

Introduction to Assertions in
Programming

CS 152 Lecture

R. K. Joshi
IIT Bombay

How do we know our program is
correct?

We prove it on paper

What about the implementation?
can it carry part of the proof?

To work as Defense against errors

or to aid the development of the program?

A Simple Idea

Use Assertions

A condition which should hold true where it is
placed

assert (C)

Violation of Assertions

If the assertion expression evaluates to false, it's
an ERROR

- either in the algorithmic logic
-

- or in the implementation of an otherwise proved
algorithm

An Example
Insert (value: T)
 Before execution
 assert

1. count < capacity

 Code for insert

 After execution
 assert
 1. count = old count+1
 2. count <= capacity
 3. values[old count]=value

Assertions in Practice

Proof view
 Assertions serve as specifications
 (necessary and sufficient)

Contract view
 Needs to be enforced by following it as a contract
 A good design process (give and take)

Defensive programming view
 An assertion expresses programmer’s intentions
 Failure? – handle exception/abort
 A good debugging process

The C Assert Macro
[in C++, use #include<cassert>]

#include <assert.h>
....
void insert (int i) {
 assert (count < CAPACITY);

}
main () {
 ... insert (element); ...
}

Types of Assertions
Preconditions
 To be asserted before method execution begins

Postconditions
 To be asserted after method execution before
returning the result

Class Invariants
 To be asserted
 after every object creation
 after every method execution
 i.e. in observable states only, not
 necessarily during method execution

Assertions vs. Exceptions
Exceptions are meant more for runtime handling

of abnormalities
to provide fail-safe paths

when there are “recognized” abnormalities, or
even for unexpected states resulting out of

problems with the program

Assertions are often used to understand, to track
development, and they may be turned off during

runtime
or they could be taken care of by exception

handling paths

#include <iostream>

#include <cassert>
using namespace std;

int main () {

 int n;
 cin >> n;

 int a[n];

 for (int i=0;i<=n; i++) {
assert(i<n);
assert(i>-1);

a[i] =i;
 }
}

An Example
Program

The First Assertion Fails

#include <iostream>
#define NDEBUG // turns off assertions

#include <cassert>
using namespace std;

int main () {

 int n;
 cin >> n;

 int a[n];

 for (int i=0;i<=n; i++) {
assert(i<n);
assert(i>-1);

a[i] =i;
 }
}

If NDEBUG is defined,
the assertions are turned off
i.e. they are not included in the shipment

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

