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Abstract. Activity recognition consists of two fundamental tasks:
tracking the features/objects of interest, and recognizing the activities.
In this paper, we show that these two tasks can be integrated within the
framework of a dynamical feedback system. In our proposed method,
the recognized activity is continuously adapted based on the output of
the tracking algorithm, which in turn is driven by the identity of the
recognized activity. A non-linear, non-stationary stochastic dynamical
model on the “shape” of the objects participating in the activities is
used to represent their motion, and forms the basis of the tracking al-
gorithm. The tracked observations are used to recognize the activities
by comparing against a prior database. Measures designed to evaluate
the performance of the tracking algorithm serve as a feedback signal.
The method is able to automatically detect changes and switch between
activities happening one after another, which is akin to segmenting a
long sequence into homogeneous parts. The entire process of tracking,
recognition, change detection and model switching happens recursively
as new video frames become available. We demonstrate the effectiveness
of the method on real-life video and analyze its performance based on
such metrics as detection delay and false alarm.

1 Introduction

The problem of event analysis from video consists of the related issues of recog-
nizing different activities and keeping track of the objects participating in the
activities. In many practical applications, all we have is a video sequence con-
sisting of a number of activities, and we have to track, as well as recognize, the
various events taking place in the video. Often we have time critical applications
where the option of first completing the tracking and then recognizing is not
available. Thus it is important to design methods that can simultaneously track
and recognize a sequence of human activities from a video sequence.

In this paper, we present a novel framework for integrated tracking and recog-
nition of human activities consisting of the following steps which take place in
a loop: (i) modeling the appearance and motion of single activity sequences and
tracking them, (ii) detecting a change from one sequence to the next, and (iii)
classifying which is the next activity to change to and start tracking it. This
is achieved in a recursive manner as new video frames become available. Hu-
man activities are represented by non-linear, non-stationary dynamical models,
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learned from training data. These models represent the change in the shape of
the human body in the course of the activity. Given a video sequence, the model
parameters are used for recognition, with the recognized parameters then driv-
ing the tracking algorithm. The method is able to automatically detect changes
from one activity to another and switch accordingly. Switching between models
occurs when the tracking error [I], which serves as a feedback signal, exceeds
a certain threshold. Thus our proposed system is able to persistently track and
recognize a sequence of multiple activities. A diagrammatic representation of this
framework is shown in Fig. [[l We present experimental results on real life video
of different activities and analyze the issues of recognition delay and tracking
accuracy.
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Fig.1. (a): Framework of dynamical feedback system for simultaneous tracking
and recognition. (b): Recognition module incorporating change detection and model
switching.

1.1 Relation to Previous Work

A review of recent work is given in [7]. Based on the conclusions of [7], we
find that most existing methods handle events of short duration with moderate
changes in illumination, scene clutter and occlusion. In most video surveillance
methods, the tracks are obtained first followed by recognition [TOJ5JIR]. Inte-
grated tracking and recognition is very promising becasue of its ability to track
and recognize activities in a long video seuqnece, where switching between dif-
ferent activities will usually occur.

A few techniques have studied the problem of simultaneous tracking and recog-
nition, though not always in the context of activity recognition. In [20/21], the
authors presented methods whereby the identity of a person, based on face recog-
nition, is obtained after tracking the face over the whole sequence. However,
the identity of a face in a video sequence is a static parameter which can be
estimated by integrating over the entire sequence, whereas activities are inher-
ently dynamic and hence the recognition needs to evolve in time. In [I5/T3], the
idea of integrated tracking and recognition of activities was proposed. However,
their method requires a-priori knowledge of the transition probability matrix
for switching between different activity models. While this is feasible in some
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applications, designing such a transition matrix for uncontrolled environments
like video surveillance may be difficult (since the class of possible activities is
large and can change arbitrarily from one to another) and the process has to
repeat for each application scenario. In contrast to this open-loop approach, we
propose to use change detection measures to detect slow or sudden transitions
between activities, and use these as a feedback signal in a closed-loop system.

