

Logic Programming: A Declarative
Paradigm

Rushikesh K Joshi
IIT Bombay

The Declarative Style

Formula Substitution

 we declare multiple formulae

 and then when a problem is given, the solving

 engine can find substitutions

The Functional Declarative Style

We have seen how declarative style programs
can be written in the functional style

Functions define input-output relationship,
mapping the inputs to an output

The style needs the capability of lazy evaluation
(lazy expansion on need basis)

The Logic Declarative Style

We view the formulae not as functions with input
output relationship, but as symbolic axioms

They can be used to automatically derive
solutions for an unknown problem

Length

length (nillist) = 0

length (l) = 1 + length (tail(l))

Member

member (e,nillist) = false

member (e, head(l)==e) = true

member (e, l) =
 member (e, tail(l))

Push back

pushback(nillist,e) = cons(e,nillist)

 pushback(l,e) = cons
(head(l),pushback(tail(l),e))

Append

append(l,nillist) = l

append (l1,l2) =
 append(push_back(l1,head(l2)),

tail(l2))

Map

map (f,nillist)=nillist

map (f,l) = cons (f(head(l),
 map (f,tail(l)))

Reversed Map

Map f to l in reverse order

rmap (f, l) = ??
f can be any single argument function

such as print, square, isprime etc

(a, (b , (v , (d , e))))

Binary Tree

Tree = (value, (left, right))
left = nillist | Tree
right = nillist | Tree

dftmap (f, tree) = ??
bftmap (f,tree) = ??

Execution of Programs written in
Declarative Style

Compare it with formula substitution

We have a set of formulae

And a problem to be solved

We solve the problem by picking up a formula,
substitute it for a pattern in the problem, and
continue this till we reduce the problem to a

solution

Imperative vs Declarative

Declarative Programming focus on simply
declaring.

Imperative Program works out a solution using
control constructs and variables

Logic Programming
The Horn Clause Logic

S (A,B,..) :- u (A,..) /\ v (A,B,..) /\
w (B,..) /\

Example

Membership
in Prolog

member(P,[P|[]]).
member(P,[P|L]).

member(P,[Q|L]):-member(P,L).

Lists in Prolog
use square brackets to indicate a Head and a Tail

[H | T]

H is a head element
T is the tail

[A | B]
A is the head element

B is the tail

Example

Example

Nil list in Prolog

[]

A list with 1 element

[A | []]

A Declarative Fact

member (P, [P | []]).
P is a member in a list which has P in its head,

with tail as nillist

A Declarative Fact

Member (P, [P | L]).
P is a member in a list which has P in its head

The Recursive Declarative Fact

member(P, [Q | L]) :-
member (P, L).

Compare the LP style with
Declarative Style in Functional

Programming

member(P,[P|[]]).
member(P,[P|L]).
member(P,[Q|L]):-member(P,L).

member (e,nillist) = false
member (e, head(l)==e) = true
member (e, l) = member (e, tail(l))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

