
Towards Object Orienting Linux Kernel
Structures

M. Tech. Second Stage Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Nishit Desai

Roll No: 04305802

under the guidance of

Prof. R. K. Joshi

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Mumbai

Acknowledgment

I hereby express my sincere thanks and gratitude towards my guide Prof. R. K. Joshi for

his constant help, encouragement and inspiration. Meeting with him have been a constant

source of ideas, and gave me motivation for this project.

Nishit Desai

IIT Bombay

i

Abstract

Object oriented programming has many advantages over conventional procedural pro-

gramming languages for constructing highly flexible, adaptable, and extensible systems.

Given many benefits of object oriented systems over conventional procedural systems and

the rapidly escalating costs of maintenance of systems written in conventional languages,

the migration of billions of lines of procedural code into object-oriented languages is an

attractive option. This report discusses the problems which occur when linux kernel is

compiled by g++. Two different approaches, complete conversion approach and gradual

iterative conversion approach, to solve these problems are also discussed. It is also ex-

plained why iterative approach is chosen instead of complete conversion approach for our

transformation process. The implementation details of conversion tool, which has been

built to automatically remove some of the incompatibility problems is also described.

ii

Contents

1 Introduction 1

1.1 Summary of Work Done in Stage I . 2

1.2 Organization of Report . 2

2 C/C++ Incompatibilities in Linux Kernel 3

2.1 C++ Reserved Keywords . 3

2.2 Typecasting . 4

2.3 Conflicting Names . 5

2.4 Function Definition Style . 6

2.5 Unlocatable Definitions . 7

2.6 Non-Trivial Initializers . 8

2.7 Inbuilt Macros . 9

2.8 Jump Crosses Initialization . 10

3 Approaches to Solve Incompatibility Problem 11

3.1 Complete Conversion Approach . 11

3.1.1 Linking Problem . 12

3.2 Gradual Iterative Conversion Approach . 13

4 Iterative Conversion Approach 14

4.1 Accessing C Code From C++ Source . 14

4.2 Accessing C++ Code From C Source . 16

5 Design and Implementation of Conversion Tool 18

5.1 ANTLR . 18

5.2 Implementation Details of Conversion Tool 20

5.2.1 Problems solved using ANTLR . 21

5.3 Example: Test Case . 23

5.4 Open Issues . 24

5.4.1 Preprocessing problem . 25

6 Conclusion and Future Work 28

iii

Chapter 1

Introduction

Prior to the advent of object-oriented paradigm, code was typically organized as a collec-

tion of modules, each consisting of a collection of functions. Modules in larger applications

were broken into submodules, etc. These in turn were decomposed into functions. Main-

tenance of these systems became more and more difficult and costly with the passage of

time. Re-engineering of the old system with modern software development methodology

such as object oriented paradigm was essential.

Object-oriented systems are more adaptable to changes since these systems have their

components largely decoupled. Modifying one component does not affect other compo-

nents of the system. Less time is required to maintain and implement change in a system

thereby reducing costs.

In procedural programs it is rather difficult to define the artifacts and their relation-

ships. Re-usability of software is also seriously affected by those features of procedural

programs. On the other hand the object oriented paradigm offers some useful charac-

teristics, such as well defined means of abstraction, the concept of encapsulation, or the

combination of data and behavior that effectively support the software maintenance pro-

cess.

Ivar Jacobson and Fredrik Lindstorm [10] describe re-engineering as “ the process of

creating an abstract description of a system, reason about a change at the higher abstrac-

tion level, and then re-implement the system.”

Re-engineering = Reverse engineering + Change + Forward engineering

This project is an aim to re-engineer linux kernel with a complete change in implemen-

tation technique but no change in its functionality. Linux kernel is currently implemented

in procedural language C. The Change in implementation technique means converting

it into Object oriented language C++. Automatic object identification techniques have

been proposed in stage I, but we can’t directly make the entire kernel object oriented. We

have to do this module by module, so that we can check whether the converted module is

working correctly or not. For this module by module conversion, either the entire kernel

1

has to be compiled by g++ or there has been some other way by which we can link g++

compiled code with the gcc compiled code. In any of the two approach, we have to make

part of the kernel g++ compilable. When we compile kernel by g++, lots of incompati-

bility problems [8] occur. So, we have to first identify all those incompatibility problems.

Because of the enormous size of the linux kernel, we manually can’t make entire linux

kernel g++ compatible. To remove this problem conversion tool has been made, which

automatically removes some of the incompatibility problems. But some part of the tool

operates on only preprocessed code, so we can’t follow the approach of making entire

kernel g++ compatible. This problem can be removed by choosing iterative conversion

approach in which at a time only one module has been made g++ compatible, and this

g++ compiled code can be linked with other gcc compiled code. After this module has

been converted to object oriented form, other module has been taken, made g++ com-

patible and this process repeats. Part of the conversion tool can also be used in iterative

conversion approach to automatically remove some of the incompatibility problems.

1.1 Summary of Work Done in Stage I

Existing techniques [7, 12] to identify objects from procedural code were studied in detail.

We have also studied [9] the techniques to identify relationships between the objects.

Improvements [5] on existing techniques were proposed for identification of objects using

access graph. Rule based approach to identify constructor and to associate functions to

classes [4] was also proposed. Effectiveness of the proposed method w.r.t. manual object

extraction was also discussed.

1.2 Organization of Report

The next chapter discusses the problems in getting linux kernel compilable by g++. All

incompatibility problems with an examples have been discussed in next chapter. Two

different approaches, complete conversion approach and gradual iterative conversion ap-

proach, to solve these incompatibility problems are discussed in Chapter 3. Problems

with complete conversion approach have also been discussed in that chapter. Chapter 4

explains how iterative conversion approach can be used to solve incompatibility problems.

