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ABSTRACT
Although the Iterative Closest Point (ICP) algorithm has been an
extremely popular method for 3D points or surface registration, it
can only be applied to two point sets at a time. By only registering
two scans at a time, ICP fails to exploit the redundant information
available in multiple scans that have overlapping regions. In this
paper, we present a multi-view extension of the ICP algorithm by
a method that simultaneously averages the redundant information
available in the scans with overlapping regions. Variants of this
method that carry out such simultaneous registration in a causal
manner and that utilise the transitive property of point correspon-
dences are also presented. The improved accuracy of this motion
averaged approach in comparison with ICP and some multi-view
methods is established through multiple tests. We also present re-
sults of our method applied to some well-known real datasets.

1. INTRODUCTION
Recent advances in scanning techniques and algorithms have re-

sulted in an improved ability to build 3D computer models that can
be rendered, manipulated and analysed in a variety of applications
like cataloging and display of cultural artifacts, modelling for engi-
neering applications, virtual reality, prosthetic design etc. Since an
object cannot be observed in its entirety from a single viewpoint,
such 3D modelling entails scanning from multiple viewpoints so as
to cover the entire object surface. A key processing step is to regis-
ter these scans in a single co-ordinate system resulting in a merged
model that represents the entire object. Since its introduction in [3,
7], the Iterative Closest Point (ICP) algorithm in a variety of mod-
ified forms has been the workhorse for 3D registration. While the
ICP method yields satisfactory results with an appropriate initiali-
sation, it uses only two scans at a time, implying that the registra-
tion of multiple scans has to be carried out in a sequential manner.
This is a significant limitation of ICP since we do not exploit all
the information available in the set of scans to solve the registration
problem. For example, if we consider a series of scans of an object
rotated on a turntable, sequential registration using ICP ignores the
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fact that the last scan and the first one have overlapping areas that
can yield an additional constraint for registration. Many such ad-
ditional constraints are available in the full set of scans and can be
efficiently utilised. In this paper, we develop a multi-view extension
of the ICP method that simultaneously solves for the registration of
all scans. By simultaneously utilising all available scan-pair rela-
tionships, our method yields superior results since registration er-
rors are reduced by a process of averaging and are also distributed
evenly across the scans.

2. ICP AND ITS VARIANTS
In this Section we briefly outline the ICP algorithm and discuss

some variants of interest in our context. If correspondences for
two point sets are known, we can solve for the rotation and trans-
lation (i.e. rigid 3D motion) required to register them in a common
co-ordinate system. However, in many scenarios such correspon-
dence information is unavailable and needs to be estimated from
the points themselves. First introduced in [3, 7], ICP is an itera-
tive method that simultaneously solves for the correspondences be-
tween two point sets and registers them. Assuming an initial guess
for the rigid 3D motion between point sets, we compute a corre-
spondence map between points in the two sets based on a measure
of closeness (correspondence step). Using this correspondence
map, we can compute the required 3D motion (motion step). These
two steps are repeated till convergence. ICP can be shown to con-
verge to a local minima and performs well with a good initialisation
of the 3D motion. When the point sets lack structure, the common
way of assigning correspondence for a point in the first set is to
pick its closest point in the second set [3]. Throughout this pa-
per we use this method to determine point correspondences. For
structured points forming a mesh or scan surface, [7] proposed to
compute the correspondences based on the distance of a point to
tangent planes of the second surface. For a discussion on the many
variants and issues of efficiencies involved in ICP computations,
see [10, 11]. Although the majority of techniques apply to a pair of
scans at a time, there are other approaches that address the multi-
view registration problem [1, 2, 5, 8, 9, 12]. However, to allow
for a comparison with the approach of this paper, the discussion of
these multi-view methods is given in Sec. 4.1 and a comparison of
their performance and our method is given in Sec. 6.2.

