Interfaces, Inheritance, Visibilities

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay




Abstract Class, a generic Component: Behavior not

fully defined

class Component {
public:
virtual Pinset trigger (Pinset p)=0;




Properties of Abstract Classes

@ Cannot instantiate this class, since it is abstract (not fully
implemented)

@ Notice the virtual function which is defined to be nil (i.e. 0),
This makes it abstract!

@ They are allowed to contain implementations for use by
their subclasses

@ Two main ways to instantiate (but both are not permitted on
class Component):
e Component c;
e Component *cp = new Component()




Interfaces: Abstract classes, behavior not defined at all

@ An abstract class is an interface if it does not contain any
implementation

@ Cannot instantiate it, since it is abstract

@ All functions are declared virtual (in Java this is a default!)




Class Member Visibilities

@ Private
— Committed only Locally

@ Public
— Committed to External Classes

@ Protected
— Committed to Subclasses

@ Friend
— Committed to a Subset of External Classes




An abstract class

class Collection {

public:
virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

@ So for, the abstract class is working like an interface




A subclass

class Set : public Collection {
public:
virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

@ The interface remains the same, Set does not have
duplicates




Another subclass

class FIFOList : public Collection {
public:
virtual bool insert (Item i)=0;
virtual ltem fetch ()=0;

@ The interface remains the same, first in first out behavior




Yet another subclass

class LIFOList : public Collection {
public:
virtual bool insert (ltem i)=0;
virtual ltem fetch ()=0;

@ The interface remains the same, first in last out behavior

@ Now, can we have some common implementation for all
subclasses

@ .. and push it into the abstract class for automatic use by
all?



Modified abstract class

class Collection {

int size;

public:
virtual bool insert (Item i)=0;
virtual Item fetch ()=0;

@ So, what more can we add here?
@ And also, a private variable is not visible to subclasses

@ If you make it public, that will be a disaster for the
abstraction



Further Modified abstract class

class Collection {

protected:
int size;

public:
virtual bool insert (ltem i)=0;
virtual Item fetch ()=0;

@ So, what more can we add here?
@ And also, a private variable is not visible to subclasses

@ If you make it public, that will be a disaster for the
abstraction



A subclass of a subclass

class OrderedSet : public Set {
public:
virtual bool insert (Item i)=0;
virtual ltem fetch ()=0;

@ The interface remains the same

@ OrderedSet can be used where a Set can be used
(remember how 'main’ uses a generic variable!)

@ OrderedSet keeps its items in order defined on ltems




But how do you define the order among the Items?

class Item {
public:
ltem & operator < (ltem & i) =0;

}

@ This is an abstract class

@ Users may define their items by inheriting from this class

@ The above is a bit difficult concept to understand, we shall
continue it in the next class..




