CS 152 Abstractions and Programming

Paradigms
Lecture on Lambda Expressions

Rushikesh K Joshi

Department of Computer Science and Engineering
Indian Institute of Technology Bombay




The Lambda Calculus

@ Lambda calculus is a calculus with its core features of
function definition (abstraction) and function application
by variable substitution.

@ The untyped lambda calculus was invented by Church
years ago. The basic syntax is extremely tiny.

@ Anything that is computable can be expressed in lambda
calculus, and it is equivalent to "Turing Machine’ (you will
learn this in another course)

@ It’s interesting to see how one can explain the
computational structures that you see in programming
languages in terms of expressions in lambda calculus
(lambda expressions)



Example: Abstraction and Application

¢ Definition, i.e. Abstraction:
f(x)=x*x
e Application, compute it by substitution:
f3
=3"3
=9

But in the basic lambda calculus, we have only symbols and no
predefined numbers..Let’s see what this means..




Abstractions in Lambda Calculus

e A function with 1 argument:
AX. X
It takes one value as input argument, and it
returns the same value as its result

e Application and its reductuon sequence:
(Ax.X) m —m
On the left hand side we have the function
definition, which is applied to a value. This
application reduces to a value after
substitution.



Abstractions in Lambda Calculus

e A function with 2 arguments:
AXAY.XY

e It has an outer body with one argument, the
outer body returns a function, again a
function with one argument

e The inner function applies x to y, x has been
sourced in from the outer function

e All lambda abstraction accept only
argument. In the manner shown above, we
can define functions which accept two
arguments. This method is called Currying.



Abstractions in Lambda Calculus

e A function with 2 arguments:
AXA\Y.XY
e An application and its reduction sequence:

(AXAYy.Xx y)(AXx.x)p — (Ay.(Ax.x)y)p —
(Ay.y)p—p

e The substitution process is called Beta
Reduction

¢ If we cannot reduce an expression further,
we are said to have reached the normal
form, else we have a redex, a reducible

expression

We are Almost Done about the basic Lambda Calculus
(omitting some more details)



Where is the rest of the world?

i.e. Numbers, Arithmetic Expressions, Logical
Operators, Booleans Lists...?

All that can be build in terms of just what we
have done so far... Let's see how..




Church Numerals

The core concept behind Church’s solution is
this: A number n can be thought of as a function
that accepts another function f and applies f to
another argument z exactly as many times as
the value of number n. So,

CO0=A\fAz.z

Cl=XM.)\zfz

C2 =\ \z.f (f z)

C3 = M. \z.f (f (f 2))

C4 = \fAz.f (f(f (f2z))) and so on



Successor Function on a Numeral

successor = \mAf. z.f (mf z)

e How does it work?

e Function f is applied m times to z. To the
result, f is applied once more by the outer
application.




Adding Numerals

add = xmAn At zmf (nf z)

e How does it work?

e fis applied ntimes to z. To the result
produced, f is applied m times.

o Effectively, f is being applied (m + n) times to
Z

e That behavior is consistent with our
representation of natural number (m + n).




Multiplying Numerals

mult = \mAnAf.Az.m (nf) z.
e How does it work?

e nfis applied mtimes to z.

o If it is applied once, it will resultinn f z, i.e.
n applications of f to z.

e So overall, we obtain (m % n) successive
applications of f to initial value z, which
represents natural number (m = n).




Church Booleans

frue = AxX.\y.x

false = \x.\y.y




If Then Else

ifThenElse = \l.Am.\n.I m n.




Logical Operators

and = \by.\b2.b1 b2 false
or = Aby.\b2.b1 true b2
isfalse = M\b.b false true
istrue = \b.b true false

not = isfalse

xor = A\by.Abo.b1(not b2)b2




Logical Operators

Verify these by evaluating the following
applications:

e and true true
e and false true
e Or true true
e or false true

e Xor true true




The Pair Abstraction

(pair u v) constructs a pair

(first pair u v) should return the first element in
this pair, which is u.

(second pair u v) should return the second
element in this pair, which u.




Solution to the Pair Abstraction

pair = AX.Ay.Af.f x y.
first = A\p.p true.

second = \p.p false.

Now try the following exercises:
(1) first pair u v (2) second pair (pair u v) (pair X y)



