
Constant-Rate Oblivious Transfer from Noisy Channels

Yuval Ishai* Eyal Kushilevitz† Rafail Ostrovsky‡ Manoj Prabhakaran§

Amit Sahai¶ Jürg Wullschleger||

Abstract
A binary symmetric channel (BSC) is a noisy communication channel that flips each bit indepen-

dently with some fixed error probability 0 < p < 1/2. Crépeau and Kilian (FOCS 1988) showed that
oblivious transfer, and hence general secure two-party computation, can be unconditionally realized by
communicating over a BSC. There has been a long line of works on improving the efficiency and general-
ity of this construction. However, all known constructions that achieve security against malicious parties
require the parties to communicate poly(k) bits over the channel for each instance of oblivious transfer
(more precisely,

(
2
1

)
-bit-OT) being realized, where k is a statistical security parameter. The question of

achieving a constant (positive) rate was left open, even in the easier case of realizing a single oblivious
transfer of a long string.

We settle this question in the affirmative by showing how to realize n independent instances of
oblivious transfer, with statistical error that vanishes with n, by communicating just O(n) bits over
a BSC. As a corollary, any boolean circuit of size s can be securely evaluated by two parties with
O(s) + poly(k) bits of communication over a BSC, improving over the O(s) · poly(k) complexity of
previous constructions.
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1 Introduction

One of the attractive features of modern cryptography is its ability to “turn lemons into lemonade.” Indeed,
traditional complexity-based cryptography turns computational intractability, a major obstacle tackled by
Computer Science, into a blessing. The present work is concerned with a similar phenomenon in the context
of information-theoretic cryptography: the ability to turn noise, a major obstacle tackled by Information
Theory, into a blessing.

Originating from the seminal work of Wyner [39] on the usefulness of noise for secure communication,
there has been a large body of work on basing various cryptographic primitives on different types of noisy
communication channels. The most fundamental type of a noisy channel in information theory is the binary
symmetric channel (BSC). A BSC with crossover probability p, where 0 < p < 1

2 , flips each communicated
bit independently with probability p.

In 1988, Crépeau and Kilian [10] showed that two parties can make use of a BSC to realize oblivious
transfer (OT) [33, 16] with unconditional security. By OT we refer by default to

(
2
1

)
-bit-OT, a protocol

which allows a receiver to select exactly one of two bits held by a sender without revealing the identity of
the received bit to the sender. We require by default that security hold even against malicious parties. It
is known that OT on a pair of m-bit strings reduces to O(m) instances of bit-OT [4]. Much more broadly,
OT can be used as a basis for general secure two-party computation [40, 20, 27, 25]. This settles the main
feasibility question concerning the cryptographic power of a BSC.

In contrast to the basic feasibility question, the corresponding efficiency questions are far less under-
stood. To explain the main relevant issues, it is instructive to draw an analogy with classical information
theory. A naive approach to send n bits of information over a noisy channel is to do it bit-wise, by repeating
every bit k times. A major breakthrough in information theory was the seminal result of Shannon [34] that
by sending bits in blocks and by using the right encoding, one can achieve a constant transmission rate,
namely use only a constant number of channel transmissions per information bit with error that vanishes
with n. One can analogously define the notion of a constant-rate protocol for OT from BSC (or a constant-
rate reduction of OT to BSC) as a protocol which realizes n independent instances of OT with negligible (in
n) statistical error1 by exchanging O(n) bits over the channel.2 In such a protocol, the amortized commu-
nication complexity for each instance of OT tends to a constant which is independent of the desired level of
security.

The existence of a constant-rate protocol for OT from BSC has been a longstanding open question. The
original protocol from [10] required O(k11) bits of communication over a BSC to realize each instance of
OT with error 2−k. This communication overhead was subsequently improved by Crépeau [9] to O(k3).
A major progress was made by Harnik et al. [21], who showed that constant rate can be achieved in the
semi-honest model, in which parties do not deviate from the protocol except for trying to infer additional
information from their view.

Constant-rate protocols for string OT, realizing a single selection between two n-bit strings by commu-
nicating O(n) bits over the channel, are considerably easier to obtain. (Indeed, known reductions [4] can be
used to get constant-rate string-OT from constant-rate bit-OT, but not the other way around.) Constant-rate
string-OT protocols from an erasure channel, which erases every bit with probability 0 < p < 1 and informs
the receiver of the erasures, were presented in [31, 23].

To summarize the prior state of the art, constant-rate protocols for bit-OT from BSC were only known
1By the error of OT or other secure computation protocol we refer to the statistical simulation error under standard simulation-

based definitions [5, 6, 19].
2This is the best one can hope for up to the exact constant. Indeed, it is known that Ω(n) bits over the BSC are necessary even

if one additionally allows unlimited communication over a noiseless channel [36].
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in the semi-honest model, and constant-rate string-OT protocols could only be based on an erasure channel.
The existence of constant-rate bit-OT protocols from a BSC (or even from an erasure channel) as well as the
existence of constant-rate string-OT protocols from a BSC were left open.

1.1 Our Results

We settle the above questions in the affirmative by presenting a statistically secure protocol which realizes
n independent instances of OT, with 2−k error, in which the parties communicate only O(n) + poly(k) bits
over a BSC.3 This should be compared to the n · poly(k) bits required by previous constructions.

Combining the above main result with known results for secure two-party computation based on OT [25]
we get the following corollaries:

• Any boolean circuit of size s can be securely evaluated by two parties with O(s) + poly(k) bits of
communication over a BSC, improving over the O(s) · poly(k) complexity of previous constructions.

• Applying the previous corollary, any discrete memoryless channel (described by rational crossover
probabilities) can be faithfully emulated by a BSC at a constant rate.

Our techniques can be used to get similar results based on any “non-trivial” channel rather than just a
BSC. We defer this generalization to the full version of this paper.

1.2 Overview of Techniques

Our construction uses a novel combination of previous results on OT from BSC [10, 21], recent techniques
from the area of secure computation [7, 25], and some new tools that may be of independent interest.

Among the new general-interest tools is a so-called “Statistical-to-Perfect Lemma,” showing roughly
the following. Given a 2-party functionality Ff for securely evaluating a function f and 0 ≤ δ ≤ 1, we
define F̃ (δ)

f to be an “δ-faulty” version of Ff that with probability δ allows the adversary to learn the inputs
and have full control over the outputs but otherwise behaves normally. The lemma says that any ε-secure
protocol for F in a G-hybrid model (i.e., using oracle access to G) perfectly realizes the functionality F̃ (δ)

f

in the G-hybrid model, where δ tends to 0 with ε (but inherently grows with the size of the input domain).
The above lemma allows one to take an arbitrary (and possibly inefficient) protocol for OT from a noisy
channel, such as the one from [10], and use it with a sufficiently large security parameter to get a perfectly
secure implementation of F̃ (δ)

OT , for an arbitrarily small constant δ > 0, while communicating just a constant
number of bits (depending on δ) over the channel.

This calls for the use of OT combiners [22, 21, 32], which combine n OT implementation candidates of
which some small fraction may be faulty into m < n good instances of OT. A similar high level approach
was used in [21] to solve our main question in the semi-honest model. While in the semi-honest model there
are constant-rate combiners (tolerating a constant fraction of faulty candidates with m = Ω(n)) that make
only a single use of each OT candidate [21], known constant-rate OT combiners in the malicious model
require a large number of calls to each candidate, making them insufficient for our purposes. Instead, we
take the following alternative approach.

1. We give a direct construction of a constant-rate protocol for string-OT from a BSC. (As discussed
above, such a result was only known for the easier cases of an erasure channel or in the semi-honest

3The protocol also involves a similar amount of communication over a noiseless channel. This additional communication can
be implemented using the BSC with a constant rate.
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model.) The protocol employs previous protocols for OT from BSC [10], the completeness of OT
for secure two-party computation [27, 25], techniques from secure multiparty computation (includ-
ing the use of algebraic-geometric multiplicative secret sharing [7, 26]), and privacy amplification
techniques [3, 2]. Its analysis relies on the Statistical-to-Perfect lemma discussed above.

2. We extend the IPS protocol compiler [25] to apply also when the so-called “inner protocol” can
employ a BSC channel. The main difficulty is that even when being forced to reveal their secrets,
parties can use the uncertainty of the channel to lie without taking the risk of being caught. We address
this difficulty in a natural way by employing statistical tests to ensure that significant deviations are
being caught with high probability. The extended protocol compiler requires the inner protocol to
satisfy an intermediate notion of security, referred to as “error-tolerance,” that is stronger than security
in the semi-honest model and weaker than security in the malicious model.

3. We instantiate the ingredients required by the extended compiler from Step 2 as follows. The so-called
“watchlists” are implemented using string-OTs obtained via the protocol described in Step 1 above.
The outer protocol is an efficient honest-majority MPC protocol for n instances of OT (see [24],
building on [13, 7]). The error-tolerant inner protocol is based on an error-tolerant constant-rate OT
combiner from [21].