Conversion tool has been built, which automatically removes some of the incompatibility

problems. Implementation details of this tool has been given in Chapter 5 with small

example. Problems with this conversion tool have also been discussed in Chapter 5.

2

Chapter 2

C/C++ Incompatibilities in Linux

Kernel

C++ being a superset language of C, any C program which has been compiled by a

C compiler should be readily compiled by a C++ compiler. This is true but for a few

exceptions. For example, in C++, typecasting needs to be done explicitly which otherwise

would be done implicitly by a C compiler. Other problems that arise are due to the limited

feature support of the GNU’s g++ compiler as opposed to its gcc compiler. In this section

we discuss various problems [14] encountered in getting the linux kernel source compiled

by g++. Experiments have been carried out on current stable version of linux kernel,

2.6.14 available at [1].

2.1 C++ Reserved Keywords

Many of the C++ reserved keywords have been used in the existing C source of the linux

kernel. These reserved keywords are used as normal identifiers in the C code, but on

being compiled by the C++ compiler they are granted special meaning and are treated

differently. The reserved keywords of C++ extended over C are listed out in 2.1. C code

is free to use these keywords as identifiers and macro names. This will cause problems

when C code containing these tokens is compiled as C++.

throw bool catch class delete

false friend virtual namespace new

operator private protected public template

true try using typename this

Table 2.1: Additional Keywords provided in C++ over C

3

static inline void list_add_tail(struct list_head *new,

struct list_head *head)

{

__list_add(new, head->prev, head);

}

a) kernel C source - linux-2.6.14/include/list.h

static inline void list_add_tail(struct list_head *new_changed,

struct list_head *head)

{

__list_add(new_changed, head->prev, head);

}

b) Equivalent C++ Source

Figure 2.1: Replacing keywords

The workaround is to rename such conflicting identifiers with ones which are not listed

as C++ reserved keywords. Care needs to be taken that the new identifier introduced

is not existent in the present scope. Further, we need to examine the impact of the

replacement. If the identifier considered for replacement is used within a restricted local

scope, the changes to be done are limited. However, if the identifier to be replaced exists

globally or if it is part of a definition of a derived type like a struct or enum, then changes

need to be propagated to all places where their instances are employed which includes

several other source files in the kernel.

2.2 Typecasting

Implicit Typecasting

In C, typecasts may be done implicitly by the compiler. The C++ standard has dep-

recated this feature and requires typecasts to be done explicitly, which produces better

type-safe code. The linux kernel source liberally uses void pointers to handle data and

relies on the C compiler to do the appropriate typecasts. Figure 2.2 shows a code fragment

of C source and its equivalent source compilable by g++.

4

struct ctl_table_header *tmp;

tmp = kmalloc(sizeof(struct ctl_table_header), GFP_KERNEL);

a) kernel C source - linux-2.6.14/kernel/sysctl.c

struct ctl_table_header *tmp;

tmp = (struct ctl_table_header *)

kmalloc(sizeof(struct ctl_table_header), GFP_KERNEL);

b) Equivalent C++ Source

Figure 2.2: Explicit Typecasting required in C++

kmalloc allocates required memory and returns a void pointer which is implicitly

typecasted by the C compiler to the appropriate type. In order to get the code compiled

by g++ we need to explicitly state the type to which the result is to be casted.

Enumerated Types and Integers

In C, integer values can be freely used instead of enumerated values for assignment to

variables of enumerated type. This is illegal in C++ and requires an explicit typecast.

Modifications carried out to get the code compiled under g++ are shown in Figure 2.3.

Void pointers in Arithmetic Expressions

C++ does not allow void pointers to participate in arithmetic expressions. In C, arith-

metic operations done with void pointers are carried out by implicitly considering them

to be of type byte. To have same effect in C++, void pointers are explicitly typecasted

to char pointers when used in arithmetic expressions.

2.3 Conflicting Names

Multiple Declarations

In C, a global data item may be declared several times as long as there is a maximum of

one such declaration having an initialization. In C++, global data can be defined exactly

5

enum idle_type

{

SCHED_IDLE,

NOT_IDLE,

....

};

.....

enum idle_type itype;

itype = 0;

a) kernel C source - linux-2.6.14/kernel/sched.c

enum idle_type itype;

itype = (enum idle_type) 0;

b) Equivalent C++ Source

Figure 2.3: Typecast for Enumerated type

once. Consider the code fragment in Figure 2.4. C treats the second occurrence of tv1

as a prototype declaration. C++ treats the second occurrence as a new declaration in

itself and finds this redeclaration illegal. The conflicting declaration should be removed

in order to get the code compiled by g++.

Type Name Conflicts

In C, the name of an instance can be the same as the name associated with a type using

typedef, provided both do not lie in the same scope. In C++, the instance name cannot

be the same as the name assigned to a type with typedef. We require to rename the type

or the instance name. Such code fragment is shown in Figure 2.5.

2.4 Function Definition Style

In C, an alternate style of function definition may be used, wherein, the argument types

are specified after the argument list. This style of function definition is no longer sup-

6

typedef struct tvec_s { typedef struct tvec_s {

int i; int i;

} tvec_t; } tvec_t;

tvec_t tv1; tvec_t tv1;

tvec_t tv1;

a) C source b) Equivalent C++ Source

Figure 2.4: Multiple Declarations of Global Data

typedef int (Func)(int,int); typedef int (Func_type)(int,int);

struct S { struct S {

Func *Func; Func_type *Func;

}; };

(a) C Source (b) Equivalent C++ Code

Figure 2.5: Function Typedef in Name Conflicts

ported in C++. The code can be compiled by adopting the standard style for function

definition as shown in Figure 2.6.