Simultaneous tracking and recognition was also the theme in [6], but here the
authors used color and depth information to create a “plan-view” map based on
which tracking is done, and activity recognition was carried out using pose esti-
mates; they did not consider the dynamics inherent in any activity. Simultaneous
tracking of moving people and recognition of their activities has been performed
in many applications using a Dynamic Bayesian Network (DBN) model tracked
by a Rao-Blackwellized particle filter [ITI812]. In [2], the authors perform figure
tracking by defining a DBN to switch between various linear dynamical systems
(also called Switched Linear Dynamical System (SLDS)). However, these meth-
ods also require knowledge of a state transition pdf for a seqeuence of changes,
which implies learning what sequences are likely to occur. Key-frame segmenta-
tion methods [19] can achieve some of the goals of this research (i.e., find the
switching instances), but they usually require the entire video to be available
a-priori rather than simultaneously tracking, recognizing and detecting changes.

We use a discrete shape representation of the human body which is different
from level set representations of shapes such as those described in [T4J9IT2]. The
level set approach is theoretically infinite (and in practice large time varying
finite) dimensional, and hence defining dynamics on and sampling from such a
large dimensional space is computationally expensive. This is overcome through
the use of various approximate tracking solutions. Level sets, however, have the
advantage that they can adjust to large changes in the shape and topology,
which is usually problematic for discrete representations. For large changes in
shape, we show that it is possible to overcome this problem for many activity
recognition applications by using a piecewise stationary dynamical model. We
do not encounter topology changes in our application. Moreover, a discrete rep-
resentation allows adoption of the overall framework to different descriptions of
human body structure, like stick figures, cylindrical models, etc.

2 State Space Model for Shape Dynamics

We model the motion/deformation of a deforming shape as scaled Euclidean
motion of a “mean shape” (i.e., translation, rotation, isotropic scaling) plus its
non-rigid deformation. The term “shape activity” is used to denote a particular
stochastic model for shape deformation. We define a “stationary shape activity”
(SSA) as one for which the mean shape remains constant with time and the
deformation model is stationary. We define a piecewise stationary shape activity
(PSSA) model [I7] as one that models a shape activity with slowly varying
“mean shape” (approximated as piecewise constant). The SSA model is accurate
for activities where the shape of the body does not change significantly in the
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course of the activity. The PSSA model deals with the case where the shape
changes appreciably in the course of the activity. This allows us to handle large
shape deformation using a discrete shape descriptor.

2.1 Shape Representation

We briefly review Kendall’s statistical shape theory, details of which can be found
in []. We use a discrete representation of shape for a group of k landmarks.
The configuration is the set of landmarks: in the 2D case it is the x and
y coordinates of the landmarks which can be represented as a k dimensional
complex vector, Y,q.. This raw configuration can be normalized for translation
and then for scale to yield the pre-shape, denoted by w. A configuration of
k points after translation normalization, denoted by Y, lies in Ck¥=! (a (k-1)-
dimensional complex space), while the pre-shape, w, lies on a hyper-sphere in
C*=1. A pre-shape w; can be aligned with another pre-shape wg by finding the
rotation angle for the best fit (minimum mean square error fit) and this gives the
Procrustes fit of w; onto wg. This is the shape of w; with respect to wg. The
Procrustes distance between preshapes w; and wy is the Euclidean distance
between the Procrustes fit of wy onto wg. The Procrustes mean of a set of
preshapes {w;} is the minimizer of the sum of squares of Procrustes distances
from each w; to an unknown unit size mean configuration u. Any pre-shape of
the set can then be aligned with respect to this Procrustes mean to return the
shape (denoted by z) with respect to the mean shape, p.

The shape space, M, is a manifold in C*~' and hence its actual dimension is
C*=2. Thus the tangent plane at any point of the shape space is a C¥~2 dimen-
sional hyperplane in C*. The tangent coordinate (denoted by v) with respect to
i, of a configuration, Y;.4.,, is evaluated as follows:

Y = CVyqw, where C 21, — 1,17 /k

sSs(Y)=|lY]l, w=Y/s,

02 0(Y, 1) = —arg(wp),  2(Y,n) = we’’, (1)
A T T Yejg

v=oYop) =l — e = [Te — '] (2)

s is the scale of the centered configuration and 6 is the rotation of the scaled
configuration with respect to the mean shape.
The inverse mapping of (2] (tangent space to centered configuration space)
is:
2(v,p) = (1= v*0) Pp+o, (3)
Y (v,0,5,p1) = zse % = [(1 —v*0)/ 2+ v]se 7.