1.3 Related Work

There is a very large body of related work on cryptography from noisy channels that was not accounted for
in the above survey, and even here we can only give a very partial account. For the question of basing other
cryptographic primitives (such as key agreement and commitment) on noisy channels see [2, 3, 29, 14, 37,
38] and references therein. The question of characterizing the types of channels on which OT can be based
was studied in [28, 11, 14, 12, 38]. A general approach for converting feasibility results for OT from noisy
channels into constant-rate protocols in the semi-honest model was given in [26]. Our work introduces a
similar conversion technique that can be applied in the malicious model.

2 Preliminaries

Some of our results and analysis (in particular Theorem 1) apply to general 2-party secure function eval-
uation (SFE) functionalities. Such a functionality is characterized by a pair of functions f = (fA, fB),
fA : X × Y → ZA and fB : X × Y → ZB for (often finite) domains X , Y and ranges ZA,ZB . We will
refer to such an f as a 2-pary function. We associate a functionality Ff with a 2-party function f , which
behaves as follows: Ff waits for inputs from both parties, and computes the respective outputs. Then if
either party is corrupted, it sends the corresponding output to that party. Then it waits for an instruction
from the adversary to release the output(s) to the uncorrupted party (or parties). We shall refer to such a
functionality Ff as a 2-party SFE functionality.

The two main functionalities in this work are FBSC and FOT. The FBSC functionality (BSC stands for
Binary Symmetric Channel) takes as input a bit x from one of the parties (Alice), and outputs a single bit
z to the other party (Bob) such that Pr[x 6= z] = p for some fixed constant probability strictly less than
half. (Note that this is a randomized functionality.) FOT is an SFE functionality, associated with a function
defined by fB(x0, x1; b) = xb where x0, x1, b are single bits each; for FOT fA is a constant function. The
functionality Fstring-OT is similar to FOT, but the inputs from Alice x0, x1 are longer strings.
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For every 2-party SFE functionality Ff , we define a weakened variant F̃ (p)
f where 0 ≤ p ≤ 1 is a

constant error probability in the following sense. When invoked, an instance of F̃ (p)
f would first generate

a random bit which is 1 with probability p. Note that the bit is sampled before receiving inputs from any
party. If the bit is 0, then the functionality behaves exactly as Ff . Otherwise, if the bit is 1, then the
functionality yields itself to adversarial control: i.e., the input(s) it receives are passed on to the adversary,
and the adversary specifies the outputs to be sent (and when they should be sent) to the honest party (parties).
In this case, even if neither party interacting with the functionality is corrupt, the functionality will allow the
adversary to control it.

The main security definition we use is of statistical Universally Composable (UC) security [6]. The level
of security – called statistical error – is indicated by the maximum distinguishing advantage between the real
execution of the protocol and a simulated execution involving the ideal functionality that any environment
can get (the distinguishing advantage being the difference in probabilities of the environment outputting 1
when interacting with the two systems). We require that the statistical error goes down as 2−Ω(k), where k
is the security parameter. The computational complexity of the protocols should be polynomial in k and the
input size. For intermediate constructions (and in Theorem 1) we consider perfect security as well.

We say that a protocol Π is in the G-hybrid model if the parties can initiate and interact with (any number
of) instances of the ideal functionality G. Our goal is to give a “constant-rate” protocol for FOT in the FBSC-
hybrid model. A protocol Π in the G-hybrid model is said to be a constant-rate protocol for a functionality
F , if the total communication in Π (including communication with instances of G) is O(`) + poly(k),
where ` is the total communication with F . We will be interested in realizing parallel instances of a target
functionality, given the number of instances as a parameter (during run-time). More formally we can define
a functionality F∗ which takes ` as an initial input from one of the parties, and then implements ` parallel
copies of F . Note that when F and G are finite functionalities (i.e., with the total communication with a
single instance upperbounded by a constant, as is the case for FOT and FBSC), to securely realize F∗, a
constant-rate protocol Π will instantiate only O(`) + poly(k) instances of G. (For simplicity, we shall refer
to Π as a protocol for F , rather than F∗.)

An arithmetic encoding scheme. Our protocol (particularly, the sub-protocol in Section 4.1) relies on an
efficient secret-sharing scheme that supports entrywise addition and multiplication of shared vectors. Fol-
lowing the terminology of [8], we refer to such a scheme as an arithmetic encoding scheme. Our abstraction
captures the useful features of algebraic-geometric secret-sharing, introduced in [7] (see [26, 8] for related
abstractions).

Our notion of arithmetic encoding is parameterized by a tuple (F, ρ, δ, δ′) and is defined by three effi-
cient algorithms (Encode, Encode′,Decode′). Here F is a constant-size finite field, ρ, δ, δ′ are positive
constants less than 1, and the three algorithms satisfy the following properties.

• Encode and Encode′ define constant-rate, probabilistic encodings of vectors over F. More precisely,
for every integerm > 0, there is an n, withm > ρn, such that Encode and Encode′ probabilistically
map vectors in Fm to Fn. Further, Encode and Encode′ are linear: i.e., each entry of Encode(x)
(respectively, Encode′(x)) is a linear function of the entries of x and a set of independent random
elements.

• The joint distribution of any bδnc entries of the output of Encode(x) is independent of the input x.

• Decode′ is an efficient δ-error-correcting decoder for Encode′. More precisely, we require that if y
has Hamming distance at most δn from a vector in the support of Encode′(x), then Decode′(y) = x.
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• We require the following “homomorphic” properties. For anyX,Y,X ′, Y ′ in the support of Encode(x),
Encode(y), Encode′(x′), Encode′(y′), respectively:

– X ∗ Y is in the support of Encode′(x ∗ y)

– X ′ + Y ′ is in the support of Encode′(x′ + y′)

where ∗ and + denote entrywise multiplication and addition over F respectively.

• We require Encode′ to be sufficiently randomizing. Note that Encode′(x) is uniform over an affine
subspace of Fn whose dimension is at most n −m. We require that this dimension be at least n −
m(1 + δ′).

An arithmetic encoding scheme with the above properties can be obtained from the classes of algebraic
geometric codes used in [7]. See Appendix A for details.

3 Statistical Security to Perfect Security

A crucial ingredient in our constructions and analysis is the ability to consider a weakly secure protocol to be
a perfectly secure protocol for a weaker variant of the functionality. More precisely, we show the following.

Theorem 1 Let f : X × Y → ZA × ZB be a 2-party function, and Ff the secure function evaluation
functionality for f . Suppose G is a 2-party functionality and Π is a D-round protocol such that Π UC
securely realizes Ff in the G-hybrid model, with a statistical security error of ε. Then Π UC securely
realizes F̃ (p)

f in the G-hybrid model with perfect security, where p = D|X ||Y|ε.
Above, if Π is only standalone-secure for Ff , then the same conclusion holds for standalone security of

Π for F̃ (p)
f .

This result gives a powerful composition theorem when multiple instances of the protocol Π are used
together. Note that by UC security, it is indeed the case that if k copies of Π are run, one could instead
consider k copies of F , with a statistical security error bounded by kε. However, if ε is not negligible, say
ε > 1/k, then this bound gives us no useful security guarantee. What the above result does is to give a strong
security guarantee for the case when ε is non-negligible, or even when it is a constant. It says that when k
copies of Π are run, it roughly yields (1 − p)k copies of F (mixed with about pk copies under adversarial
control). In fact, it is further guaranteed that which copies will be corrupted is not under adversarial control.

In Appendix B.1 we show that it is unavoidable that p is bigger than ε by a factor that grows linearly
with the domain size of the function.

We give a high-level idea of how we prove the above theorem. Given the systems corresponding to
REAL and IDEAL executions, the overall approach is to decompose each of the REAL and IDEAL systems
into two parts – REAL0, REAL1 and IDEAL0, IDEAL1 – so that REAL0 and IDEAL0 are identical and carry
much of the “mass” of the systems; then we construct a new ideal system by combining IDEAL0 and REAL1,
to get a system that is identical to the REAL system. Here, a combination of two systems means that with a
fixed probability one of the two systems is chosen (corresponding to whether F̃ (p)

f lets the adversary control
it or not, corresponding to choosing IDEAL1 and IDEAL0 respectively): in particular, the simulator in the
new system is not allowed to influence this choice. Further – and this is the main difficulty in the proof –
we need to ensure that IDEAL0 can be implemented by a simulator interacting with Ff (without access to an
honest party’s inputs or outputs); to implement REAL1 the simulator may control the functionality as well.
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Note that Theorem 1 is related to Lemma 5 in [30]. The main difference are the abovementioned restric-
tions on the system IDEAL0 which require extra care in our proof.

Splitting the systems in this manner needs to be carefully defined. We carry this out in Appendix B.
Here we illustrate this by a toy example, to give a sense of how the simulator for perfect security is derived
from the simulator for statistical security. The protocol we consider is for a degenerate 2-party function f
which provides a constant output to both parties. Further, it takes a fixed input from Alice (|X | = 1) and
takes a bit from Bob (Y = {0, 1}). The protocol Π for our example consists of a single message z from Bob
to Alice, which is equal to y with probability 1

2 and ⊥ otherwise. We shall consider the case when Alice
is corrupt and Bob is honest. Further we need to consider only a “dummy adversary” who simply allows
the environment to play the role of Alice in the (real) protocol. The simulator simulates a message from
Bob, which is equal to ⊥ with probability 1

2 , and a uniformly chosen bit otherwise. It is easy to see that this
simulation is good up to a statistical distance of 1

4 .
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Figure 1: An example to illustrate Theorem 1. The protocol used in the example (in which Bob sends a single
message to Alice — please see text) is depicted as the interaction of a system REAL with the environment.
The original simulated system is IDEAL. The modified simulation (for a functionality that yields to the
adversary with probability 0.5) is obtained as the combination IDEAL0 + IDEAL1 which is exactly the same
as the REAL system.

