
Interfaces, Inheritance, Visibilities

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay



Abstract Class, a generic Component: Behavior not
fully defined

class Component {
public:

virtual Pinset trigger (Pinset p)=0;
};



Properties of Abstract Classes

Cannot instantiate this class, since it is abstract (not fully
implemented)
Notice the virtual function which is defined to be nil (i.e. 0),
This makes it abstract!
They are allowed to contain implementations for use by
their subclasses
Two main ways to instantiate (but both are not permitted on
class Component):

Component c;
Component *cp = new Component()



Interfaces: Abstract classes, behavior not defined at all

An abstract class is an interface if it does not contain any
implementation
Cannot instantiate it, since it is abstract
All functions are declared virtual (in Java this is a default!)



Class Member Visibilities

Private
– Committed only Locally
Public
– Committed to External Classes
Protected
– Committed to Subclasses
Friend
– Committed to a Subset of External Classes



An abstract class

class Collection {
public:

virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

}

So for, the abstract class is working like an interface



A subclass

class Set : public Collection {
public:

virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

}

The interface remains the same, Set does not have
duplicates



Another subclass

class FIFOList : public Collection {
public:

virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

}

The interface remains the same, first in first out behavior



Yet another subclass

class LIFOList : public Collection {
public:

virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

}

The interface remains the same, first in last out behavior
Now, can we have some common implementation for all
subclasses
.. and push it into the abstract class for automatic use by
all?



Modified abstract class

class Collection {
int size;
public:

virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

}

So, what more can we add here?
And also, a private variable is not visible to subclasses
If you make it public, that will be a disaster for the
abstraction



Further Modified abstract class

class Collection {
protected:

int size;
public:

virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

}

So, what more can we add here?
And also, a private variable is not visible to subclasses
If you make it public, that will be a disaster for the
abstraction



A subclass of a subclass

class OrderedSet : public Set {
public:

virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

}

The interface remains the same
OrderedSet can be used where a Set can be used
(remember how ’main’ uses a generic variable!)
OrderedSet keeps its items in order defined on Items



But how do you define the order among the Items?

class Item {
public:

Item & operator < (Item & i) =0;
}

This is an abstract class
Users may define their items by inheriting from this class
The above is a bit difficult concept to understand, we shall
continue it in the next class..