2.2 System Model

The observed configuration of landmarks, in a single frame at time ¢, after trans-
lation normalization, is defined by Y;, and forms the observation vector. Let p
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(a) Stationary Shape Sequence (SSS) (b) Piecewise Stationary Shape Sequence (PSSS)

Fig. 2. Stationary and ” Piecewise-Stationary” Shape Sequences on the shape manifold
which is depicted using a circle (M), instead of a complex C¥~* sphere. In (a), we show
a stationary sequence of shapes; at all times the shapes are close to the mean shape and
hence the dynamics can be approximated in 7, (tangent space at u). In (b), we show
a piecewise-stationary sequence of shapes; the shapes move on the shape manifold.

denote mean shape associated with this frame. Denote the tangent space at p
by T,.,. Since the tangent plane is a (k — 2)-dim hyperplane in C*, a tangent
vector has only (k — 2) independent (complex) coefficients. We perform an SVD
(Singular Value Decomposition) of the tangent projection matrix, [Ix — pul]C
(from (), to obtain a (k — 2)-dim orthogonal basis for T),,. The basis vectors
of the SVD, {utyi}f:_lz, are arranged as column vectors of a matrix, Us(p), i.e.,
U > k=2 — [ty 1, Uy 9.y o). The vector of coefficients ((k — 2)-dim) along
these basis directions, ¢;(z¢, i), is thus a canonical representation of the tan-
gent coordinate of z; in T},,. The tangent coordinate is given by vy (2¢, 1) = Uycs.
The coefficients vector of the tangent coordinate of shape with respect to the
current mean shape, ¢, and the motion parameters (scale s;, rotation ;) form
the state vector, i.e., X; = [ct, St, 0¢].

For a stationary shape activity, the “mean shape” is constant with time, i.e.,
ut = o, and the shape sequence is clustered around the “mean shape” (see
figure 2(a)). Hence the shape deformation dynamics can be defined in a single
tangent space at the mean (which can be learnt as the Procrustes mean of
the training data). The dynamics on ¢; is defined by the autoregression model,
Ct = ACCt,1 + ng.

PSSA Model for Shape Deformation. When the shape is not stationary
but is slowly varying, one could model the “mean shape” as being piecewise
constant [I7]. Thus unlike SSA, the dynamics can be described in a single tan-
gent space. Let the “mean shape” change times be t,,,%,,,%,,, ... and the corre-
sponding means be p1, p2, 43, .... Then we have the following dynamics: between
tyyoy <t <y, e = pj—1 and so c;1(2e—1, p¢) = ct—1(2¢—1, pj—1). Hence in
this interval, the dynamics is similar to that for an SSA, i.e.,
ce(ze, j—1) = Acjo1ce—1(ze—1, j—1) +ne, ne ~ N(0, Xe )
ve = U(pj-1)ce,

2= (1 —vfv)?pj 1+ v (from (B)) (4)
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At the change time instant, t =¢,,

= p; and so the tangent coefficient ¢;—;

needs to be recalculated in the new tangent space with respect to p; = p;. This
is achieved as follows[I17]:
cro1(zim1, 1) = Ulp) *2pg €70F1-1)
Ct(zhﬂj—l) = Ac,th—l(Zt—huj—ﬁ + ny,
vy = U(pj—1)ee,
2= (1= vfv) P + o (5)

Global Motion Dynamics. We use the same global motion model as in [I§]
to represent the Euclidean motion of the mean shape. We use a Gauss-Markov
model for log-scale, log s¢, and a Markov uniform model for 6;, i.e.,

log sy = aslogsi—1 + (1 — aus ) s + N
nst ~ N(0, a?)
ngt ~ Unif(—a,a) (6)

log so ~ N (ts,02),
0 = apbi—1 + ng 4,

Training. Given a training sequence of centered (translation normalized) con-
figurations, {Y;}1_,, for a particular activity, we first evaluate {c¢, vy, s¢, 0¢ }
for each stationary sub-model (i.e., t,, , <t <t, ) as follows ] :

pj—1 = Procrustes mean of Yy, ¢, , <t <t
se = ||Yill, wi=Yi/s1,
0:(Ys, ppj—1) = —angle(w] 1),
0 (Ye, prj—1) = [Ir — ze—-12{_1]21,
cr(Ye, pj-1) = Un(zi-1) " 2. (7)

2e(Ye, pj—1) = wyed’,

If we assume a time invariant Markov model on ¢;, we can use {¢;}1_; to learn
its parameters [18].