In Figure 3 we illustrate this example using what we call interaction trees, which capture an execution
involving a system (REAL or IDEAL) and an environment. The edges from the top node in these trees
correspond to the two possible inputs that the environment can give to Bob (y = 0 and y = 1). The edges
out of the black nodes correspond to corrupt Alice reporting the (only) message it receives from Bob in the
protocol: this can be one of 0, 1, or ⊥. The leaves correspond to complete transcripts. The probabilities of
the system reaching a leaf, provided the environment sends the messages (in our case, just y) that lead to
that leaf is considered the “weight” assigned to that leaf by the system.

The top-left figure corresponds to the real execution of the protocol, and the top-right corresponds to
the ideal execution. Note that in the simulation, the behavior of the simulator is independent of the input y.
Then we obtain a “partial system” (with total weight only 0.5, for each value of y), IDEAL0 by comparing
the REAL and IDEAL systems. In this example, IDEAL0 is obtained by retaining in each leaf the minimum
of the weights assigned by the two systems, on that leaf, but for any choice of y. We will use the ideal
functionality F̃ (p)

f , with p = 1
2 , since that is the weight not retained by IDEAL0.

IDEAL1 is obtained by “subtracting” IDEAL0 from REAL, so that the combination of IDEAL0 and IDEAL1
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is indeed REAL. In doing this we needed to ensure that weights induced by IDEAL0 are no more than what
REAL assigns (so that the system REAL− IDEAL0 does not have negative weights). Also we needed to ensure
that IDEAL0 can be implemented by a simulator which does not have access to y. Note that to implement
IDEAL1, the simulator will need to know y.

In going from this toy example to the general case poses several issues. Here the simulator for IDEAL0

was determined without considering the interaction between the simulator and the functionality. (Indeed,
there was little interaction between the two.) In general we cannot afford to do this. To properly take
into account how the simulator’s behavior depends on what it learns from the functionality, we consider
a separate interaction which the simulator is the system and it interacts with an “enhanced environment”
consisting of the original environment and the functionality. But the original statistical security guarantee is
only against normal environments (and indeed, does not make sense against enhanced environments, since
in the real execution there is no ideal functionality present). This requires us to relate the behavior of the
enhanced environment to the behavior of the environment in the ideal world.

The final proof uses several carefully defined quantities for the three systems (the real and ideal execu-
tions, and the simulator system), and shows how one can define IDEAL0 which can be implemented without
using y, ensures that it can be extended to a perfect simulation (i.e., that the remainder of the simulation is a
non-negative system), while retaining as much weight as possible (to keep p low as promised in Theorem 1).

4 A Constant-Rate OT Protocol

In this section we present our constant-rate protocol for FOT in the FBSC-hybrid model. The construction
follows the paradigm of the IPS compiler [25] of combining an outer protocol secure in the honest-majority
setting, with an inner protocol secure in the passive corruption (semi-honest) setting, using “watchlists”
implemented using string-OTs. For this we need to instantiate these components in the FBSC-hybrid model,
and also extend the IPS compiler so that it admits an inner protocol in the FBSC-hybrid model. We outline
these steps below, and present the details in the subsequent sections.

• In order to construct the inner protocol, we will need a constant-rate OT protocol using FBSC, that is
secure against adaptive passive corruption. However, since monitoring the use of aFBSC functionality
(which inherently allows errors) is harder than monitoring the use of the FOT functionality we will
need a somewhat stronger security guarantee from this protocol (namely, passive security should hold
even when a small constant fraction of the FBSC instances can be corrupted). We shall formalize
this notion of “error-tolerance” and observe that a protocol in [21] already has the requisite properties
(Lemma 2).

• The next step is to construct a constant-rate string-OT protocol from FBSC, with security against
active corruption (Lemma 1). The protocol implements a single instance of string-OT (i.e., takes only
one choice bit as input from the receiver), and the rate refers to the ratio of the length of the string
to the number of instances of FBSC used. This crucially relies on Theorem 1 which states that a
weakly secure protocol for a functionality is a perfectly secure protocol for a weak version of the
same functionality.

• The final step involves an extension of the IPS compiler [25] wherein the “inner-protocol” is in the
FBSC-hybrid model (rather than in the FOT-hybrid model) and enjoys error-tolerance (Lemma 3).
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The extended IPS compiler from above is used to combine an appropriate constant-rate4 outer protocol
for FOT (based on [13, 7], as used in [25]) with an error-tolerant inner protocol obtained from the first step,
using watchlists implemented using string-OTs from the second step.

To implement n instances of FOT, the resulting compiled protocol will invoke the string-OT protocols
O(k) times with O(n/k) long strings. Since these string-OTs are implemented using the constant-rate pro-
tocol from the second step, the compiled protocol uses a total of O(n) instances of FBSC for the watchlists.

Similarly the compiled protocol invokes k instances of the inner-protocol (for a functionality defined
by the outer protocol). Originally, each instance of this inner-protocol can be implemented using O(n/k)
instances of FOT, and is passive-secure in the FOT-hybrid model. We shall replace the FOT instances used
by the inner protocol with the constant-rate error-tolerant protocol from the first step. This results in an
error-tolerant inner protocol in the FBSC-hybrid model (for the same functionality as the original inner-
protocol), which uses O(n/k) instances of FBSC. Thus overall, for the inner-protocol instances too, the
compiled protocol uses O(n) instances of FBSC.

In the following sub-sections we describe how the above three steps are carried out, and what precise
security guarantees they provide. Then, by following the above sketched construction we obtain our main
result.

Theorem 2 There exists a UC-secure constant-rate protocol for FOT in the FBSC-hybrid model. That is,
there is a protocol that securely realizes n parallel, independent instances of FOT with statistical error 2−k,
with O(n) + poly(k) bits of communication (including communication over FBSC).

An important corollary of implementing oblivious transfer is that it can be used to implement arbitrary
function evaluation, quite efficiently [25]. Thus combined with the main result of [25] we have the following.

Corollary 3 For any two party function f that can be computed using a boolean circuit of size s, there is a
UC-secure protocol for Ff in the FBSC-hybrid model, with O(s) + poly(k) bits of communication.

4.1 A Constant-Rate String-OT Protocol

We denote by Fstring-OT[`] a string-OT functionality for which the sender’s inputs are two strings from
{0, 1}`. In this section we prove the following.

Lemma 1 There exists a protocol which securely realizes a single instance of Fstring-OT[`] in the FBSC-
hybrid model, with total communication of O(`) + poly(k) bits.

This constant-rate protocol for Fstring-OT in the FBSC-hybrid model is constructed in three steps. The
construction relies on an intermediate functionality, namely FOLE (or more precisely, F̃OLE). The FOLE
functionality (OLE stands for Oblivious Linear function Evaluation) over the field F evaluates the following
function: it takes p, r ∈ F from Alice and q ∈ F from Bob and outputs pq + r to Bob (and sends an empty
output to Alice). F̃OLE is the error-prone version of FOLE as defined in Section 2. For simplicity we omit
here the error parameter, which will be chosen as a sufficiently small constant.

Our protocol for Fstring-OT in the FBSC-hybrid model is constructed by composing the following proto-
cols:

1. Fstring-OT protocol in the F̃OLE-hybrid model, using a constant-rate protocol that relies on a constant-
rate arithmetic encoding scheme as defined in Section 2.

4Here the constant-rate refers to the total communication in the protocol, and the total computation of all the servers per instance
of FOT produced. More precisely, regarding the computational complexity of the servers, we are interested in the complexity of a
passive-secure protocol for implementing the server computations, and it is only the so-called “type II” computations of the servers
that contribute to this. See [25] for details.
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2. F̃OLE protocol in the F̃OT-hybrid model, and

3. F̃OT protocol in the FBSC-hybrid model.

The second step is obtained by applying Theorem 1 to any OT-based protocol for FOLE (e.g., [27, 25]),
where the latter is invoked with a sufficiently large (but constant) security parameter. The third step is
obtained by similarly applying Theorem 1 to any protocol for FOT from FBSC (e.g., [10]). See Appendix C
for further details on the last two steps. In the rest of this section we focus on the first step.

Reducing Fstring-OT to F̃OLE. We describe an OT protocol for `-bit strings. This construction uses an
arithmetic encoding scheme as defined in Section 2, with parameters 0 < ρ, δ, δ′ < 1 and a constant-size
field F. We shall also use a strong randomness extractor Ext in our construction – a family of 2-universal
hash functions suffices. During the analysis we shall specify the relation between the various parameters.
The protocol is in the F̃ (φ)

OLE-hybrid where φ ≤ δ/2.
To realize a string OT functionality in which the sender’s input are two `-bit strings, we shall employ

the encoding from the arithmetic encoding family, with m = O(`) (i.e., Encode and Encode′ map strings
from Fm to strings in Fn). For the construction to have constant rate, we shall require that m = O(`). We
shall specify how exactly m and n are related to ` and other parameters later.

