

Ideas in the Structured Programming
Paradigm and Some Implementation

Aspects related to it

A CS 152 Lecture

PROF. R. K. JOSHI

Dept of Computer Science and Engineering

Indian Institute of Technology Bombay

What’s Structured
Programming?

● Modular Structural Decomposition in a top-down fashion

● Different concerns of the program are implemented as
different subsections/modules which are structured in a top
down fashion.

● Fixed style, clarity, productivity, ease of testing &
maintenance and ease of redesign

● At the heart of structured programming is the idea of using
only Single entry and single exit blocks

Top Down Decomposition
● Design a program as a top-down hierarchy of modules.

● This hierarchy is developed according to various design
rules and guidelines

● The modules are evaluated as per the quality acceptance
criteria to ensure the best modular design for the program.

● The modules are implemented using structured
programming principles.

Modular Design Modular Packaging

● Modular design
– Group of executable instructions with a single

point of entry and a single point of exit.

● Packaging
– Assembly of data, processes, interfaces and

machines

Dijkstra’s contributions to structured
Programming

Single entry single exit blocks

Goodbye to GOTO?

Single Entry Single Exit Structures

 A primitive statement
 S

 Sequence of statements
 S1;S2;S3;….

 If-then-else (Conditional)
 if C then S1 else S2

 Conditional Repetition
 while C do S

 Case statement
 Top down Function calls

Flow Graph Representations

S

A Primitive Statement : S

exit

entry

A Conditional Statement : if C then S1 else S2

T

S1

S2

C

exit

entry

F

T

S

C

A Conditional while-do

exit

entry

T

F

S

Repetition do while

exit

entry

F

while c do s do s while c

C

F

T

S

exit

entry

C

Repeat S until C

Flow graph of
`For` Statement of C For (Ci; Ct; Cst) S;

Ci: initialization

Ct: Termination condition

Cst: Step

S: Statement to be

repeated

F

Cst

Ci

exit

entry

Ct

S

T

Do case I

Case 1 Case 2 Case n

Do case I

 case 1

 case 2

 case n

e f

A C B

F T F T

 Non Structured Structured Equivalent

e f

A C C B

F T F T

“Goto considered harmful”

 Goto produces unstructured programs

 Multiple entries into code & multiple exits are possible

 Programs become difficult to understand & debug.

 Very low level programs use goto (machine

language), but goto is undesirable for high level

programming.

An example with GOTO
main () {

int marks=20;

if (marks > 80) goto label1;

if (marks > 60) goto label2;

if (marks > 40) goto label3;

printtf(“F”); goto Last;

 label1: printf(“A”); goto Last;

label2: printf(“B”); goto Last;

label3: printf(“C”); goto Last;

Last: printf (“\n”);

}

Removing the GOTO statements
main () {

int marks=20;

if (marks > 80) printf (“A”);

else if (marks > 60) printf (“B”);

else if (marks > 40) printf (“C”);

 else printf (“F”);

printf (“\n”);

}

Often found to be convenient.

Used where single exit forms may become
cumbersome.

Exceptions

Return from a function.

Labeled breaks & continue.

Multiple Exit Forms in Modern Programming

Exceptions

T C::function f (any s …) {

if (..undefined..)

•throw MyException();

...... member function logic....;

return a value of type T;

}

The above member function uses exceptions at
entry level to detect violation of a precondition.

The caller needs to handle an exception that is
thrown by the call.

Multiple Returns

headnode (List l) {

if (l== null)

return (null);

else

return (l head)

}

The above function uses the return statement twice.
Thus you have 2 exit statements to return from the
function.

 it’s single exit code form is given below.

headnode (list l) {

item * h;

if (l== null)

h=null;

else h= l head;

return (h)

}

But the multiple return form avoids temporary
variables, and it is also perceived to be
convenient and readable.

Some other modern Multiple Exit forms

● Unconditional Break
– Break into outer loop

● Unconditional Continue
– Continue with next iteration of the current loop

● Labeled Break
– Break the outer enclosing loop

● Labeled Continue
– Continue the next iteration of the outer loop

Break and Labeled Break
● Break - exits from a block

– e.g. Exit from switch, for, while, do blocks

– example: for (...) { ...; ... break;}

– Unlabled break terminates the innermost block
statement

● To break out of an outer statement, use labeled
break

 alabel : ...

 for (i=....) {

 for (j = ...) { break alabel;} }

● break is not the same as GOTO statement!

Continue and Labeled Continue
Continue : Skips to the end of current loop's body (while/do/for)

loop termination is evaluated
loop may continue with next iteration

for (...) { if (..) continue; ...}

Labeled Continue: Skips the current iteration of outer loop

alabel : for (i=....)
for (j=....) {.... ; continue alabel;}

Unlabeled Breaks

public class unlabeled_break {

public static void main(String[] args) {
int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076, 2000, 8, 622, 127 };
int searchfor = 12;
int i ;
boolean foundIt = false;

for (i = 0 ; i < arrayOfInts.length; i++) {
if (arrayOfInts[i] == searchfor) {

foundIt = true; break;
}

 }

 if (foundIt)

System.out.println("Found " + searchfor + " at index " + i);
 else System.out.println(searchfor + "not in the array");

}
}

Labeled Continue

public class labeled_continue {

public static void main(String[] args) {
String s = "search substring with or within this";
boolean found = false;
String sub = "within";
int len1=s.length();
int len2=sub.length();
int max= len1 - len2;
int i=0,j=0,k=0,pos=0;

outer:
for (i=0; i<=max; i++) {

j=i;
for (k=0;k<len2;k++,j++) {

if (s.charAt(j)!=sub.charAt(k)) continue outer;
}
found = true;
pos=j-len2;
break outer;

}

if (found) {

System.out.println("original string:" + s);

System.out.print("substring found at position:" + pos + ":");

for (i=pos;i<j; i++) System.out.print(s.charAt(i));

System.out.println("");

 }

 }

}

Some Modularity Units in
paradigms: discover them by
looking into visibility rules!