2.3 Observation Model

In practice, the landmarks are not easy to extract directly from a given image,
while an edge image is convenient to obtain by edge detection algorithms (e.g.
Canny detector). Our observation is the edge image, Gy = T'(I;), (where 7" de-
notes the edge extraction operator) and I; is the image at ¢. The observation like-
lihood describes the probability of a set of landmark points, I}, on the edge image
with Iy C Gy, given the predicted state vector, X;. Let Y, = h(X;) = size 79
be the predicted configuration of landmarks. It is assumed that a mapping, f, is
known that associates each predicted landmark of Y, with a point on the edges.
1 Note, the last equation o = UL zt, holds because c¢; = U v, =
Hj— 1MJ 1]Zt = [I Hj— 1,u] 1]CZt = UtTUtUtTZt = UtTZt~

UT[I -
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In practice this mapping is set up by searching for the closest edge along the nor-
mal of the predicted configuration (as in [§]) and this is treated as the observed
landmark, I';. Thus the observation likelihood is

K
POIXD) x eap(= Y, = o, Gl ®
k=1

where K is the shape vector dimension, 7, is the variance of the k** component,
q is the kth predicted landmark, i.e., ¢ = Y and f(qx, Gt) = I} is the nearest
edge point of g along its norm direction.

3 Tracking, Change Point Detection and Recognition

3.1 Tracking Using Particle Filters

In this paper, we use a particle filter for “tracking”, i.e., for obtaining observa-
tions on the fly by tracing along the normals of the predicted configuration, Y,
to search for the closest edge (as described in Section [Z3]). The particle filter
is a sequential Monte Carlo method (sequential importance sampling plus re-
sampling) which provides at each ¢, an N sample Monte Carlo approximation
to the prediction distribution, 7y, (dxr) = Pr(X; € dz|Y1.4—1), which is used
to search for new observed landmarks. These are then used to update m;_; to
get the filtering (posterior) distribution, m,(dz) = Pr(X; € dz|Y1.;). We use a
particle filter because the observation model is nonlinear and the posterior can
temporarily become multi-model when there are false edges due to background
clutter.

3.2 Change Point Detection

Activities will change in the course of a long video sequence. The activity changes
will cause the PF, with a large enough number of particles, and tuned to the
dynamical model of a particular activity, to lose track when the activity changes.
This is because under the existing activity model with which the particle filter
operates, the new observations would appear to have very large observation
noise. Thus the tracking error will increase when the activity changes and this
can be used to detect the change times. The tracking error or prediction error
is the distance between the current observation and its prediction based on past
observations. When observation is an edge image, T'F is calculated by

K

TE = llax — f(ar, Go)lI*.

k=1

For the case when the switch from one activity to another is a slow one, the
PF dose not lose track very quickly (the tracking error increases slowly). The
tracking error will take long to detect the change, and then we use the Fz-
pected (negative) Log Likelihood (ELL), i.e., ELL = E[—logp(v;)] [16]. ELL is
approximated by
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]_ N T .
BLLN = 3 o 2 4 K,
=1

where K 2 — log \/(27r)2k—4|2’v|,

and N is the number of particles, X, is the covariance matrix of v.

3.3 Model Switching to a New Activity

Once the change time detection has happened successfully, the next problem is
to determine the correct activity from the class of previously learned activity
models. This is known as the problem of model switching. This is done by pro-
jecting the observed shape in a frame onto the mean shape for each of the learned
activities and choosing the one with the largest projection. In practice, this is
done for a few frames before a final decision is made, since individual frames
of different activities may be similar. In order to initialize the shape after a
model-switch, we use motion segmentation to isolate the person and re-estimate
the scale and translation parameters (note that background information is not
required). The autoregression matrix, A, is extremely sensitive to the training
data, and is not used in the recognition experiments.

3.4 Simultaneous Tracking, Change Detection and Recognition
(Simul-TraCR) Algorithm

We now outline the main steps of the simultaneous tracking and recognition
algorithm, incorporating change detection and model switching. For simplicity,
let us assume that there are two activities in the sequence, A; and As. For
the first frame in A;, the region of interest (a person or a group of people) is
detected based on the application requirements (not part of this paper) and the
corresponding model for the activity is determined as in Section [3:3l After this
initialization, the algorithm now proceeds as follows.

Track. Based on the detected region and the chosen dynamical model, the
particle filter is used to track the activity. Measures for determining the accuracy
of the tracking algorithm (TE and ELL) are computed for each frame.

Change Detection. When the fidelity measures exceed a certain threshold
(details in Section [£1]) for a few consecutive frames, a change is detected.

