSC per OT instance?

• [CK’88]      O(k11) to get a security error of 2-k

• [C’97]        O(k3)
• [CMW’04]     O(k2+ε)
• [HIKN’08]    O(1) for semi-honest security

• Goal: To get O(1) (Can’t do better even given free noiseless 
channels [WW’10])

or more general noisy channels



Overview
• Plan: use IPS construction [IPS’08] to compile a semi-

honest secure “inner protocol” and an honest-majority 
secure “outer protocol” using a few string-OTs

• A modified compiler so that the inner-protocol can 
use noisy channels. Requires inner protocol to be 
“error tolerant”

• Constant-rate inner and outer protocols from 
literature [GMW’87+HIKN’08,DI’06+CC’06]

• A constant-rate construction for string-OT from 
noisy channel

Harder to detect 
cheating in inner-
protocol (by 
partial oblivious 
monitoring), as 
there is a noisy 
channel involved.

Will require the 
inner-protocol to 
be secure against 
active corruption 
of a small fraction 
of channel instances



String-OT
• t-bit string-OT with O(t)+poly(k) communication (over a noisy 

channel)

• Can use current constructions with a constant security 
parameter to get “fuzzy” OT: i.e., with constant security error

• Challenge: change constant security error to negligible error

• String-OT from fuzzy OT (or fuzzy OLE, in fact)

• First, reinterpret fuzzy OLE as a perfect “shaky” OLE

• Next, use shaky OLE to get string-OT

A,C               B

                 AB+C               
OLE

Previously, only known from erasure channel



Fuzzy and Shaky
• Fuzzy protocol: realizes F with a constant security error ε 

(statistical distance between ideal and real executions)

• Shaky functionality: F((σ)) flips a σ-biased coin, and if heads, then 
works as F, else (w/ prob σ) surrenders to the adversary

• Theorem
An ε-fuzzy protocol for F is a perfectly secure protocol for F((σ))

• As a composition theorem: Running n copies of an ε-fuzzy 
protocol gives about (1-σ)n good copies of F (randomly 
chosen)

σ = #rounds.|X||Y|ε



Fuzzy to Shaky
• “Statistical security to Perfect security”

• Works for UC-security (as well as standalone security)

• Given a simulator for F with error ε, build a perfect 
simulator for F((σ))

S

F

x y

fA(
x,y

) fB(x,y) S*

F((σ))

x y

fA(
x,y

) fB(x,y)



Fuzzy→Shaky: Example
• A degenerate functionality F

• Takes a bit from Bob as input; no output

• A fuzzy protocol: With probability ½ 
Bob sends his input to Alice, else ⊥

• For corrupt Alice, simulator in the 
ideal F execution sends ⊥ with 
probability ½, and else a random bit

• Simulation error = ¼ ¼ ½

�

¼

0 1

½ ¼

�

¼

0 1

y=1y=0

0 1� 0 1�

½ ½ ½ ½



• Simulator for F((σ)) in two parts:

• A part “dominated” both by the 
protocol and the given simulation

• The “remainder” to make it perfect

0 ½

�

0

0 1

½ 0

�

0

0 1

0½ 00 ½0

When 
F((1/2))  

doesn’t fail

When it fails

y=1y=0

0 1� 0 1�

½ ½ ½ ½

¼ ½

�

¼

0 1

½ ¼

�

¼

0 1

Fuzzy→Shaky: Example



Fuzzy to Shaky
• Much more complicated when Alice has an input or output

• Theorem
An ε-fuzzy protocol for F is a perfectly secure protocol for F((σ))

• Holds for any deterministic function F

• Simulator’s description is exponential in the fuzzy protocol’s 
communication complexity

• But for us, this is a constant: fuzzy OLE is a (non-constant 
rate) OLE protocol instantiated with a constant security 
parameter

σ = #rounds.|X||Y|ε



Shaky OLE to String-OT
• (Non-shaky) OLE to String-OT:

• Alice “extracts” fewer than n/2 bits from each of x0 and x1 
and sends Ext(x0) ⊕ s0 and Ext(x1) ⊕ s1 to Bob

• But with shaky OLE,  Alice may learn Bob’s input b (and Bob 
may learn more than n/2 bits each of x0 and x1)

• Fix: using a constant-rate encoding of x0, x1 and b

Bits of (x1-x0,x0) b (in all instances)

Bits of (x1-x0)b + x0 = xb

Ext(x0) ⊕ s0, Ext(x1) ⊕ s1 Unmask sb

OLE



Shaky OLE to String-OT
• Const. rate encodings Enc:Fm→Fn and Enc2:Fm→Fn such that:

• Enc(A) * Enc(B) + Enc2(C)  ∈  Enc2(AB+C)

• Error-correcting & Secret-sharing: For d = a (small) constant 
fraction of n, Enc2 allows (efficient) decoding up to d errors;
also, any d co-ordinates of Enc independent of the message

• Enc2 is sufficiently randomizing: Enc2(A) is uniform over an  
n-m(1+δ)-dimensional subspace of Fn

• Instantiated from an “MPC-friendly code” (a.k.a codex) of 
appropriate parameters [CC’06,IKOS’09]

co-ordinate wise mult.



Shaky OLE to String-OT

• Secure against Alice, since Bob can correct a constant fraction of 
errors, and since a small fraction of Enc(b) reveals nothing of b

• Secure against Bob, since he knows nothing of at least one of the 
extracted strings (even given the other one, and all that he gets 
in the protocol; relies on the randomization of Enc2(x0)) 

Enc(x1-x0), Enc2(x0) Enc(b)
Enc2((x1-x0)b + x0)
Decode xb

Ext(x0) ⊕ s0, Ext(x1) ⊕ s1 Unmask sb

OLE ((ε))



Summary
• Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

• Using (a slightly modified) IPS compiler [IPS’08] to compile:

• “Outer protocol” [DI’06+CC’06] for n instances of OT

• “Inner protocol” [GMW’87+HIKN’08] for implementing its servers

• For “watchlist channels” a new constant-rate protocol for string-OT 
from noisy channel (previously, only from an erasure channel)

• Uses a homomorphic arithmetic encoding scheme

• Relies on “fuzzy to shaky” security