• Alice’s input is (s0, s1) where s0, s1 ∈ {0, 1}`, and Bob’s input is b ∈ {0, 1}.

• Alice randomly draws x0, x1 from Fm, and defines A and X ′0 as follows:

– A = Encode(x1−x0). In fact, we will simplify the protocol a bit by requiring thatA is obtained
by applying Encode to x1 − x0 with a fixed randomness (say the all-0 string).

– LetX ′0 = Encode′(x0). We will writeX ′0 = W+Z whereW is obtained by applying Encode′

to x0 with a fixed randomness, and Z = Encode′(0m) (randomly encoded).

• Bob lets B = Encode(bm) (the bit b is identified with 0 or 1 in F; bm stands for a vector in Fm with
all co-ordinates being b).

• They invoke n instances of the F̃ (φ)
OLE functionality sequentially, as follows. For each i ∈ [n], Alice

inputs (pi, ri) = (A(i), X ′0
(i)) and Bob inputs qi = B(i) to an instance of F̃ (φ)

OLE, and Bob gets the
output yi = piqi + ri. (A(i) stands for the ith coordinate of the vector A.) The vector y ∈ Fn that
Bob gets from this is a (possibly) noisy version of A ∗ B + X ′0, which in turn is in the support of
Encode′(xb). Bob sets xb = Decode′(y).

• Alice picks two seeds h0, h1 for Ext and lets w0 = s0⊕Ext(x0;h0) and w1 = s1⊕Ext(x1;h1). (The
parameters of Ext are chosen as mentioned above.) She sends (h0, h1, w0, w1) to Bob.

• Bob obtains sb = wb ⊕ Ext(xb;hb).

It is easy to see that the above protocol has a constant rate (since ` = Ω(m)). To prove the UC security
of the protocol, we need to consider the case where both parties are honest, as well as when one of the
parties is corrupt. Let d = bδnc. Note that, except with negligible probability, at most 2φn < d out of
n instances of F̃ (φ)

OLE will let the adversary control them. In the simulation for all the cases (both parties
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are honest, or exactly one party is corrupt), the simulator starts off by faithfully simulating whether each
instance of F̃ (φ)

OLE lets the adversary control it or not. If more than d instances yield to adversarial control,
the simulation aborts; as in the real execution, this happens with negligible probability. In the rest of the
analysis, we condition on this not happening in the real execution as well as in the simulation.

Security when neither party is corrupt. In this case the environment sees only the input-output behavior
of the protocol (real or simulated), the view of the adversary in the (d or fewer) corrupted instances of F̃OLE
and the message (h0, h1, w0, w1) from Alice to Bob.5 In the simulation (i.e., ideal execution of Fstring-OT),
Bob’s output is always sb when Alice’s inputs are (s0, s1) and Bob’s input is b (as the ideal Fstring-OT
functionality receives its inputs from the honest parties). In the real execution of the protocol (conditioned on
less than d instances of F̃ (φ)

OLE being under adversarial control) the vector y received by Bob has a Hamming
distance of less than d from a vector in the support of Encode′(xb). So, by the error-correcting guarantee
of Decode′, Bob recovers xb, and hence outputs sb correctly. The view of the adversary from the at most d
coordinates ofA,X ′0 andB can be perfectly simulated. So can h0 and h1 be. Since x0, x1 are random (given
the above simulated variables), the outputs of the extractor are negligibly far from uniformly random, and
so (w0, w1) can be simulated (up to negligible statistical error) independent of (s0, s1) by picking uniformly
random strings.

Security against corrupt Alice. Here the simulation proceeds in two steps. First, Alice’s view is com-
pletely straight-line simulated (if well-formed messages are not received from Alice in any round, then Bob
aborting the protocol can be simulated). Next Bob’s view is sampled for the two cases b = 0 and b = 1,
conditioned on Alice’s view, from which Bob’s outputs for each case, denoted s0 and s1, respectively, are
obtained. To complete the simulation the simulator sends (s0, s1) as the input to the ideal Fstring-OT func-
tionality. Details of the two steps follow.

Conditioned on F̃ (φ)
OLE yielding to the adversary at most d times, Alice sees at most d coordinates of the

encoding of B and this can be perfectly simulated since they are independent of Bob’s input. So first the
simulator will sample the (at most) d coordinates forB and hands them over to the Alice as the message from
the instances of F̃ (φ)

OLE controlled by her. Then it receives from Alice the output for Bob from these instances.

Further, the simulator receives all but d coordinates of (A,X ′0) from Alice as inputs to the instances of F̃ (φ)
OLE

not controlled by her. In the next round, the simulator receives (h0, h1, w0, w1) from Alice. This completes
the first part of the simulation.

For the next part, the simulator picks B0 = Encode(0m) and B1 = Encode(1m) randomly, condi-
tioned to match the d coordinates of B that were already simulated. Then, it computes s0 as what Bob
would compute in the protocol if it uses B = B0 and receives the messages implied by what Alice sent to
the simulator in the first part. Similarly, it computes s1 if Bob used B = B1. Then the simulator will send
(s0, s1) to the functionality.

Given our conditioning the real and simulated executions on there being no more than d instances of
F̃ (φ)

OLE under adversarial control, this is a perfect simulation. Thus over all, this gives a statistically good
simulation.

5If the plain communication channels between the two parties are private, then the view of the environment does not include
the message from Alice to Bob. Further, in this case one could redefine F̃OLE so that when both parties are corrupt, it will require
the adversary to submit an algorithm for controlling the corrupt instances, rather than getting access to the inputs sent to the
functionality. It can be seen that in Theorem 1 we can use such a definition of F̃ (p)

f . Then the view of the environment consists
only of the input and output of the protocol.
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Security against corrupt Bob. If Bob is corrupt, then he may not input a valid B in the range of
Encode(0m) or Encode(1m). Nevertheless, we shall see that by using appropriate encodings and the
extractor, there is a bit b such that Bob learns a negligible amount of information about s1−b.

Note that in each instance of F̃OLE that gets corrupted Bob may learn the corresponding coordinates of
both A and X ′0, and in the other instances he learns one linear equation over the corresponding coordinates
of A and X ′0. Since both Encode and Encode′ are linear, this means that Bob learns a system of (at most)
n+d linear equations over x0, x1 and the random elements used by Alice in formingX ′0. Alice’s secrets that
will be used subsequently are the two vectors x0, x1 which are only m coordinates long, so it is non-trivial
to ensure that the information that Bob learns (which is more than n field elements, and typically n > 2m)
does not contain both x0 and x1. This is ensured by the blinding vector Z used in the encoding of X ′0:
intuitively, Z encodes at least t′ := n −m(1 + δ′) random field elements which are present in all but d of
the equations Bob learns, and so effectively Bob learns at most as much information about (x0, x1) as from
n − t′ + d = m(1 + δ′) + d linear equations. We shall require that m(1 + δ′) + d is significantly smaller
than 2m to ensure that Bob does not learn both x0 and x1 completely.

To formalize the above intuition, we shall consider the dimension of the solution space for (the 2m-
dimensional vector) X := (x0, x1) given the linear equations that Bob obtains. Below, we shall use dim to
stand for the dimension of the solution space for the corresponding variables, conditioned on a set of linear
equations. Let U denote the linear equations that Bob sees after the invocations of F̃OLE in the protocol (but
before the last message in the protocol is sent). Also, let R denote the random vector used in encoding A;
also by abuse of notation, we will denote by R a set of dim(R) linear equations that gives all of R. We are
interested in dim(X|U) (for any possible value of U ). Then, we have the following:

dim(X|U) ≥ dim(X|U,R) = dim(XZR|U,R).

The first inequality is simply because additional equations cannot increase the solution space, and the second
equality is because, for each value of X , Z and R are uniquely determined given R,U . Also,

dim(XZR|U,R) ≥ dim(X) + dim(Z)− (n+ d)

since dim(XZR) = dim(X) + dim(Z) + dim(R) and U,R is in the form of at most n+ d+ dim(R) linear
equations over F. Also, dim(X) + dim(Z) ≥ 2m+ n−m(1 + δ′) = n+m(1− δ′). Let

α := m(1− δ′)− d.

Then, dim(X|U) ≥ α.
Then, for each value of U , there is at least one value c ∈ {0, 1} such that dim(xc|U) ≥ α/2. Note that

such a c can be efficiently computed by solving for x0 and x1 from the equations defined by U .
Now we are ready to describe the simulator. The simulator starts off by perfectly simulating Alice’s

execution and the instances of F̃OLE, till the end of all the n invocations of F̃OLE. At this point the simulator
computes the bit c as above (so that dim(xc|U) ≥ α/2). Then it sends b = 1 − c to the ideal Fstring-OT
functionality, and gets one of Alice’s inputs, sb. It picks a random string w ← {0, 1}` in place of wc and
continues the simulation. That is, the simulator lets wc = w and wb = sb ⊕ Ext(xb;hb).