Model Switching. Once the change is detected, the new shape vector is
obtained from the edge map of image frame and a search is initiated for the
correct activity model. Given an observed image Iy, we label this frame as the
activity that minimizes ||} — se?®u,, + (a + 7b)||2,m = 1,..., M, where s, 6 and
a + jb are the scale, rotation and translation parameters respectively, M is the
number of all candidate activities, and I} is obtained from I; as explained in
Section If the distance is above a certain threshold for all m, we decide that
the activity is not within the learned database and this is also indicated. Once
the correct activity model is identified, we use this and go back to Track.
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Note that change detection and switching may be between different portions
of the same activity, specifically, for those activities in which a non-stationary
dynamical model is needed.

4 Experimental Results

4.1 Indoor Activity Sequence

We now show examples of our Simul-TraCR algorithm on 10 different activities
captured in video. The training and testing sequences were captured separately
on different days. The binarized silhouette denoting the contour of the person
in every frame of the training sequence is obtained using background subtrac-
tion. We extracted the shape from this binary image by uniformly sampling on
the edge of the silhouette. Once the landmarks are obtained, the shape is ex-
tracted using the procedure described in Section 2l Using the training data,
the parameters of the dynamical models for each activity were learnt using these
shape sequences and as explained in Section In the testing sequence, the
silhouette is pre-computed only in the first frame if the background information
is available; otherwise we use motion segmentation over a few initial frames to
obtain the siluhouette. Thereafter it is obtained as the output of the tracking
algorithm, as explained above. The database we collected consists of 10 ac-
tivities (whose composition make up a number of normal everyday activities),
bending across, walking towards camera and bending down, leaning forward and
backward, leaning sideward, looking around, turning head, turning upper body,
squatting, bending with hands outstretched, and walking. We will refer to the
ngp activity as Actn.

Figure [3 shows the tracking results of several activities, along with the edge
image observations for each of them. Activiies 1 and 2 are tracked with PSSA
model composed of three and two “stationary” sub-models respectively. Activi-
ties 3-10 are tracked with the “stationary shape activity” model.

Figure d shows a plot of the tracking error of a multi-activity sequence which
includes one slow change and some sudden changes. The order of activities
is Act3, Act4, Act8, Act9 and Act7. From Act3 to Act4 the change happens
slowly, other changes happen suddenly. There is a delay involved in detecting
this change, which should not be confused with the one mentioned above for
switching to the correct model. The total delay is the sum of the delays due to
change detection and model switching. There is a long delay in the case of slowly
changing activities, because the tracking error increases slowly, while for other
changes, the delays for change detection are very short.

4.2 Experiments with Outdoor Data

The sequence on which we show our results consists of activities of two people:
Person 1 walking with a package in hand and doing this multiple times, and
Person 2 first walking towards the camera, and then walking parallel to the
camera. There are three activities in this case: walking towards camera, walking
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(e) Act8

Fig. 3. Tracking results on video data. On the right is the edge image which is used as
the observation.
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Fig. 4. Tracking error of multi-activity sequence which includes slow and sudden
change. The order of activities is Act3, Act4, Act8, Act9 and Act7. From Act3 to
Act4, the change happens slowly, other changes happen suddenly. The tracking error
increases when an activity transition happens. Once the model switch occurs and the
new model is able to track properly, the tracking error goes down.

parallel to camera, walking with small package in hand. The tracking results,
along with the recognized activity, is shown in Figure[Bl The recognition results
for each frame for the two different people are shown in Fig.
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Fig. 5. Tracking and recognition results on an outdoor sequence
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Fig. 6. Similarity Matrices, shown for the activities of of Person 1 in Figure Bl(a), and
Person 2 in Figure [l(b)-(c), respectively. The thick yellow line represents recognized
activity for each frame.

5 Conclusion and Future Work

In this paper, we proposed a novel dynamical feedback system for simultaneous
and persistent tracking, recognition and segmentation of human activities from
video sequences. We use a non-linear, non-stationary model defined on the shape
of human body contour to represent activities. The activities are recognized by
comparing the tracked observations against a prior database. At the same time,
the performance of our tracking algorithm is analyzed using feedback signals
and this helps in segmenting the shots of different activities. We demonstrate
the effectiveness of our system by showing experimental results on real life video
of different activities. As a part of future work, we will address the problems of
recognizing complex multi-person activities in networks of video cameras.
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