3. MOTION AVERAGING
As noted above, although there are multi-view methods based on

ICP, they do not fully utilise all the motion information available
in a set of scans. In [4], all available relative motions were aver-
aged to solve for the motion of a camera sequence. Our approach
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Figure 1: (a) View-graph representing a set of scans to be reg-
istered. Mij represents the relative motion estimated from the
point sets i and j. Mglobal = {I, · · · ,Mi, · · · ,Mj , · · · ,MN}
represents the global camera motion to be estimated. (b) View-
graph of a typical turntable sequence. The edges in solid red
represent the relative motions used for sequential registration
with ICP. The edges in dashed blue represent the additional re-
lationships available for motion averaging.

utilises this idea of motion averaging to solve the ICP motion step
for all scans simultaneously. Here we briefly develop the idea of
motion averaging by considering a graph representation of the rela-
tionships between scans (see Fig. 1(a)). We denote the 3D rotation
or Euclidean motion of a scan with respect to a frame of reference
as M. Without loss of generality, we attach the frame of reference
to the first scan, i.e. M1 = I. The motions required for full reg-
istration of all scans is denoted as Mglobal = {I,M2, · · · ,MN}
where N is the number of scans to be registered. Let the graph
shown in Fig. 1(a) be G = (V, E). Here, each vertex in V repre-
sents the motion associated with a given scan and each edge in E
implies that we have sufficient overlap between the two scans (ver-
tices) to be able to register them. The motion required to register
scan j onto scan i is given by Mij implying that it can be estimated
from scans i and j. Each relative motion Mij can also be written
in terms of the global motion model since

MjMi
−1 = Mij (1)

⇒

Relative Motions : Aijz }| {ˆ
· · · Mij · · · −I · · ·

˜
266666664

...
Mi

...
Mj

...

377777775
| {z }
Mglobal

= 0

Each relative motion between a pair of scans gives us a single
equation of the form in Eqn. 1 and is the information represented
by a single edge in E. By using all equations arising from the rel-
ative motions (i.e. from all edges in graph G), we can estimate the
global motion using AMglobal = 0 where A is composed of the
Aij’s in Eqn. 1 stacked as rows. It can be seen from Fig. 1(a) that
a global motion can always be estimated if E contains a spanning
tree since in such a case, each vertex is reachable from the frame
of reference, i.e. vertex 1. More specifically, for N scans we need
only N − 1 relative motions available as long as they form a span-

ning tree. In contrast, from a set of N scans we can have as many
as N(N−1)

2
relative motions (i.e. the case represented by a fully

connected graph). These relative motions form a highly redundant
system of equations since to specify Mglobal we need only N − 1
motions with the requirement that they form a spanning tree.

The rigid motions required to register scans are either 3D rota-
tions (R) or Euclidean motions (M) which are elements of the
Special Orthogonal and Special Euclidean respectively. The rigid
3D Euclidean motion has the form

M =

»
R t

0 0 0 1

–
(2)

where M ∈ SE(3). R ∈ SO(3) and t ∈ R3 are the 3D rotation
and translation respectively. Both the groups SO(3) and SE(3) are
also Lie groups and have a smooth differentiable structure. Conse-
quently the averaging of many relative motions Mij can be effi-
ciently carried out using the corresponding Lie-algebras [4]. The
algorithm proposed in [4] for motion averaging is summarised in
Appendix A.

In most scenarios we do not expect to have all the N(N−1)
2

rel-
ative motions available since many scan pairs would not have any
overlapping regions between them. Nevertheless, we do have a
significant amount of redundant information available in a set of
scans that can be utilised to our advantage. For pedagogical pur-
poses, consider an object on a turntable that moves by 45◦ between
consecutive scans. The resulting scan relationships are shown in
Fig. 1(b). The ICP approach would be to register adjacent scans
and use the estimated motions to solve for the full registration of
all scans. The relative motions between adjacent scans used in this
approach are shown in solid red. So if we consider scan 8, its reg-
istration with scan 1 will be defined by the composition of all the
relative motions along the path from scan 1 to scan 8. In particular,
this will result in the individual errors along the path being added
up.

However, in most typical scenarios we can expect a substantial
overlap between scans that are two steps from each other, say be-
tween scans 1 and 3, 2 and 4 etc. As a result we can also solve
for the relative motions between such scan pairs (shown in dashed
blue). Thus, while the ICP-based global motion estimate uses 7 rel-
ative motions between adjacent scans, we now have an additional
8 constraints arising from the dashed blue edges. In fact, one could
have more constraints if other scan pairs have sufficient overlap.
All of these relative motions, i.e. both solid red and dashed blue
ones, can be averaged to simultaneously solve for the global mo-
tion. Note that the additional motions provided by the dashed blue
edges will act as constraints on the global solution and will prevent
the accumulation of error. In particular, notice that we can also add
a dashed blue edge directly between scan 8 and scan 1. The rel-
ative motion computed by this relationship will act as an ‘anchor’
and distribute the motion errors over the entire global motion and
prevent a drift of the motion for scan 8. This idea of motion aver-
aging can be applied to any situation where we can compute some
additional relative motions beyond the minimal number defined by
a spanning tree. Note that motion averaging is not specific to an
ordered sequence of scans and can be applied to any set of scans
for which multiple relative motions can be computed.