2.5 Unlocatable Definitions

In C, nested or embedded definitions are visible in the scope where the enclosing data type

is defined. In C++, these embedded definitions are not visible. Operations like accessing

user-defined enumerated values for such embedded structures fail when applied outside.

To solve the problem the embedded definition is to be moved outside the enclosing data

structure. As shown in Figure 2.7, it is not possible to carry out sizeof on struct X.

7

int Func(a,b,c) int Func(int a, float b, char c){

int a; ...

float b; }

char c;

{

...

}

(a) C Source (b) Equivalent C++ Source

Figure 2.6: Old style of Function definition

2.6 Non-Trivial Initializers

These are some extensions provided by gcc compiler in addition to the default ways of

initializing instances and array of elements. These extensions are not part of ANSI C.

Such forms of initializations are provided to ease programming. However, such forms of

non-trivial initializations are yet to be featured with g++ compiler. Hence all code using

these advanced extended features of gcc will fail to compile under g++ and need to be

appropriately recoded.

Labeled Initializers:

The label indicates to which element of the structure the immediate value be assigned.

The labels and initializing values may be placed in any order and only the elements that

need to be initialized are to be specified. If the instance is global the uninitialized values

will be set to their default values. Under g++, it is not possible to use the label-initializers

in any order. The order must be sane as that in the structure definition. Trailing elements

which need not be initialized can be left out, but all elements to be initialized must be

ordered. For proper ordering of the initializers, we may have to add some preceding

initializing elements with their default values. Figure 2.8 shows a simple instance of this

problem.

Range Index initializers:

gcc provides range index initializers to initialize a range of elements in an array to a

particular value. The values after this specific form of initialization are then assigned to

successive indexes. To have the code compiled by g++, we rewrite the code fragment by

explicitly specifying the value repeatedly for the entire range and add default values for

8

union U { struct X {

struct X { ...

... };

} x; union U {

.... struct X x;

}; ...

};

size_X = sizeof(struct X); size_X = sizeof(struct X);

(a) C Source (b) Equivalent C++ Source

Figure 2.7: Inaccessible Embedded definition

element s preceding the range. For example, int a[20]={[1...5]=1,5} is to be recoded as

int a[20]={0,1,1,1,1,1,5,}.

Index Initializers:

Another form of array initialization provided by gcc is for assigning a value to a specific

element by indicating its index. The compiler calculates the size of the array from the

highest index specified. To code without using this extension, we need to calculate the

size of the array, assign the correct value from the mentioned index and for the values

unspecified default values are to be assigned. For example, int A[]={[2]2,[4]10} is to be

recoded as int A[5]={0.0.2.0.10}.

2.7 Inbuilt Macros

gcc defines macros which can be used for debugging and verbose printing. These macros

are used in print and other string functions. For example, FUNCTION , LINE , etc.

The macro FUNCTION evaluates to a string which indicates the name of the current

function. In Figure 2.9, the string evaluates to ”this is funcA now”. In g++, these is

inbuilt macros are not defined and left as unresolved symbols.

A workaround is to define these inbuilt macros in places where they are used. We can

define FUNCTION as a null string with the loss of debugging information. The other

option is to replace each occurrence of FUNCTION with the function name in which

it is embedded. However, this may not be possible cause several times FUNCTION

macro itself is part of a user defined macro.

9

struct A { struct A {

float f; float f;

char c; char c;

int i; int i;

}; };

struct A alpha = {c:’a’}; struct A alpha = {f:0.0,c:’a’};

(a) C Source (b) Equivalent C++ Source

Figure 2.8: Labeled Initializers

int funcA()

{

printf("this is" __FUNCTION__"now");

}

Figure 2.9: Inbuilt Macro supported by gcc

2.8 Jump Crosses Initialization

In C++, a jump cannot be made crossing initializing statement. To circumvent this

problem we have to split initializing statement into declaration and initialization. This

scenario is depicted in Figure 2.10.

goto xlabel; goto xlabel;

if(condition) if(condition)

int y = 0; int y; y =0;

xlabel: xlabel:

... ...

}; };

(a) C Source (b) Equivalent C++ Source

Figure 2.10: Jump Crosses Initialization

10

Chapter 3

Approaches to Solve Incompatibility

Problem

Our aim is to convert linux kernel, which in its present form written in C language, to

an object oriented form using C++. In practice, for small applications written purely

in C code, it is possible to get the entire application running under a C++ compiler

without many changes. However, the same does not hold for the linux kernel, which

is a large system software comprising of several source files, designed to run on various

computer architectures. The kernel, although mainly written in C, has assembly code

written for platform specific functionalities. C++ is a superset of the C language with

a few exceptions. A few features of C have been deprecated in C++ to ensure safer

programs. Also many of the extensions provided by gcc are not supported by g++. Due

to these issues, it is difficult to get the linux kernel built by a C++ compiler.

Work has been carried out on current stable version of linux kernel, 2.6.14. The

kernel has been compiled [11] for Pentium IV architecture. In this chapter, we assess

the different approaches [8] that could be used to inject C++ code into existing linux

kernel. Presently the entire linux kernel, comprising of C source and assembly language

(architecture dependent) code, is built using gcc with C style linkage. Two different

approach, which is tried out for getting the linux kernel compiled by g++, are discussed.