Note that the environment’s views in the real protocol and the simulation are identically distributed
before Alice sends the last message. At this point, the distribution of xc given all the information that the
environment has till then is uniform over a subspace of Fm of dimension at least α/2. After this, in the real
protocol, the environment (which knows s0, s1) gets Lc := (hc,Ext(xc;hc)) and Lb := (hb,Ext(xb;hb)).
In the simulation, Ext(xc;hc) is replaced by a random string (w⊕sc, where w is random). We would like to
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argue that Lc is statistically almost independent of xc given U and Lb, so that the simulation is good. Since
the output from the extractor is not necessarily linear, now on we consider the average min-entropy (i.e.,
the logarithm of predictability) [15] of random variables rather than the dimension of their support. Since
dim(xc|U) ≥ α/2 we have H̃∞(xc|U) ≥ α/2 · log |F|, and hence H̃∞(xc|Uhb) ≥ α/2 · log |F| (hb being
independent of (xc, U)).

Then, if Ext(xb;hb) is ` bits long, we have H̃∞(xc|ULb) ≥ α/2 log |F| − ` (see [15]). We shall let
` := 1/2 (/α/2 · log |F| −Θ(k)) so that H̃∞(xc|ULb) ≥ (2` + Θ(k)) − ` = ` + Θ(k). Then, we set
our extractor family to be a 2-universal hash function family mapping Fm to `-bit strings. This ensures
that Ext(xc;hc), conditioned on the environment’s view U before the last message, and hc, Lb, s0, s1, is
close (up to a statistical distance of 2−Ω(k) is) to being uniformly random. Thus the simulator substituting
Ext(xc;hc) by a random string does not change the environment’s view but by a negligible amount.

4.2 Error-Tolerant Protocol for FOT over FBSC

Error-tolerance. We say that a protocol π is an error-tolerant protocol for F in the G-hybrid model
if it is secure against adaptive passive corruption, and in addition tolerates active corruption of a small
constant fraction of G instances that it invokes. More formally, we can define a modified functionality G′,
which behaves exactly as G until a new command corrupt is received as input from the adversary; if this
command is received, then this instance of G will yield to adversarial control – i.e., send its current view
to the adversary, forward immediately any subsequent message that it receives, and send messages to other
parties in the protocol as instructed by the adversary. π is called a ε0-error-tolerant protocol for F in the
G-hybrid model if π is a secure protocol for F in the G′-hybrid model against adaptive passive corruption,
against the class of adversaries who send out the corrupt command to at most ε0T of G′ instances, where T
is (an upperbound on) the total number of G instances invoked by π. We will call π simply an error-tolerant
protocol if it is ε0-error-tolerant for any constant ε0 > 0.

As described above in the inner protocol in our construction, we will require a constant-rate error-tolerant
protocol for FOT in the FBSC-hybrid model.

We observe that such a protocol is implicit in a result in [21]. They present a constant-rate OT protocol
in the FBSC-hybrid model which is secure against adaptive passive adversaries. This construction starts
with a simple passive-secure constant-rate protocol Φ for FOT in the FBSC-hybrid model, with a small but
constant probability of error, and then uses a constant-rate combiner to reduce the error to negligible. This
combiner uses each candidate FOT instance once, and (passive-securely) realizes a constant fraction of FOT
instances. As mentioned in [21], the “error-tolerant” version of their combiner allows a small fraction of
the candidate FOT instances to be actively and adaptively corrupted, though requires the parties themselves
to follow the combiner’s protocol honestly. The combiner corresponds to a constant-rate protocol for FOT
in the FOT-hybrid model with error tolerance as we have defined above. By composing this protocol with
Φ, we get a constant-rate protocol for FOT in the FBSC-hybrid model, with the property that if a small
constant fraction of the instances of FBSC are corrupted (resulting in the corruption of a small fraction of
FOT instances used by the combiner protocol), security remains intact.

Lemma 2 [21] There is a constant-rate, error-tolerant protocol for FOT in the FBSC-hybrid model.

4.3 An Extension to the IPS Compiler

IPS compiler requires a semi-honest inner protocol over FOT. We need to extend this compiler to work with
inner protocols over FBSC. The IPS compiler depends on being able to monitor the use of FOT channels
with a good probability of catching errors; however, one cannot monitor the FBSC functionality at the same
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level. Hence we shall depend on the slightly stronger error-tolerance guarantee of the inner protocol. Here
we shall limit ourselves to the 2-party setting (since we are interested in a 2-party functionality, namely
FOT).

Below we state the extension of the IPS compiler (with the new elements underlined). The proof sketch
is given in Appendix D.

Lemma 3 Suppose Π is a protocol among n = Θ(k) servers and 2 clients, for a 2-party functionality F be-
tween the clients, with UC-security against adaptive, active corruption of Ω(n) servers and adaptive, active
corruption of (any number of) clients. Suppose ρFBSC is a 2-party protocol in the FBSC-hybrid model, that
realizes the functionality of each server in the protocol Π, with error tolerance. Then there is a 2-party pro-
tocol (compiled protocol) for the functionality F in the (FBSC,Fstring-OT)-hybrid model, with UC-security
against adaptive, active adversaries. Further, if the (insecure) protocol obtained by directly implementing
each server of Π using ρFBSC has constant rate, then the compiled protocol has constant rate too.

Putting things together. The final protocol is obtained from Lemma 3 by using the following outer and
inner protocols. The outer protocol is the one used in Section 5.1 of [25] (based on [13, 7]) applied to the
functionality which realizes n instances of OT. The inner protocol is the standard OT-based implementation
of the GMW protocol in the semi-honest OT-hybrid model [19], except that the OT instances consumed by
this protocol are implemented using the error-tolerant protocol of Lemma 2. The watchlists are implemented
using the protocol of Lemma 1.
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[14] I. Damgård, J. Kilian, and L. Salvail. On the (Im)possibility of Basing Oblivious Transfer and Bit
Commitment on Weakened Security Assumptions. EUROCRYPT 1999: 56-73

[15] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy Extractors: How to Generate Strong Keys
from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1): 97-139, 2008.

[16] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Communications
of the ACM, 28(6):637–647, 1985.

[17] A. Garcia and H. Stichtenoth. On the asymptotic behavior of some towers of function fields over finite
fields. Journal of Number Theory, 61(2):248-273, 1996.

[18] P. Gemmell and M. Sudan. Highly Resilient Correctors for Polynomials. Information Processing
Letters, 43(4):169-174, 1992.

[19] O. Goldreich. Foundations of Cryptography - Volume 2. Cambridge University Press, 2004.

[20] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC ’87, pages
218–229.

[21] D. Harnik, Y. Ishai, E. Kushilevitz, and J. B. Nielsen. OT-Combiners via Secure Computation. In TCC
’08, pages 393-411.

[22] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On tolerant combiners for oblivious transfer
and other primitives. In EUROCRYPT ’05, pages 96–113.

[23] H. Imai, K. Morozov, and A. Nascimento. Efficient Oblivious Transfer Protocols Achieving a Non-
Zero Rate from Any Non-Trivial Noisy Correlation. In ICITS ’07.

[24] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty compu-
tation. In 39th STOC, pp. 21–30, 2007.

[25] Y. Ishai, M. Prabhakaran, and A. Sahai. Founding Cryptography on Oblivious Transfer - Efficiently.
In CRYPTO ’08, pages 572-591.

[26] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Extracting Correlations. FOCS 2009: 261-270

[27] J. Kilian. Founding cryptography on oblivious transfer. In STOC ’88, pages 20–31.

14



[28] J. Kilian. More general completeness theorems for secure two-party computation. In STOC ’00, pages
316-324.

[29] U. Maurer. Perfect Cryptographic Security from Partially Independent Channels. In STOC ’91, pages
561-571.

[30] U. Maurer, K. Pietrzak and R. Renner. Indistinguishability Amplification. CRYPTO ’07, pages 130-
149.

[31] A. Nascimento and A. Winter. On the Oblivious Transfer Capacity of Noisy Correlations. ISIT ’06,
pages 1871-1875.

[32] B. Przydatek and J. Wullschleger. Error-Tolerant Combiners for Oblivious Primitives. In ICALP ’08,
pages 461-472.

[33] M.O. Rabin. How to exchange secrets by oblivious transfer. TR-81, Harvard, 1981.

[34] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, vol. 27, pp.
379-423 and 623-656, July and October, 1948.

[35] S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

[36] Severin Winkler, Juerg Wullschleger. On the Efficiency of Classical and Quantum Oblivious Transfer
Reductions. CRYPTO 2010: 707-723

[37] Andreas Winter, Anderson C. A. Nascimento, Hideki Imai: Commitment Capacity of Discrete Mem-
oryless Channels. IMA Int. Conf. 2003: 35-51

[38] J. Wullschleger. Oblivious Transfer from Weak Noisy Channels. In TCC ’09, pages 332-349.

[39] A. D. Wyner. The wire-tap channel. Bell Cyst. Tech. J., vol. 54, pp. 1355-1387, 1975.

[40] A. C. Yao. How to generate and exchange secrets. In FOCS ’86, pages 162–167.