4. MOTION AVERAGED ICP
We can now introduce our approach to solve for the global reg-



istration of scans by combining ICP and Motion Averaging. Let
ME = {Mi1j1 ,Mi2j2 , · · · ,MiSjS} denote the set of relative
motions represented by the edges in E and S = |E|. Here the sub-
script indices i1j1, i2j2 etc. denote different pairs of vertices (i, j)
defined by the edges in E. Using this representation we can define
the equivalent correspondence step and motion step for each iter-
ation in our multi-view extension.

Correspondence Step : This step is a straightforward extension
of the correspondence step in the two-scan ICP. Let us consider a
single edge in E that represents a scan pair (i, j). For each point in
scan i, we compute its closest point in scan j and thereby define a
pair of point correspondences between the two scans i and j. Here,
following the ideas summarised in [10] we use a distance thresh-
old, rigidity constraints and also avoid point correspondences that
lie on the boundaries of a scan. We also use a k-d tree to speed up
the search for the nearest point on scan j. This correspondence step
is carried out for all S scan pairs (i, j) represented by the edges in
E. At the end of the correspondence step we have correspondences
determined for every scan pair and we can use this information to
carry out the motion step.

Motion Step : In the ICP algorithm, this step consists of com-
puting the optimal rigid 3D motion between the two sets of cor-
responding points and registering the scans using this motion es-
timate. Furthermore, for the optimal solution, the estimation of
rotation and translation can be delinked. For estimating rotations
in this step, we use the method based on the SVD decomposition
described in [13]. In our multi-view extension, for every scan pair
(i, j) we use the same estimation procedure as in the case of ICP.
As a result, we have S estimates of the relative motions Mij which
can be averaged. While our methods of computing the rotations
and translations are the same as that for ICP, in the context of mo-
tion averaging in our multi-view extension we utilise the {R, t}
estimates in a slightly different manner.

We clarify these differences by first considering the motion esti-
mation in the basic ICP algorithm. Let the rotation and translation
estimated at iteration k of the basic ICP algorithm be denoted as
∆R(k) and ∆t(k) respectively. The usual procedure would be to
apply these transformations to the second scan and register it to the
first one. In other words, at each iteration we put both scans in the
same frame of reference and try to adjust the positioning of the sec-
ond scan. However, if we consider the second scan in its original
frame of reference the net effective motion applied to it at the k-th
iteration is nothing but the composition of all the previous motion
estimates, i.e.

M(k) =

kY
i=1

∆M(i) = ∆M(k) M(k − 1) (3)

= ∆M(k) ∆M(k − 1) · · ·∆M(2) ∆M(1)

where ∆M(i) is the Euclidean motion computed at iteration i
by composing the estimated rotation ∆R(i) and translation ∆t(i)
according to Eqn. 2 and the product of matrices is carried out in
pre-multiplication order. Therefore, at the end of the k-th iteration,
the effective transformation applied to the second scan is M(k).

The basic ICP iterations can now be carried out in two analo-
gous ways : a) we repeatedly apply ∆M to the second scan so as
to maintain both scans in the same frame of reference, or b) we ap-
ply M(k) given in Eqn. 3 to the second scan in its original frame

of reference. As far as ICP is concerned, both these approaches
are equivalent and the results would be identical. However, in our
method, since we are interested in carrying out a motion averaging
on all the relative motions at the k-th iteration, we use the latter ap-
proach, i.e. at the k-th iteration, we use M(k) in the original frame
of reference instead of ∆M(k). Given this set of relative motions
i.e. ME(k) = {Mi1j1(k),Mi2j2(k), · · · ,MiSjS (k)} computed
at the k-th iteration, we average them using the Lie-algebraic av-
eraging scheme described in [4]. This results in Mglobal(k) =
{I,M2(k), · · · ,MN (k)} which is our estimate for the global mo-
tion at the k-th iteration. The crucial point to be noted here is that
since we are interested in the motion averaged estimates to drive the
registration process, once we estimate the global motion, all previ-
ously computed relative motions are discarded, i.e. Mglobal(k)
replaces the information contained in ME(k). Consequently, for
the next iteration, the relative motion Mij(k) is replaced by its mo-
tion averaged version, i.e. Mj(k)M−1

i (k). We can now state the
complete motion step at the k-th iteration.