3.1 Complete Conversion Approach

In this approach, we directly compile the entire linux kernel with g++ and link the object

files in the default C++ style and then employ object identification technique to object

orient the parts of the kernel. This process requires recoding various code fragments in

almost all source files to circumvent the problems discusses in previous chapter. Manually

removing these problems is very time consuming, and whenever some new software comes,

we have to remove all these problems by hand. The enormous size of the kernel source

leaves this approach undesirable to follow. So, tool has been made which automatically

11

removes some of problems such that converted code has minimal incompatibility with

g++ compiler. Detailed discussion on the tool has been carried out in Chapter 5. It

has been found that applying this tool on linux kernel is also undesirable, because any

tool like this operates on preprocessed code. Experiment shows that after preprocessing,

kernel code become so large that applying this tool will also take lots of time. So, we

can’t apply this approach on linux kernel. Adding to this, there is one another linking

problem with this approach. This problem is described in next subsection.

3.1.1 Linking Problem

Another problem with this approach is that we have to handle linking issues between

object code of c++ source and object code of the assembly source. It is tedious to link

between c++ code and assemble code due to name mangling done by the c++ compiler.

Name mangling is done to support features like overloading of functions and may differ

from compiler to compiler. Name mangling as done by the GNU C++ compiler is shown

in Table 3.1. The mangled function name carries information about the parameter list of

the function. For example, funcB(char c, int i) is represented as funcB Fci, ’F’ meaning

that funcB is a function, which takes arguments of type char encoded as ’c’ and of type

int encoded as ’i’.

Program Unmangled (C style) Mangled (C++ style)

int funcA() { } funcA funcA Fv

int funcB(char c, int i) { } funcB funcB Fci

int funcC(void *vp) { } funcC funcC FPv

main() { } main main

Table 3.1: Name Mangling done by GNU C++ compiler

If C++ style linking is to be used, the assembly language code must refer to the

mangled form of symbols defined in C++ source. Also, for the C++ source to refer

symbols in the assembler code, it must be ensured that the reference is done using the

unmangled form.

These problems are mainly with linux kernel. Because of these problems we couldn’t

continue with this approach on linux kernel. This approach might be applied on some

other software, which doesn’t contain assembly language code.

12

3.2 Gradual Iterative Conversion Approach

With this approach, it is possible to select a small portion of the kernel, compile it

using g++ and link it with the existing gcc compiled kernel. The code to be compiled

with g++ should use C style linking instead of the default C++ style. This approach

restricts number of source files those need recoding in order to be g++ compilable. So,

currently this approach is adopted for our transformation process. Figure 3.1 visualizes

the conversion process for a selected C source file of linux kernel. Only the selected source

files and the header files used by it are to be made compatible for g++. Since C style

linking is used, the object code of newly compiled C++ code can be linked with the

existing object files of both C source and assembly source without many changes. C style

linking is specified by explicitly enclosing the C++ source within extern “C”. Detailed

discussion on extern “C” is done in next chapter.

C Style

Linkage

C source

C source C source

C source

C code

Compilable

by g++

extern "C" {

Oriented

Code

Object

 }

 Kernel Source

Part of the

Kernel code
Compilation and
linking issues

between C and C++

extern "C"{

}

Orient
Object

Iteratively

Figure 3.1: Gradual Iterative Conversion

Code compiled by g++ can now be object oriented using the object identification

techniques. This approach is applied iteratively, gradually, converting the entire kernel to

object oriented code. The C style wrapper shell around each c++ code source can then

be removed in the final phase as all sections of the kernel can refer mangled names. The

C style wrapper shell will have to retained between C++ source and assembly code.

13

Chapter 4

Iterative Conversion Approach

With this approach, small portion of the kernel is selected at any time. This is the portion

which we currently want to make object oriented. Now, only this portion is made to be

g++ compatible and compiled by g++ compiler, and it is linked to the rest of the kernel

which is compiled by gcc compiler. The code to be compiled with g++ compiler should

use C style linking instead of the default C++ style. This is required because if we can’t

specify C style linking to g++ compiler, then it mangles the function name and in that

case we can’t link g++ compiled code with the gcc compiled code. In C style linking,

function names are not mangled by g++ compiler and retains in same form as by gcc

compiler. extern “C” is used for specifying C style linking to g++ compiler.

This approach restricts number of source files those need recoding in order to be g++

compilable. So, currently this approach is adopted for our transformation process. Code

compiled by g++ can now be object oriented using the object identification techniques.

Using this approach, gradually entire kernel can be made object oriented by changing

only one module at a time and without touching other part of kernel. Figure 3.1 shows

the conversion process by this approach. In this chapter, we will discuss how extern “C”

[6] can be used to specify C style linking. It has been also discussed that how final linking

is done between g++ compiled code and gcc compiled code.

4.1 Accessing C Code From C++ Source

In this section, it is discussed that how C code can be accessed from C++ code. This is

possible because C++ language provides a linkage specification with which we can declare

that a function or object follows the linkage conventions for a some other supported

language. The default linkage for objects and functions is C++. G++ compiler also

support C linkage, for gcc C compiler.

To access C code from C++ code, we have to specify C style linkage for the C code

which is accessed from C++ code. For example, to access a function compiled by the C

compiler, function has to be declared to have C linkage. Following notations can be used

14

extern "language_name" declaration;

extern "language_name" {declaration; declaration;}

Figure 4.1: Declaring Linkage Specifications

to declare linkage specifications.

First notation indicates that declaration has linkage of language name, while second

notations indicates that everything between the curly braces has linkage of language name.

To be more clear about how to access C code from C++ code consider one example.

Consider that the file kernel.c is going to be compiled by gcc compiler, and file new.cpp

will be compiled by g++ compiler. File new.cpp is also accessing some function defined

in kernel.c

int temp(int i){

...

}

int main(){

...

}

a) C source - kernel.c

extern "C" {

int temp();

}

int C_access(){

temp(10);

any C++ code

}

b) C++ source - new.cpp

Figure 4.2: Accessing C code from C++ code

Here, in this example temp() is defined in C file and it is compiled by gcc compiler.