A Arithmetic Encoding from MPC-Friendly Codes

In this section, we briefly sketch how an implementation of our notion of an arithmetic encoding scheme
(Encode,Encode′,Decode′) (as defined in Section 2) follows from the literature.

Below we recall (verbatim) the notion of MPC-friendly codes from [26], which almost have all the
properties we need.

Claim 1 ([26], implicit in [7]) There exists a finite field F and an efficiently constructible family of linear
error-correcting codes CK : FK → FNK with the following properties: (1) NK = O(K); (2) The dual
distance of CK is δK = Ω(K); (3) The linear code C ′K spanned by all entrywise-products of pairs of code-
words in CK has dimension K ′ = Ω(K), minimal distance ∆K = Ω(K) and supports efficient decoding of
up to µK = Ω(K) errors. (The entrywise product of (c1, . . . , cN ) and (c′1, . . . , c

′
N ) is (c1c

′
1, . . . , cNc

′
N ).)

A family of codes CK as above can be obtained from the construction of Garcia and Stichtenoth [17].
An efficient decoder for C ′K can be obtained via the Gemmel-Sudan generalization of the Welch-Berlekamp
decoder for Reed-Solomon codes [18].
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The one stronger property that we need here (beyond what was needed in [26]), in order to guarantee
that Encode′ generates the amount of entropy that we need, is a “near-MDS” property of the code C ′K .
Specifically, it suffices to ensure that, for a small enough constant δ0 > 0, we have:

(NK −K ′ −∆K) < δ0K,

where K ′ = dim(C ′K). Indeed, this follows immediately from the construction of [17], which in fact allows
us to obtain δ0 = o(1).

To define Encode and Encode′ which take messages in Fm we consider the code CK , where K =
O(m) and the constants ρ, δ, δ′ can be chosen as functions of the parameters of CK and C ′K as specified
later. We will set the range of Encode and Encode′ to be Fn where n = NK −m.

• The algorithm Encode is defined as follows. For simplicity, we shall assume that the code CK is
systematic with the message appearing at the first K of the n + m coordinates.6 On input a message
x ∈ Fm and randomness r ∈ FK−m, Encode outputs the last n coordinates of the codewordCK(x◦r)
(i.e., the codeword for the message obtained by concatenating x and r, with x in the systematic part
of the codeword removed).

• The algorithm Encode′ is defined in terms of Encode and the code C ′K as follows: on input x ∈ Fm
and randomness r′ ∈ FK′−m, Encode′ outputs Encode(x; 0K−m) ∗ Encode(1m; 0K−m) + Z(r′)
where Z(r′) stands for an element from the set {z|0m ◦ z ∈ C ′K}, uniformly randomly selected using
the random string r′.

• Decode′ is defined naturally as follows: on input y, Decode′ uses the decoding algorithm for C ′K to
decode 0m ◦ y and output the first m coordinates of the resulting K ′ long message.

The parameters of the resulting arithmetic encoding scheme are as follows: we can choose m =
b1/2 min{K ′, µK , δK}c. Then m = Ω(K) and since n = NK − m = O(K) (because NK = O(K)),
we have ρ = m/n = Ω(1). Let δ = 1

n (min{µK , δK} −m) = Ω(1). Also let δ′ = d1/m(n−K ′)e.
It is instructive to note that Reed-Solomon codes satisfy all the properties we need, except that Reed-

Solomon codes would require the size of the field F to grow linearly with K. One could use Reed-Solomon
codes in our constructions (instead of algebraic geometric codes) at the cost of a polylogarithmic deteriora-
tion of the parameters.

B Statistical-to-Perfect Lemma

In this section we prove Theorem 1. We start off by setting up several definitions that will aid us in our
analysis.

Systems. We define a system in two parts.

• An interaction tree is a rooted tree with nodes labeled as system nodes or environment nodes and
edges labeled with messages from a finite message space.

6If the code is not systematic we define Encode as follows: We havem ≤ δK , the dual distance ofCK (see choice of parameters
below), and hence for any message in Fm, there are codewords in CK with the first m co-ordinates being equal to the message.
This is an affine space of dimension K −m. r ∈ FK−m is used to specify a unique element in this affine space, by means of a
system of linear equations that map FK−m to this affine space.
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• A system over an interaction tree is defined by a set of probability distributions pv, one for each system
node v. The probability distribution pv is over the edges coming out of the node v. For a system node v
and its child w, let pv(w) denote the weight assigned to the edge (v, w) by the probability distribution
pv.

Note that there is no probability weight on the edges from an environment node. That is, the system
nodes are probabilistic while the environment nodes are treated as non-deterministic. For ease of notation
we shall define pv(w) = 1 for each environment node v and its child w.

Given a system with an interaction tree T , for each node u in T we define the weight of a node u, denoted
by π(u), as the probability that the interaction reaches u, conditioned on the environment’s messages being
consistent with u. More formally,

π(u) =
∏

(v,w)∈path(u)

pv(w),

where path(u) stands for the edges in the directed path from the root to u.
Note that once a deterministic environment ENV is fixed (i.e., for each environment node, an outgoing

edge is chosen), the probability of the interaction reaching a node u when the system interacts with that
environment is either π(u) or 0 (depending on whether the environment’s messages are consistent with u
or not). We shall denote the experiment where a system P (over an interaction tree T ) interacts with an
environment ENV (also defined over T ) to reach a leaf w by w ← T (P, ENV): this is a probabilistic traversal
of the tree T starting from the root and ending at the leaf w.

In fact a system can be directly defined in terms of the weight function π : Nodes(T ) → [0, 1] as long
as the following conditions hold:

• π(root) = 1,

• for u ∈ SysNodes(T ), π(u) =
∑

v∈children(u) π(v), and

• for u ∈ EnvNodes(T ), for each v ∈ children(u), π(u) = π(v).

Note that for a system node v with π(v) 6= 0, for each w ∈ children(v), we can define pv(w) = π(w)/π(v)
(and can set pv to be an arbitrary distribution if π(v) = 0). We will call a system a partial system if it
is defined by a weight function as above, but with 0 ≤ π(root) ≤ 1. (Alternately, a partial system is a
normal system, but with the weight function modified at every node by multiplying with a fixed quantity
0 ≤ p ≤ 1.)

Difference of two systems. Given two (partial) systems P and Q with the same interaction tree, we can
define the partial system P− Q by defining, for each node u, πP−Q(u) := πP(u)− πQ(u), provided it is non-
negative for every node u. We observe that this condition is equivalent to πP(u)−πQ(u) being non-negative
for every leaf u. When this is the case we say that P − Q is a legitimate partial system.

Distance between a pair of systems. Given two systems P and Q and a (deterministic) environment ENV

that outputs a single bit ENV(w) on reaching a leaf w of its interaction tree (P, Q and ENV all over the same
interaction tree), let ∆ENV(P, Q) = |Pr[w ← T (P, ENV) : ENV(w) = 1]−Pr[w ← T (Q, ENV) : ENV(w) =
1]|. Then we define the distance between the two systems as

∆(P, Q) = max
ENV

∆ENV(P, Q).
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(Note that we could allow probabilistic environments too, but the maximum is achieved by a deterministic
environment.)

We can define a weight function αP/Q for the leaves of the interaction tree of the two systems to obtain
an alternate expression for ∆(P, Q).

αP/Q(w) =

{
1 if πQ(w) = 0
min(πP(w),πQ(w))

πQ(w) otherwise

Then, ∆(P, Q) = maxENV E[w ← T (Q, ENV) : 1− αP/Q(w)].

Real and Ideal systems. We consider the real and ideal systems (denoted REAL and IDEAL) interacting
with an external environment through the input/output interface, with one party being corrupt and one party
being honest. This also subsumes the case when both parties are honest, because the two honest parties can
be considered as one single party with inputs from X × Y and the adversary as having no inputs (i.e., a do-
main of size 1). So, w.l.o.g we shall consider the systems when Alice is corrupt, with the understanding that
Bob could in fact stand for both Alice and Bob combined. (Incidentally, the quantity we will be interested
in is the product of the sizes of the domains of the honest and corrupt parties, and this is |X ||Y| whether one
or no party is corrupt.)

In the interaction tree for these systems, denoted by TI/O, first the environment sends an input y ∈ Y to
the honest party Bob, which we shall call the leading message. We shall write α for the function αREAL/IDEAL,
so that

∆(IDEAL, REAL) = max
ENV

E[w ← TI/O(IDEAL, ENV) : 1− α(w)]. (1)

Also note that for every w ∈ Leaves(TI/O), we have πREAL(w) ≥ α(w)πIDEAL(w).

The simulator system. To prove our lemma, we need to convert the simulator that interacts with the
original functionality Ff into a simulator that interacts with a modified functionality F̃ (p)

f (see below). Ff
first accepts an input y ∈ Y from the honest party, and then when the simulator sends an input x ∈ X , it
computes fA(x, y) and sends it to the simulator; subsequently, if and when instructed by the simulator, it
releases the output fB(x, y) to the honest party as well.

For our construction and analysis, it helps to be able to consider the simulator as a system on its own,
interacting with not only the original environment but also the functionality. Note that the interaction tree for
this system is different from that of IDEAL in a couple of ways: the first message in which the environment
sends y ∈ Y to the system is no more present, and further there are new environment nodes corresponding to
the functionality, and new edges corresponding to messages between the simulator and the functionality. We
shall denote the interaction tree for this system by TSIM. We shall refer to the environment for this interaction
as an “enhanced environment,” since it controls the functionality as well.