1. Compute all incremental relative motions
∆ME(k) = {∆Mi1j1(k), · · · , ∆Misjs}

2. Update all the relative motions in ME(k)
Misjs(k) = ∆Misjs(k)Misjs(k − 1)∀s = {1, · · · , S}

3. Compute Mglobal(k) = {I,M2(k), · · · ,MN (k)}
by applying the Motion Averaging algorithm of Appendix A
to all the relative motions in ME(k) from step 2 above

4. Update all relative motions using the global motion estimate,
i.e. ∀s = {1, · · · , S} Misjs(k)←Mjs(k)M−1

is
(k)

where is and js represent the indices of the pair of scans
represented by the s-th edge in E.

The multi-view ICP algorithm can now be stated as a repeated it-
eration using the correspondence and motion steps till some con-
vergence criteria is satisfied.

4.1 Comparison with multi-view methods
In this Subsection we briefly compare some existing multi-view

methods with our algorithm. An early method that carried out
multi-view registration is by Bergevin et. al. [2] which was re-
fined by [1]. Here, motion estimation in each iteration was a single
round of updates of the motion estimate of each scan, i.e. Mi in our
notation. For the update of the i-th motion Mi, every other motion
in Mglobal is held fixed, i.e. in Eqn. 1 we solve for Mi by holding
Mj fixed ∀j 6= i. Given that this approach does not simultaneously
solve for all motions, it results in a suboptimal solution. In [9], a
set of relative motion estimates are obtained and then the scans are
added one at a time to the set of registered scans by using the rele-
vant correspondences and estimated relative motions and adjusting
to distribute the errors. In [6], multi-view registration is carried out
via a set of key points. Points from each scan are registered to these
key points and in turn the key point locations are updated using the
registered points. In [8], a robust multi-view cost function is min-
imised using conjugate gradient search. In [5] a registration error
metric is minimised on the manifold of 3D rotations. However,
this method is only applicable when the point matches are known
and not usable in the scenario where the point matches need to be
updated in each iteration. Finally, a graph representation of rela-
tive motions is the basis for the registration approach of [12]. This
method makes strict, limiting assumptions on the graph in which
each edge (i.e. relative motion Mij) is present in at least one
graph cycle. Using such cycles, the errors are distributed across



the vertices of the cycle. Such an approach is not truly multi-view
and does not distribute the errors in an optimal fashion. Instead it
sub-optimally solves the registration problem over cycles and av-
erages these results. Thus, although there are some multi-view ap-
proaches, our method is differentiated from them on two counts.
In the first instance, the other multi-view methods do not make full
use of all the relative motion information to simultaneously register
the scans by updating correspondences and motion estimates. Sec-
ondly, none of these methods make use of the Lie-group structure
of the motion group to carry out the averaging process in an opti-
mal fashion as is done in [4] (summarised in Appendix A) and used
in our method.

5. VARIANTS OF MOTION AVERAGED ICP
In this section we consider two variants of the motion averag-

ing method proposed in Sec. 4. The first one is a causal version
that only uses the relationship of a scan with previous ones in a
sequence and the second method speeds up the computation of the
motion averaged ICP by exploiting the transitive relationship for
correspondence mappings.

5.1 Causal Motion Averaging
Although the method of motion averaging described in Sec. 4

takes advantage of all the redundant information available in a se-
quence of scans, it assumes that all scans are available before we
carry out the registration process using this method. However, in
certain situations like navigation using localisation and mapping
(SLAM) or 3D modelling in real-time, we desire to build 3D rep-
resentations in a causal manner. If the registration process has to
respect the causality principle, we cannot take advantage of all the
relative motion computations possible. Instead we are restricted to
use the information available with respect to previous scans alone.
Thus, for the k-th scan, we can only compute the relative motions
Mik where i < k. However, as we shall describe now, even in such
a restricted scenario it is possible to take advantage of the motion
averaging principle while respecting causality.