Now, C++ code is accessing this temp() function, and C style linkage has been specified

for temp function. So, when g++ compiler compiles new.cpp file, it will not mangle temp.

15

If C style linkage is not specified for temp function in new.cpp, then g++ compiler uses

mangled name for calling temp function, and gcc hasn’t mangled the temp function, while

compiling temp definition. So, error is generated if we don’t specify C style linkage for

temp function. Commands to run above program are as follows:

gcc -c kernel.c

g++ -c new.cpp

g++ kernel.o new.o -o out

Here final linking has to be done by g++ compiler. If gcc is used for final linking than

error is generated. In reverse case when we are accessing C++ code from C code this

final linking can also be done by gcc compiler.

4.2 Accessing C++ Code From C Source

Same method which was discussed in last section can be used to access C++ code from

C code. In this case C style linkage specification is provided for function which is defined

in C++ code, but access by C code. Consider the same example, which was discussed in

last section, with minor changes. In this case consider that temp is defined in new.cpp

and, main function, which is defined in kernel.c, is using temp function. So, we have to

specify C style linkage for temp function in new.cpp.

int main(){

temp(10);

...

}

a) C source - kernel.c

extern "C" {

int temp();

}

int temp (int i){

any C++ or C code

}

b) C++ source - new.cpp

Figure 4.3: Accessing C++ code from C code

16

If we don’t specify C style linkage, then error is generated. Same kind of reasoning

which is given in last section can also be applied here. Same set of three commands can

be used to compile and link the above program. In this case final linking can also be done

by gcc instead of g++. Using same method, we can also write the code in which C code

is accessing some C++ function, and C++ code is accessing some C functions.

If there is some need to use extern “C” in header file and if this header file is used

in both C code and C++ code, then we have to use cplusplus macro to eliminate this

problem because “extern C” can not be used in C code. Consider following header file

#ifdef __cplusplus

extern "C" {

#endif

... /* body of header */

#ifdef __cplusplus

} /* closing brace for extern "C" */

#endif

a) header file - c_cplusplus.h

Figure 4.4: Mixed Language Header

If this header file is included in C code then extern “C” will not come in that file,

but if it is included in C++ file then extern “C” will be included in that file because

cplusplus macro is by default defined for c++ file.

We can make analogy of linux kernel with this kernel.c and new.cpp. Consider that

kernel.c is the portion of linux kernel which is compiled by gcc compiler, and new.cpp is

the portion of the kernel which we have made g++ compilable.

Experiments has been done by making the file msgutil.c of the ipc kernel code to

g++ compatible. Using this iterative approach, only msgutil.c and header files, which

are included in msgutil.c, need to be changed. So, this portion becomes our new.cpp and

rest is kernel.c. Conversion tool, which is described in next chapter, can be used to make

these files g++ compatible.

17

Chapter 5

Design and Implementation of

Conversion Tool

Whether we use complete conversion approach or iterative conversion approach, manu-

ally removing all incompatibility problems is undesirable and time consuming. To avoid

this manual conversion, tool has been made which automatically removes some of the

incompatibility problems. Some problems are easily removed without parsing the source

code, simple python scripts are used to remove those problems. Some other problems are

removed by parsing and changing the the part of the code, which contains incompatibility

and other part of the code is outputted as it is. For remaining problems entire code

needs to be parsed. For this entire gcc C grammar is needed. ANTLR (ANother Tool for

Language Recognition) is used to for this purpose. In this chapter, first ANTLR [13] is

explained and then implementation details of tool is explained. Problems with tool have

also been discussed.

5.1 ANTLR

ANother Tool for Language Recognition, is a language tool that provides a framework

for constructing recognizers, compilers, and translators from grammatical descriptions

containing Java, C#, C++, or Python actions. ANTLR is nearly same as Lex (lexer)

and Yacc (parser). It accepts grammatical language descriptions and generates programs

that recognize sentences in those languages. ANTLR knows how to build recognizers that

apply grammatical structure to three different kinds of input:

• character streams

• token streams

• trees structures

18

These correspond to lexers, parsers, and tree walkers. The syntax for specifying these

grammars, the meta-language, is nearly identical in all cases.

All ANTLR grammars are subclasses of Lexer, Parser and TreeParser. For better

understanding consider the simple calculator program. Suppose we have to write parser

for calculator and we want to use java as our language for building parser, then following is

the code for parser and lexer. Grammar for any parser is written in class which is extended

class ExprParser extends Parser;

expr: mexpr ((PLUS|MINUS) mexpr)*

;

mexpr

: atom (STAR atom)*

;

atom: INT

| LPAREN expr RPAREN

;

class ExprLexer extends Lexer;

options {

...

}

LPAREN: ’(’ ;

RPAREN: ’)’ ;

PLUS : ’+’ ;

....

Figure 5.1: Sample example for parser and lexer in ANTLR

from Parser class. In above example, grammar is written in ExprParser which is extended

from Parser. In the same way, grammar for lexer is written in class which is extended

from Lexer class. Now, in main function we will create the object L of ExprLexer, and

then object P of ExprParser is created. L is passed as argument to P because parser

needs tokens from lexer.

To evaluate the expression we can specify action corresponding to each rule in Ex-

prParser class. Instead of specifying actions which evaluate input expression, we can also

specify actions which generate syntax tree from expression. Syntax tree is an intermediate

19

representation that holds all or most of the tokens and relationships between those tokens.