We define [u]y to be the view of the environment if it sends y as the leading message and the view of the
enhanced environment in the interaction is u. More formally, [u]y is the unique leaf in TI/O, reached by the
path from the root starting with y as the leading message, with subsequent messages being those consistent
with u and y. This path is obtained by omitting from path(u) all the messages involving the functionality,
and adding the output message from Bob to the environment (equal to fB(x, y) where x ∈ X is the input
the simulator sends to the functionality, and delivered at the round at which the simulator instructs the
functionality to do so).
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We say a leaf u in TSIM is f -consistent with y ∈ Y (denoted by u f̀ y) if the functionality’s responses in
path(u) are consistent with fA(·, y). We say a leaf u in TSIM is f -consistent with a leaf w in TI/O (denoted
by u |=f w), if the leading message of w is y such that w = [u]y and u f̀ y.

Note that a leaf u of TSIM may not be consistent with any leafw of TI/O, or maybe consistent with multiple
leaves with different leading messages. However, u can be consistent with at most one leaf of TI/O with a
given leading message y, namely w = [u]y. Also, we point out that

πIDEAL(w) =
∑

u∈Leaves(TSIM)

u|=fw

πSIM(u) (2)

since both are equal to the probability of the environment’s view being w, in an execution involving the
simulator, the functionality Ff and any environment that respects w (that is, as long as the system does not
deviate from w in its interaction, the environment does not either).

For each leaf u in TSIM, we define a quantity β as follows:

β(u) := min
w∈Leaves(TI/O)

u|=fw

α(w) = min
y∈Y
u f̀y

α([u]y)

(where that the equality follows from the definition of u |=f w).

The new simulator. Finally we are ready to define the construction of the new simulator that interacts
with the functionality F̃ (p)

f . We shall also specify the probability p with which F̃ (p)
f yields control to the

adversary. We define a partial system for part of the new simulator when the functionality F̃ (p)
f does not

yield control. (The rest of the simulator, for when F̃ (p)
f does yield control, will be defined so as to complete

a perfect simulation.)
Over the nodes of TSIM, we define two functions σ and σ∗ as follows:

σ(u) =


πSIM(u)β(u) if u is a leaf,∑

v∈children(u) σ(v) if u is a non-leaf system node,

minv∈children(u) σ(v) if u is a non-leaf (enhanced) environment node.

σ∗(u) =


σ(u) if u is the root,
σ∗(parent(u)) if parent(u) is an (enhanced) environment node,
σ(u)σ

∗(parent(u))
σ(parent(u)) if parent(u) is a system node.

It is easy to see that for every leaf (in fact, every node) u of TSIM,

0 ≤ σ∗(u) ≤ σ(u) ≤ πSIM(u). (3)

Let SIM0 denote the partial system obtained by letting πSIM0 to be σ∗. Let IDEAL0 be the system obtained
by composing SIM0 with Ff . Then, as in the case of Eq (2), we have

πIDEAL0(w) =
∑

u∈Leaves(TSIM)

u|=fw

πSIM0(u) =
∑

u∈Leaves(TSIM)

u|=fw

σ∗(u). (4)
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We shall show that the partial system IDEAL1 := REAL − IDEAL0 is legitimate. Also, we define p =

1 − σ(root). Then the new simulator works as follows: if F̃ (p)
f does not surrender, which happens with

probability equal to 1−p then it runs SIM0 (scaled up to weight 1) against F̃ (p)
f ; since F̃ (p)

f behaves as Ff in

this case, the resulting partial system is exactly IDEAL0 (which has weight 1 − p). If F̃ (p)
f surrenders (with

probability p), then it allows the simulator to control it completely, and the simulator implements the partial
system IDEAL1 (which has weight p). Taken together, the two partial systems give a system that is identical
to REAL.

Claim 2 IDEAL1 := REAL−IDEAL0 is a legitimate partial system. That is, πREAL−πIDEAL0 is a non-negative
weight function.

PROOF: As mentioned before, it is enough to prove the non-negativity condition for the leaves of the
interaction tree TI/O. For any leaf w of TI/O, we have:

πIDEAL0(w) =
∑

u∈Leaves(TSIM)

u|=fw

σ∗(u) ≤
∑

u∈Leaves(TSIM)

u|=fw

πSIM(u)α(w) = α(w)πIDEAL(w) ≤ πREAL(w),

where the first inequality follows from the fact that σ∗(u) ≤ σ(u), and since u is a leaf, σ(u) = πSIM(u)β(u) ≤
πSIM(u)α(w) for every u such that u |=f w. �

Next we bound p = 1 − σ(root). Recall that an enhanced environment interacts with a simulator and
controls the functionality as well. σ(root) is defined so that it is exactly the minimum expected value for β
that an enhanced environment can achieve. In other words,

σ(root) = min
ENV†∈E†

E
[
u← TSIM(SIM, ENV†) : β(u)

]
.

Below we shall consider an enhanced environment maximizing 1−β(u), so that the expected maximum can
be bounded by the expected sum, which will let us use linearity of expectation to analyze it.

1− β(u) = max
y∈Y
u f̀y

(1− α([u]y)) ≤
∑
y∈Y

(1− α([u]y)) · ι[u f̀ y],

where the indicator variable ι[u f̀ y] = 1 if u f̀ y and 0 otherwise. Then

p ≤ max
ENV†∈E†

∑
y∈Y

E
[
u← TSIM(SIM, ENV†) : (1− α([u]y)) · ι[u f̀ y]

]
≤
∑
y∈Y

max
ENV†∈E†

E
[
u← TSIM(SIM, ENV†) : (1− α([u]y)) · ι[u f̀ y]

]
.

We define an “honest enhanced environment” for a simulator to first pick a y and run the functionality
faithfully, with the input from the honest party (Bob) being y. We will denote the class of honest enhanced
environments that uses y as the input from Bob by E‡y . Then we note that for every y ∈ Y ,

max
ENV†∈E†

E
[
u← TSIM(SIM, ENV†) : (1− α([u]y)) · ι[u f̀ y]

]
= max

ENV‡∈E‡y
E
[
u← TSIM(SIM, ENV‡) : 1− α([u]y)]

]
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because ENV† cannot increase the expected value of (1 − α([u]y)) · ι[u f̀ y] by deviating from the correct
functionality. Thus we get,

p ≤
∑
y∈Y

max
ENV‡∈E‡y

E
[
u← TSIM(SIM, ENV‡) : 1− α([u]y)]

]
(5)

To bound the right-hand side we need to relate it to the maximum expected value achieved by a normal
(unenhanced) environment. This we do next.

Claim 3 If the depth of the interaction tree TSIM is at most D,7 then for all y ∈ Y ,

max
ENV‡∈E‡y

E
[
u← TSIM(SIM, ENV‡) : 1− α([u]y)

]
≤ D|X | max

ENV∈E
E [w ← TI/O(IDEAL, ENV) : 1− α(w)]

PROOF: For any ENV‡ ∈ E‡y , consider an environment ENV ∈ E that starts behaving as ENV‡, by sending y
to the IDEAL system. But ENV may not be able to proceed as ENV‡ does, since it does not see the messages
between the simulator and the functionality that ENV‡ can base its behavior on. There are three messages
between the simulator and the functionality which can happen in any round of the interaction: the simulator
can send an input to the functionality, receive a response, and subsequently instruct the functionality to
release the output to Bob.

For this ENV randomly guesses i ∈ [D] and x ∈ X , and carries on the execution of ENV‡ assuming
that exactly at the ith round, the simulator queries the functionality with input x. Under this assumption,
the response from the functionality can be calculated as fA(x, y). Further, the round at which the simulator
instructs the functionality to release the output can be be inferred from the round at which ENV receives an
output from Bob.

Now consider execution of TI/O(IDEAL, ENV). With probability 1
D|X | the guess made by ENV matches

the choice made by the simulator in the IDEAL system. Conditioned on such a match, the executions
TI/O(IDEAL, ENV) (augmented with the guessed messages) are identically distributed as the executions
TSIM(SIM, ENV‡), and in particular the probability of being consistent with a leafw of TI/O is the same in both.
Then, E [w ← TI/O(IDEAL, ENV)| Guess correct : 1− α(w)] = E

[
u← TSIM(SIM, ENV‡) : 1− α([u]y)

]
. This,

combined with the probability of the guess being correct, proves the claim. �

By Eq. (5) and the above claim we have that

p ≤ D|X ||Y| max
ENV∈E

E [w ← TI/O(IDEAL, ENV) : 1− α(w)] = D|X ||Y|∆(REAL, IDEAL), (6)

whereD is upperbounded by the number of rounds in the protocol defining the interaction tree of the system
REAL.

B.1 Tightness of the Result

We show that it is unavoidable that p is bigger than ε by a factor dependent on the domain size of the
function.