Let us assume that we want to register the k-th scan when all
previous scans have been registered. In the standard ICP scenario,
we would compute the relative motion between scan k and k − 1,
i.e. Mk−1 k and use it to register scan k. However, we note that
even under the causality constraint, redundant information can be
utilised. As shown in Fig. 2(a), if we assume that scan k shares
overlapping areas with scans k−1 and k−2, then the registration of
scan k can be carried out by simultaneously considering its relative
motions with respect to the two previous views (shown by solid red
edges). If we rewrite the motion averaging in Eqn. 1 as MijMi =
Mj , then in the scenario of Fig. 2(a) we have two constraints avail-
able for the estimate of Mk, i.e. Mk = Mk−2 kMk−2 and Mk =
Mk−1 kMk−1. We can estimate Mk by averaging these repre-
sentations using the method for averaging on the SE(3) group de-
scribed in [4] (summarised in Appendix A). This estimation pro-
cess can be incorporated into the motion step for Mk. In this
causal motion averaging approach, the estimate of Mk is obtained
by simultaneously registering scan k with the two previous scans.
This results in a reduction in the accumulation of error as the scan k
is ‘tethered’ to both the previously registered scans, thereby reduc-
ing drift in the estimate. In this approach using a greater number of
previous scans for registration gives better results by the process of
averaging of redundant information. It will also be noted that when
scan k has overlap with the previous scan alone, our causal motion

kk−1k−2

(a) Causal Motion Averaging

i j k l

(b) Transitive Point Correspondences

Figure 2: (a) In causal motion averaging, each scan is simulta-
neously registered to previous scans in the sequence via motion
averaging. (b) For a single point in scan i, the arcs in solid red
denote its correspondences in adjacent scans in a sequence. The
arcs in dashed blue represent other correspondence mappings
for the same point. The transitivity property of the correspon-
dence mappings imply that the correspondences represented by
the dashed blue arcs can be constructed out of the solid red ones
resulting in reduced computational needs. See text for details.

averaging method boils down to the conventional ICP method. In
other words, our approach results in a motion averaging registra-
tion method that takes full advantage of all information available in
a causal manner and is a generalisation of the conventional sequen-
tial registration procedure that uses ICP.

5.2 Using Transitivity for Correspondences
The additional computation load due to the motion averaging

step is insignificant compared to the correspondence step that is
known to be the most significant computational load for ICP. As
discussed earlier, motion averaging is useful since it allows us to
average many relative motions to achieve a solution that is both
accurate and also distributes the errors uniformly across all the
scans. This advantage accrues to us when S > (N − 1). In this
sense, since in our correspondence step we compute all S corre-
spondence mappings, it would seem that the multi-view motion av-
eraged ICP algorithm stated above would involve a substantially
increased computational load due to the additional sets of corre-
spondences needed. However, we can simplify this computational
load by using the following observations.

In general, for an iterative approach like ICP the exact motion
estimates during each iteration do not matter as long as their cu-
mulative effect is to lead the algorithm to the local minima. In our
context, using this observation we wish to reduce the computational
load due to the additional steps of solving for correspondences. The
reduction in computational load is achieved by using the transitiv-
ity of the correspondence mappings as illustrated in Fig. 2(b). Con-
sider a set of 4 ordered scans denoted as {i, j, k, l}. We consider a
single point p that has correspondences in all scans and denote this
point in scan i as pi. Let the correspondence map from scans i to
j be denoted as πj

i , i.e. for a point in scan i, pi, the corresponding
point in scan j is given as pj = πj

i (pi). To register the scans us-
ing ICP, we would solve for the correspondences between adjacent
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Figure 3: Average Registration Errors (in degrees) with respect
to different initial rotation values (θ) and noise levels (σ). See
Sec. 6.1 for explanation of the experimental setup and the defi-
nition of θ and σ.

views, i.e. between pairs {i, j}, {j, k} and {k, l}. These mappings
are shown in solid red in Fig. 2(b). For our case of motion averag-
ing using all relative motions available, we would need to consider
the correspondences between additional pairs of scans in the se-
quence, i.e. {i, k}, {i, l} and {j, l} which are denoted by dashed
blue arcs in Fig. 2(b). As a result, it would seem that the computa-
tional load for establishing correspondences is doubled. However,
if the correspondence mappings are correct, we make the crucial
observation that such correspondence mappings are transitive. For
instance, to establish the match in scan k for point pi we could use
the path between pi and pk through pj , i.e.

pk = πk
i (pi) = πk

j (pj) = πk
j (πj

i (pi))

implying that πk
i = πk

j ◦ πj
i . Notice that both the mappings πj

i

and πk
j are already computed for registering using ICP and there-

fore computing the correspondence map πk
i does not incur any ad-

ditional computational load. This observation can now be gener-
alised to the following approach.