If syntax tree has been built in parser, then we have to write treeparser which parses tree

and does some actions, in our case actions are evaluation of expression. Grammar for

treeparser can be written in class extended from TreeParser. Following is the skeleton

class for ExprTreeParser which parses the tree generated by ExprParser and evaluates

the expression embedded in tree.

class ExprTreeParser extends TreeParser;

options {

....

}

rules to parse the tree and corresponding actions

Figure 5.2: Sample example for treeparser

Options section specifies the bunch of command line arguments to parser generator.

An options section may be specified on a per-file, per-grammar, per-rule, and per-subrule

basis.

This tool has been chosen for our purpose instead of lex and yacc because it contains

gcc C source to source translation [15] framework . This framework contains gcc C parser

and tree emitter. Gcc C parser builds syntax tree, and gcc tree emitter prints source code

by parsing the tree generated by parser. For our purpose, we have to change gcc emitter

part such that output generated by it should not contain g++ incompatibility problems.

5.2 Implementation Details of Conversion Tool

This section describes implementation details of tool, which removes some of the g++

incompatibility problems. For some problems simple python script is used, while for some

other problems small grammar is written in lex and Yacc, and remaining problems are

solved using grammar written in ANTLR. Not all problems described in chapter 2 are

removed using this tool, but most of the problems are resolved. For each problem we will

describe how that problem is sovled. All parts of the tool are not merged into one part.

For each problem, corresponding program has to be run to remove that problem.

Reserved Keywords

To remove this problem, python script has been written. This script replaces keyword

by some other name, if that keyword is found as an identifier and if it exists in Table

20

2.1. For example, if keyword new is found as an identifier, it is replaced by new changed.

This program recursively goes into each directory, replaces the keyword in input files

and generate new files. We can give regular expression for file names which needs to be

changed. For example, “*.c” is given if we wants to modify only C files.

Function Definition Style

For this problem also python scripts [14] has been written which changes old function

definition style to a new function definition style. This program parses the source code.

All parts other than the old function definitions are outputted as it is to a new file. When

old function definitions are found, it parses the source code until first left curly brace is

found. After the left curly brace is found, it generates new function definition using its

arguments and outputs it to a new file.

Unlocatable Definitions

For this problem, lex and yacc is used. Simple grammar is written in Yacc to parse the

struct, union or enum structure. When one of these construct is found, some action has

been taken. Other code is outputted as it is to a new file. Stack is maintained to determine

where currently we are. If stack contains no element, then we are outside the structure,

else we are inside some structure. Length of stack determines the level up to which source

code is parsed. When structure definition ends, and if it is the inner structure, then there

is a need to bring this inner structure from inside to outside. So, it is outputted to a new

file and it is followed by a semicolon. If it is top level structure then it is not followed by

semicolon, because semicolon for this top level structure comes from input file.

Range Index Initializers

This problem is also solved using lex and yacc. Grammar, which parses the array initial-

ization containing range index or index, is written in yacc. Other part of the C source

code is outputted as it is to a new file. Here also stack is used as a data structure. Each

entry of stack contains structure containing lower index, upper index and value for this

index range. Each element of initialization is pushed on to a stack. After initialization

completes, stack is used to find the highest index which is initialized. Value correspond-

ing to each index is also found using stack elements. After doing this, values for zero to

highest index are outputted to a new file.

5.2.1 Problems solved using ANTLR

For all the following problems, ANTLR gcc C source to source translator is used. In which,

first the parser generates the syntax tree from C source code, then emitter generates same

source code (with different spacing) from the tree. So, for changing particular part of the

21

source code, we have to first identify the rules, which match to that particular part. In

this translator, we can also print the entire tree generated by parser. This tree contains

tokens, corresponding code part and rules which match to that part. So, for any part

of the source code we can easily find the rules. Only actions of those rules need to be

changed to change that part.

Jump Crosses Initialization

To solve this problem, rule which matches to goto statement has been found out using

syntax tree. Then some flag is turned on in actions of this rule. After this, whenever

some initialization statement occurs, we will first see that whether that flag is on or off.

If it is on then we split that initialization statement, otherwise nothing has to be done.

When label is found we will turned off the flag in the action of that rule.

Implicit Typecasting

For solving this problem, we required the types of each identifiers. So, when some dec-

laration/definition occurs we store variable name and the corresponding type on stack.

When new scope starts, some marker has been pushed on stack, and when that scope

completes, all the items can be popped from the stack up to that marker. Rule corre-

sponding to binary expression (a = b) is found, and stack is searched for identifier which

occurs on left side of expression. Suppose type T is found for a, then actions are changed

such that statement (a = b) becomes (a = ((T)b). Not all typecasting errors are removed

by this method. Most of the typecasting errors occur because of malloc and kalloc func-

tions which return void pointer. That kind of errors are removed by this method. For

complete solution, all kind of statements in which typecasting errors may occur have to

be identified and then, actions of all rules which match to those statements have to be

changed to remove typecasting errors. In practice, most of the typecasting errors occur

because of assignment problems. So, only that problem is solved automatically, but it

can be extended to remove other kind of typecasting errors.

Void pointers in Arithmetic Expressions

This problem is solved by finding rules for arithmetic expression. Then in action of that

rule, when some identifier I occurs, symbol table is searched for I. If void * is found as

type of I, then action is changed such that identifier I is replaced by ((char *)I) in output.

Problem for inbuilt macros can be easily solved by putting all macros in one header

file and including this header file in all other header files. Multiple declaration problem

is also easily solved by searching the symbol table for each new global declaration and

definitions. Other problems has been not solved automatically, because those problems

occur rarely in system. So, those kind of problems have to be removed by hand.