Consider a simple function f with |X | = 1 (no input for Alice) and |Y| = n, and |ZA| = |ZB| = 1 (i.e.,
no outputs for either party). A protocol for this function in which Bob, on input y, randomly picks y′ ← Y\y
and sends y′ to Alice is a secure realization of Ff with a statistical error ε = 1/n (because when Alice is

7It is enough that any root-to-leaf path in TSIM has at most D simulator nodes that have a functionality node as a child.
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corrupt, we have a simulator that picks a uniformly random y′). However, this protocol is not a perfectly
secure realization of F̃ (p)

f for any p < 1: when F̃ (p)
f does not yield to the simulator (which happens with

probability 1 − p > 0), the simulator gets no information about y, but for perfect simulation, the simulator
must send a y′ 6= y with probability 1, which is impossible when y is chosen at random.

C Steps in Constructing a String OT protocol

In this section we sketch the last two of the three steps in the proof of Lemma 1.

C.1 Reducing F̃OLE to F̃OT

For a given small constant φ1 we shall construct a (perfectly) secure protocol for F̃ (φ1)
OLE in the F̃ (φ0)

OT -hybrid
model, for a sufficiently small constant φ0.

The main ingredient here is actually in the analysis, namely Theorem 1, which will then let us use ex-
isting low rate (i.e., sub-constant rate) protocols in the literature, but with constant security parameters. In
more detail, there exist protocols for a single instance of FOLE in the FOT-hybrid model whose communica-
tion complexity grows with the security parameter [27, 25]. (The latter work gives a constant rate protocol
asymptotically, but is not needed in this step.) We shall use such a protocol, denoted by Γ, but employing a
constant security parameter. Details follow.

First we choose a constant c such that (1) for some D, by using a sufficiently large security parameter
γ for Γ, it has at most D rounds and securely realizes FOLE with φ1

2c -statistical security, and (2) we have
c ≥ D|X ||Y|, where X ,Y are the domains of the function associated with FOLE. Note that it is possible to
choose such a c, when the number of rounds D is a constant independent of the level of statistical security
required from (as is the case with the protocols from the above works, for finite functionalities including
FOLE)8 since FOLE has a finite domain (as F is a fixed finite field). Next, we choose φ0 so that the total
communication (including calls to FOT) made by Γ when run with security parameter γ is at most φ1

2cφ0
.

Since γ, as well as c and φ1, is a constant (independent of k), so is φ0. Then by a union bound, using F̃ (φ0)
OT

instead of FOT in Γ introduces an additional security gap of φ12c . Then we invoke Theorem 1 to conclude that

this φ1/c-secure protocol for FOLE is in fact a (perfectly) secure protocol for F̃ (φ1)
OLE .

C.2 Reducing F̃OT to FBSC

Finally, given a small constant φ0 we shall construct a (perfectly) secure protocol for F̃ (φ0)
OT in the FBSC-

hybrid model. Again, this reduction will use existing protocols but with constant security parameter, and
then apply Theorem 1 to obtain a F̃OT protocol. In particular, the main protocol for FOT in the FBSC-hybrid
model in [10] is (UC) secure against active corruption. As in the previous step, we can run this protocol with
the security parameter set to a sufficiently large constant and obtain a φ0/2-statistically secure protocol for
FOT. Then by Theorem 1, this is also a perfectly secure protocol for F̃ (φ0)

OT .

8Even if we were to use a protocol for FOLE where the number of rounds D grows as o(1/ε) for achieving ε-security, we can
find a c as required. Note that typically ε will be required to be negligible in the number of rounds, and every polynomial in D will
be o(1/ε).
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D Extending the IPS Compiler

To explain how we obtain Lemma 3, we briefly summarize the IPS compiler and point out where we differ
from it. At a high-level, the compiled protocol works as follows:

• First, each honest client randomly chooses a set of k servers to put on its watchlist (which only that
client knows). Then, for each server P j the protocol will set up a “watchlist channel” Wj such that
a client can send a message on Wj and if the other client has server P j on its watchlist, then it will
receive this message. We do not modify this step (except for using a different implementation of
string-OTs).

• Then the clients start simulating a session of Π. The clients, in addition to playing the role of the
respective clients in Π, will also use the inner protocol to implement the servers in Π. We shall denote
by ρFBSC

j the j-th session of ρFBSC , implementing the (reactive) functionality of the j-th server in Π,
P j .

Note that the inner protocol is in the FBSC-hybrid model. We will require that the messages sent
via the FBSC functionality at any point should be fresh uniform random bits. (This will be the case
in our protocol, but in general can be easily enforced by first sending a random bit over the FBSC
functionality and then (in the next round) sending the intended bit masked with the random bit.)

• Each client is required to report over Wj its inputs to the inner protocol session ρFBSC
j , as well as

every message that it receives within that session from the FBSC instances. We shall also require
the parties to report their random tapes in this session over Wj (or use a coin-flipping into the well
protocol over Wj , if security depends on the corrupt party’s random tape being honestly generated).
This part is essentially the same as that in the original IPS compiler (for 2 clients), except that there
the messages were received from FOT instances instead of FBSC instances.

• Each client is required to carry out consistency checks on the messages it can read from the various
watchlists and the messages it receives in the rest of the protocol execution and to abort the execution
of the entire (compiled) protocol if any check fails. Our consistency checks are different from those in
the IPS compiler since the inner protocol is no more in the FOT-hybrid model, but in the FBSC-hybrid
model. We shall describe our consistency checks below.

Consistency checks on the watchlists. A corrupt party may report a wrong value for a bit received over a
FBSC instance in a session ρFBSC

j . The other party (who sent the bit) cannot easily detect this deviation since
FBSC could legitimately have behaved differently. Indeed, the corrupt party could report one bit wrongly in
every session (i.e., for each j, report one out of O(n/k) bits incorrectly), and the resulting distribution of
reports remains statistically indistinguishable from that for honest behavior.9

Nevertheless, we shall carry out a simple statistical consistency check that can, with high probability,
catch large deviations in any session that is being watched, and leave it to the special-security guarantee of
the inner protocol to correct small deviations (and, as in the IPS compiler, leave it to the outer protocol to
correct deviations in the sessions that are not being watched).

More precisely, let t be an upperbound on the number of instances ofFBSC invoked by one session of the
inner protocol. For convenience, let 2ε be the special-security factor for the inner protocol over FBSC; i.e.,

9This is in contrast to the setting of the IPS compiler, wherein if the corrupt party reports wrongly in Ω(k) FOT instances, it
will be caught deviating with overwhelming probability, because even one inconsistency between the view of the sender and the
reported view of the receiver proves corruption.
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the protocol can tolerate active corruption of up to 2εt instances of FBSC per session. Then, the consistency
checks by Alice are as follows.

• For each inner protocol session that is on its watchlist, in every round Alice checks that the Hamming
distance between the string of bits it each actually sent so far over FBSC instances in that session, and
the string of bits that Bob reported over the watchlist channel as he received by him is at most, say
pt+ 1

2(1− 2p)εt, where p < 1
2 is the cross-over probability of the FBSC functionality.

• Also, based on the reported information, Alice computes Bob’s state and checks that the messages
received from Bob (over the plain communication channels) are according to this state, and that the
string of bits received over theFBSC functionality has a Hamming distance of at most pt+ 1

2(1−2p)εt
from the string that Bob should have sent over the FBSC functionality according to this state.

Note that the expected Hamming distance between the sent and received strings (after all t bits are sent)
is pt and by Chernoff bounds, the probability of the Hamming distance exceeding this by 1

2(1 − 2p)εt is
negligible (in t and hence in k) if the bits sent and reported as received are correct.

On the other hand, if Bob wrongly reports more than εt of the received bits, then the expected Hamming
distance with what Alice sent10 is more than p(1−ε)t+(1−p)εt = pt+(1−2p)εt, and the probability that
the Hamming distance will be at most pt + 1

2(1 − 2p)εt is again negligible by Chernoff bounds. Thus this
consistency check will, with high probability, let Alice detect Bob altering more than εt of the bits received
from FBSC in any session on the watchlist. Also, if Bob behaves inconsistently with his reported view, then
Alice will detect it with overwhelming probability unless the inconsistency is limited to altering at most εt
bits that are input to the FBSC. Then, we consider a simulation such that in each inner session, the simulator
runs the honest inner protocol for Bob, but corrupts up to 2εt instances of theFBSC functionality used in that
session (to alter the bits received or delivered by the FBSC instances from this honest Bob, so that it matches
what is sent by or reported as received by the actual Bob). This simulation remains perfect until Bob sends
a message on the plain channel that is inconsistent with the message that the simulated honest Bob would
send, or the simulation needs to corrupt over 2εt instances of FBSC; at this point the simulation of the inner
protocol will be continued by corrupting the server in the outer protocol corresponding to this session. If the
session is on Alice’s watchlist, the probability that the simulation will reach this point without Alice having
aborted the protocol is negligible. The rest of the analysis is identical to that in the case of the IPS compiler
(i.e., that the probability that the simulator will need to corrupt more than a threshold number of servers in
the outer protocol is negligible, and if it corrupts fewer than that many servers, the security guarantee of the
outer protocol carries over to the compiled protocol).

10Here we use the fact that fresh random bits were sent over the FBSC functionality, and the receiver needs to report what it
received before learning anything more about these bits.
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