To globally register all scans in a single frame of reference we
need N − 1 correspondence maps that form a spanning tree (ST)
on the graph G (equivalent to the solid red arcs in Fig. 2(b)). All
other correspondence maps that we require (i.e. the dashed blue
ones) can be established by following the path between the pair
of vertices on ST. Thus, given the ST, we establish all correspon-
dence maps between adjacent vertices. All additional correspon-
dence maps belong to paths that are more than one edge long on ST.
Such correspondence maps are established by using the transitivity
relationship along the path on ST that connects the two vertices. In
addition, we note that a point correspondence can be ‘propagated’
along ST only to the extent that it has correspondences along the
edges of ST. As a result, the total computational load for establish-
ing correspondences is the same as in the case of basic ICP, i.e.
N − 1 mappings and the additional load incurred in creating the

composition maps using the transitive relationship is small.

In the discussion above, we have assumed that the correspon-
dence maps are transitive, i.e πk

i = πk
j ◦ πj

i . However, this is
only true if the correspondences maps are correct. In the general
scenario of ICP, this is not true especially if the scans are noisy or
if they are significantly far apart from each other. In such a case,
πk

i 6= πk
j ◦ πj

i . However, we note that even in the case of the basic
ICP algorithm, the correspondence maps are only approximate and
are expected to improve after each iteration. In the basic ICP al-
gorithm, while the correspondences are approximate we can expect
the estimated correspondence to be within a small distance from the
true corresponding point. Translating this to our scenario, when we
take a series of finite transitive steps along the spanning tree, the
effective error introduced is also bounded. An additional consider-
ation can be illustrated by revisiting Fig. 2(b). If we consider the
direct correspondence (in dashed blue) between pi and pl, the er-
ror could be substantial since the two views i and l are far apart.
In contrast, each of the single steps (shown in solid red) from i to
l, i.e. i → j, j → k and k → l are between adjacent scans that
are closer to each other. As a result each of these correspondence
maps are expected to be reasonably accurate and their composition
πl

k◦πk
j ◦πj

i can be expected to be close to πl
i, i.e. πl

k◦πk
j ◦πj

i ≈ πl
i.

6. RESULTS
In this Section we present results that compare the performance

of the different motion averaged registration methods proposed in
this paper and the basic ICP approach. We characterise the per-
formance of our approach by using synthetic data. In addition, we
present the results of applying our method to some well-known 3D
scan datasets and also compare its performance with some other
multi-view registration approaches.

6.1 Results on Synthetic Data
In order to characterise the different methods we need to study

their comparative performance in relation to a) the amount of noise
and b) the (initial) amount of rotation prior to registration. These
variables are parametrised by σ and θ respectively. To enable us to
focus on these factors, we use synthetic data for these experiments.
We randomly sample 5000 points from the first scan of the Stan-
ford Bunny dataset. Using this set of 5000 points we generate 4
additional point sets by applying a rotation to the points and adding
Gaussian noise to the 3D co-ordinates of these points. This results
in a total of 5 rotated and noisy point sets that we register using the
various methods.

To simulate for common scanning scenarios we use two different
types of rotations which we call ‘turntable’ and ‘random’ rotations.
For ‘turntable’ rotations, the axis of rotation is fixed along the orig-
inal axis of rotation for the scans. For a given choice of θ, the
rotation between adjacent views is randomly chosen from a uni-
form distribution over (0, θ]. In the case of ‘random’ rotations, the
axis of rotation is also chosen randomly. In effect, for both types of
rotation, each subsequent scan is increasingly further from the first
one. To determine the impact of noise in the point locations we use
the following approach. We denote the radius of the circumsphere
of the object as r and the noise level σ is defined as a given percent-
age of r. In our experiments we vary θ as {2, 4, 6, 8, 10} degrees
and the noise-level σ as {1, 2, 3, 4, 5}% of r. For each combination
of σ and θ, we run 25 trials for each type of motion and average the
registration errors. Since the comparative performance for both the
‘turntable’ and ‘random’ rotations are very similar, we present re-