22

5.3 Example: Test Case

This tool has been applied on many sample example codes. For now, consider one simple

example given in Figure 5.3. This example is not taken from kernel code, but it is built

such that it contains lots of code which is not allowed by g++ compiler. If we apply our

tool on this code, then tool removes all the incompatibility present in the code. We have

not merged the set of tools into one tool, so one by one we have to apply all the tools.

Output of one tool is given as input to next tool. If we apply following set of tools in the

given sequence then code given in Figure 5.4 is generated.

• Apply script which changes name of the identifier, whose name is same as one of

the reserved keywords given in Table 2.1.

• Run program which converts old function definition style to a new function definition

style.

• Apply tool which solves embedded structure definition problem. This program

brings out inner structure definitions from inside to outside of outermost structure.

• Apply tool which solves range index initialization and index initialization problems.

• Apply tool which has been built using ANTLR. This tools removes problems like

implicit typecasting, jump crosses initialization and void pointers in arithmetic ex-

pressions. This ANTLR based tool can only be applicable on preprocessed code.

This problem is discussed in detail in next section.

This generated code doesn’t contain any incompatibility. It can be compiled by g++

compiler directly without more changes.

23

#include<stdlib.h>

struct Outer{

int i;

struct A{

int j;

}cd;

};

enum class { off , on };

enum class bulb;

typedef struct A * AP;

static void test (a)

int a;

{

bulb = a;

}

int main () {

int i=0;

int y=10;

void *v;

goto label;

if (i<10) {

float y = 0,ft=0;

char *a [10] = {[1]"ab","de",[4]"cd"},d = ’b’;

struct A ***ab,*ef;

AP fk;

struct A *cd = malloc(sizeof(struct A));

v = &y;

fk = malloc(sizeof(struct A));

v = v+5;

label:ef = malloc(sizeof(struct A));

**ab = ef;

}

}

Figure 5.3: Sample code containing g++ incompatibility problems

5.4 Open Issues

There are some problems with this tool. Tool like ANTLR can only be applied on prepro-

cessed code. This conversion tool is also using ANTLR to remove some of the problems.

24

So, part of tool which is using ANTLR can only be applied on only preprocessed code.

If we apply this conversion tool on normal code, then ANTLR part of this tool generates

parsing error. Detail discussion on this problem is given in following subsection. Because

of enormous size of kernel, we can’t apply this part on preprocessed kernel code. But

for other softwares, which are not as big as linux kernel, this tool can be applied on

preprocessed code.

5.4.1 Preprocessing problem

Tool like ANTLR, which converts one form of the source code to another form, has to

be applied on preprocessed form of the source code. If it doesn’t applied on preprocessed

code, then when some macro occurs in the code, no rule is matched to part of the code

and ANTLR gives parse error. To understand this consider the following example.

#define int X;

X a;

In this example, no rule of C grammar will match to statement X a, because X is neither

a built in data type nor it is a type define by typedef. So, ANTLR generates parse errors

for this statement. Two different approaches to solve this problem have been tried.

Search a Macro table when Parse error occurs

First approach is to build a macro table from macro statements. Now, when ANTLR

generates some parse errors, search macro table for that error generating token and find

a new token. Then, give this new token to ANTLR and start parsing from the previous

state at which error occurred. If above example is considered, then error is generated

for token corresponding to X. If macro table is searched for X, then int is found as new

token. If int is given to ANTLR and ANTLR starts parsing from previous state with int

as new token, it correctly parse the above code. It is tried to change the ANTLR code to

implement this solution. But it is concluded that it is always not possible to find a exact

token which has generated the parsing error.

Prepossess, Do changes and Go back to Original Form

Second approach is to prepossess the entire code, do changes on this prepossess code and

then go back to original form. For doing this we have to remember all the places where

the preprocessor has done replacement. For this, code of the preprocessor needs to be

changed. In this approach, conversion tool has to decide that where to make changes.

Because it is also possible that macro statement itself contains g++ incompatibility. In

25

that case, changes in macro statement has to be done. In some other cases we can’t

change the macro statement, we have to change portion of the code where the macro

replacement has been done by preprocessor. Implementation of this issues itself is a big

problem and it is not our current focused problem.

We couldn’t follow these two approaches because of the problem discussed above. So,

the approach is to apply conversion tool on preprocessed code without worrying about

the original form, because at last we want the kernel executable file.

For application of this conversion tool on linux kernel, ANTLR gcc c grammar has

been changed. ANTLR gcc C grammar [15] was written before five years, and in this

time gcc [2] might have added some syntax. So, ANTLR grammar is changed to meet

this requirements. Currently this grammar is able to parse kernel preprocessed code.

Experiments have been done on linux kernel and result shows that after preprocessing,

kernel code became 10 to 15 times larger than the original code. So, application of

conversion tool on preprocessed kernel code was taking lots of time, and because of this

we couldn’t apply this ANTLR based tool on preprocessed kernel code. But part of the

tool which doesn’t use ANTLR has been applied on ipc part of linux kernel (msgutil.c)

to make it g++ compatible. All parts of this conversion tool can be used on small scale,

where software is not big as linux kernel after preprocessing.

As current status, we are able to compile msgutil.c by g++ and this file is linked with

some other gcc compiled kernel code, but it is not linked with entire remaining kernel.

For this, some linking command has to be changed in kernel [3] makefiles. This problem

occurs because kernel uses ld command for final linking, but we require final linking by

g++ as described in previous chapter.