● Procedural/Imperative
– Structures, procedures, files, functions

● Functional
– Functions, higher order functions, modules

● OO
– Objects, classes, packages, namespaces, files

● Declarative
– Facts, rules, modules, files

Principles of Modular Software Construction

 A primary concept in modular programming is the interface of a
component---the manner in which the component interacts with its
users.

 The most common kind of interface in software construction is the
procedure call. Execution of a procedure call supplies a module with a
set of input values and requests that the module use the values in
constructing result values made available to the caller.

To attain the full benefits of modular

programming the support

provided by the computer system in

support of the component

interface should meet the following

requirements:

Information Hiding Principle

Information Hiding

Context Independence

The user of a module must not need to know
anything about the internal mechanism of the
module to make effective use of it.

Invariant Behavior Principle

 The functional behavior of a module must be
independent of the site or context from which
it is invoked.

--> Reusability out of Context

Data Generality Principle
 The interface to a module must be capable of

passing any data object an application may
require.

 Data abstractions

Secure Arguments Principle

 The interface to a module must not allow
side-effects on arguments supplied to the
interface.

The “Pure Function” like paradigm, but at
module level--

Recursive Construction Principle

 A program constructed from modules must be
useable as a component in building larger
programs or modules.

 Use a compiler to build a language, and use
the language to build another possibly better
compiler !

System Resource Management Principle

 Storage management for data objects must be
performed by the computer system and not by
individual program modules.

Separate Concerns! Don't “fiddle” with things
for which 'you' are not responsible..

Module Coupling
● Content coupling

– Dependent on internals of another

● Common coupling
– Shring via globals

● Stamp coupling
– Partial sharing of composite data

● Data coupling
– Data shared through in/out parameters

● Message coupling
– Communication via message passing

● Subclass upward coupling

● Superclass downward coupling

● Synchronization coupling

Module Strength (Cohesiveness)
● Coincidental strength

– Coincidental togetherness

● Logical strength
– Similar things at one place (e.g. all outputs)

● Classical strength
– All operations are related in time sequence (e.g. initialization seq,)

● Procedural strength
– Operations performed make up/contribute to a procedure

● Communicational strength
– Member functions communicate through shared state variables

● Informational strength
– Many functionally cohesive modules are together since they operate on common DB

● Functional strength
– All functions in a module contribute to a single functionality

Advantages of Modular programming

● Easy to change
– Open to change the internals, rewiring of components

● Easy to write and debug
– Separate development of modules

● Easy to manage
– Different people may handle different independent or loosely coupled modules

after agreeing with the interfaces

● Top down
– Architecture and Design first, i.e. “Model Driven Development”

– There is also a paradigm called “Test Driven Development”

● Reliable
– Tested components, reliable interfaces, keep using!

Disadvantages of Modular programming

● Time constrains
– Forward method takes time since design has to be ready before

implementation

● More care needed
– Any mistake upstream is costly

● Reluctant programmers
– Programmers want quick results (but they may spend more time

in debugging!)

● More memory required
– For good planning through separation of cocerns

A Word on
Decomposition

shape.h shape.cpp

Fltk libs
iostream

 lib

Appclasses.h Appclasses.cpp

main.cpp

fltk.h
includes

Iostream,
string

includes

main.o

Appclasses.o

shape.o

Link all Reds
To get the Final

Executable

A
Makefile
specifies
the above
diagram

target: dependent1 dependent2

 Command to generate or achieve the target

dependent1: dependent3 dependent 4

 Command to generate dependent1

... and so on for all dependents

● If a dependent is not specified as a target, it should be available
directly in the folder as a file

● If any dependent has a timestamp later than a target, the target has
to be made again

● The command-line program `make' finds it out and executes the
commands specified to make the targets which should be redone

A Makefile

myapp: main.o appclasses.o shapelib.o

 g++ -o myapp main.o appclasses.o shapelib.o -I/usr/local/include
-I/usr/include/freetype2 -D_LARGEFILE_SOURCE
-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -D_THREAD_SAFE
-D_REENTRANT /usr/local/lib/libfltk.a -lXext -lXft -lfontconfig -lXinerama
-lpthread -ldl -lm -lX11

main.o: main.cpp main.h

 g++ -c main.cpp

appclasses.o: appclasses.cpp appclasses.h

 g++ -c appclasses.cpp

shapelib.o: shapelib.cpp shapelib.h

 g++ -c shapelib.cpp

clean:

 rm main.o appclasses.o shapelib.o

	Structured Programming and Some Implementation Aspects
	What’s Structured Programming?
	Top Down Decomposition
	Modular Design Modular Packaging
	Dijkstra’s contributions to structured Programming
	Single Entry Single Exit Structures
	Flow Graph Representations
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	“Goto considered harmful”
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Some other modern Multiple Exit forms
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Language paradigms
	Principles of Modular Software Construction
	Slide 29
	Information Hiding Principle
	Invariant Behavior Principle
	Data Generality Principle
	Secure Arguments Principle
	Recursive Construction Principle
	System Resource Management Principle
	Module Coupling
	Module Strength
	Advantages of Modular programming
	Disadvantages of Modular programming
	Slide 40
	Slide 41
	Slide 42