26

#include<stdlib.h>

struct A {

int j ;

};

struct Outer {

int i;

struct A {

int j;

} cd;

};

enum class_changed { off , on };

enum class_changed bulb;

typedef struct A * AP;

static void test (int a)

{

bulb = (enum class_changed)(a);

}

int main () {

int i = 0;

int y = 10;

void * v;

goto label;

if (i<10) {

float y ; y = 0 ; float ft ; ft = 0;

char * a[10] ; a[0] = 0 ; a[1] = "ab" ; a[2] = "de";

a[3] = 0 ; a[4] = "cd" ; char d ; d = ’b’;

struct A ***ab , *ef ;

AP fk ;

struct A * cd ; cd = (struct A *)(malloc (sizeof (struct A)));

v = (void *)(&y) ;

fk = (struct A *)(malloc (sizeof(struct A)));

v = (void *)(((char *)v) + 5);

label : ef = (struct A *)(malloc (sizeof (struct A)));

**ab = (struct A *)(ef);

}

}

Figure 5.4: Sample code without g++ incompatibility problems
27

Chapter 6

Conclusion and Future Work

Problems which occur when linux kernel is compiled by g++ have been identified. Two

different approaches, complete conversion approach and iterative conversion approach,

were attempted to solve the incompatibility problems. The method for performing it-

erative conversion has been developed and explained in the report. It has also been

explained why iterative approach is chosen instead of complete conversion approach for

our conversion process.

In this stage, a conversion tool which automatically removes some of the incompatibil-

ity problems has been built. It has been discussed in the report why all parts of conversion

tool cannot be applied on linux kernel. Experiments have been done on linux kernel and

part of the ipc kernel code has been made g++ compatible.

The following table shows the work done in stage I and II, and it also shows work

which need to be done in stage III.

stage I Existing techniques for automatic object identification

from procedural code were studied, and improvements

on these techniques were proposed

stageII Conversion tool has been built which is useful for making

linux kernel g++ compatible

stage III Manually or by applying tool, methods proposed in stage I

need to be applied on part of linux kernel after making it

compatible through work done in stage II

Table 6.1: Work distribution on all stages

The future work involves doing the following things:

Tuning the tool for linux kernel: A tool which removes some of the g++ incompati-

bility from C code was attempted, but it is not fully built. There are some bugs in

28

the tool. So, we need to improve this tool to remove those bugs and add more func-

tionalities to the tool. Currently we are able to compile small portion of linux kernel

with g++ and this portion is linked with some other gcc compiled kernel code, but

it is not linked with entire remaining kernel. For this, some linking command has

to be changed in kernel makefiles. [3] This problem occurs only when C++ code

calls a C function, and not vice versa. The problem occurs because kernel uses ld

command for final linking, but we require final linking by g++.

Objectifying part of linux kernel: We need to improve the object identification tech-

niques proposed in stage I and apply these techniques on parts of linux kernel.

Currently we are considering ipc part of linux kernel for this purpose. We need

to build a tool which proposes candidate objects and relationships between them,

associates functions to classes and also gives coupling and cohesion metrics values

for each class. These values are useful in proposed object identification techniques.

Dynamic memory allocation for objects: When we are objectifying any portion of

procedural software, we have to do dynamic memory allocation for objects which

are created at runtime. In normal software this can be done using new. But kernel

doesn’t use any library functions like malloc, printf, so we cannot use c++ new

function directly. For memory allocation, kernel has its own kalloc function. So, for

dynamic creation of objects we need to build our own new function using kalloc.

29

References

[1] The Linux Kernel Archives. Website. http://www.kernel.org/.

[2] Using the GNU Compiler Collection. Website, 2003. http://www.delorie.com/

gnu/docs/gcc/gcc_55.html.

[3] Kernel Makefile Documentation. Website, February 4, 2003. http://lwn.net/

Articles/21835/.

[4] James M. Bieman and Byung-Kyoo Kang. Cohesion and reuse in an object-oriented

system. In SSR ’95: Proceedings of the 1995 Symposium on Software reusability,

pages 259–262, New York, NY, USA, 1995. ACM Press.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

IEEE Trans. Softw. Eng., 20(6):476–493, 1994.

[6] Stephen Clamage. Mixing C and C++ Code in the Same Program. Website, 1998.

http://developers.sun.com/prodtech/cc/articles/mixing.html.

[7] Jean-Francois Girard and Rainer Koschke. A comparison of abstract data types and

objects recovery techniques. Sci. Comput. Program., 36(2-3):149–181, 2000.

[8] Anil Gracias. Towards Re-engineering of Linux Kernel from Procedural to Object-

Oriented. Master’s thesis, Department of Computer Science, Indian Institute of

Technology Bombay, 2002.

[9] Maarit Harsu. Identifying object-oriented features from procedural software. Nordic

J. of Computing, 7(2):126–142, 2000.

[10] Ivar Jacobson and Fredrik Lindstrom. Reengineering of old systems to an object-

oriented architecture. In OOPSLA ’91: Conference proceedings on Object-oriented

programming systems, languages, and applications, pages 340–350, New York, NY,

USA, 1991. ACM Press.

[11] R. Krishnakumar. Compiling the Linux Kernel. Website, 1998. http://

linuxgazette.net/111/krishnakumar.html.

30

[12] Sying Syang Liu and Norman Wilde. Identifying objects in a conventional procedural

language: an example of data design recovery. In ICSM ’90: Proceedings of the IEEE

International Conference on Software Maintenance, pages 266–271, San Diego, CA,

USA, 1990. IEEE Computer Society.

[13] Terence Parr. Antlr Reference Manual. Website, 2005. http://www.antlr.org/

doc/index.html.

[14] Ashish Vanarse. Techniques for Re-engineering Procedural C code to Object Oriented

C++ Code. Master’s thesis, Department of Computer Science, Indian Institute of

Technology Bombay, 2005.

[15] Monty Zukowski and John D. Mitchell. Grammar for GNU C Compiler. Website,

April 28, 1998. http://www.antlr.org/grammar/cgram/grammars/.

31