ICP Other Multi-view Methods Multi-view Motion Averaged ICP

Benjemaa et al [1] Sharp et al [12] Closure Causal MAICP Transitive

Happy Buddha 5.78 1.96 1.53 2.62 3.67 0.85 0.91
Stanford Bunny 0.92 0.61 0.61 0.78 0.72 0.59 0.55
Stanford Dragon 7.69 3.75 5.54 5.51 5.72 2.74 3.39

Ohio Bunny 1.55 0.78 0.69 0.27 1.18 0.28 0.47
Ohio Pooh 13.33 1.55 1.00 0.68 4.52 0.5 0.36

Table 1: Average Registration Errors for real datasets (in degrees). Our motion-averaged registration methods significantly outper-
form ICP and the other multiview registration methods listed. See text for details.

sults that are averaged over both these types of rotation. In Fig. 3
we show this average rotation error for all scans with respect to
the first one which is the reference scan. The rotation error is cal-
culated as the angular difference between the true rotation and the
estimated value. As shown in the plots in Fig. 3, for each σ or θ
these errors are averaged over the other variable. We denote the
sequential ICP-based registration method as ICP, the multi-view
motion averaging method of Sec. 4 as MAICP, the causal variant
of Sec. 5.1 as MAICP (Causal) and the averaging method using
transitive correspondences described in Sec. 5.2 as MAICP (Tran-
sitive). In all experiments in this paper, MAICP (Causal) results
are obtained by initialising with ICP. In turn, MAICP is initialised
with the results of MAICP (Causal). As is easily seen from Fig. 3,
our method MAICP significantly outperforms the ICP algorithm.
It can also be seen that the two variants of motion averaging also
perform better than ICP and their error values are approximately in
between that of MAICP and ICP.

6.2 Registration Accuracy for Real Datasets
In this Subsection we describe the results of our registration meth-

ods applied to some well-known datasets. Specifically, we demon-
strate results on three datasets from the Stanford repository i.e. the
Stanford Bunny, Happy Buddha (standing) and Dragon which have
10, 15 and 15 scans respectively.1 While the Bunny scan set con-
sists of varied viewpoints to cover the surface, the Happy Bud-
dha and Dragon set are turntable sequences with consecutive scans
taken 24◦ apart. For all the datasets in the Stanford repository, the
ground truth motion is provided. In addition, we also show results
for the registration of two sets from the Ohio State repository, i.e.
the Ohio Bunny and Pooh which consist of 18 turntable scans that
are 20◦ apart.2 However, for these two datasets, the axis of rota-
tion is not provided. For measuring the registration error, for the
Stanford repository datasets we compute the angular difference be-
tween the ground truth rotation and the estimated rotation matrix.
In the case of the Ohio State repository datasets, since the ground
truth axis of rotation is not known, the angular error is simply the
difference between the ground truth angle and the angle of the esti-
mated rotation matrix (i.e. independent of the axes of rotation).

For the experiments on the three Stanford datasets, we average
the results over 25 trials using a protocol as follows. To evalu-
ate the performance of ICP and our multi-view methods we use

1http://graphics.stanford.edu/data/3Dscanrep.
2http://sampl.ece.ohio-state.edu/data/3DDB/
RID/index.htm.

the registered set of scans and perturb them by rotations about the
turntable axis. For each trial, the rotation angle is randomly drawn
from a uniform distribution over (0, 5◦]. For estimating the motion
between two scans we take 1000 randomly selected points from
the first scan and find their correspondences on the second scan.
In addition to the different methods of registration detailed above,
we consider an additional averaging scheme that demonstrates the
power of our method. As described in Sec. 3, in a turntable se-
quence, the last scan often has a substantial area of overlap with
the first one and hence their relative motion can be estimated (see
Fig. 1(b)). Typically, due to sequential registration using ICP there
is a significant accumulation of error in the registration as more
scans are added. In our experiments, we test the simplest possible
motion averaging multi-view registration scheme, i.e. by ‘closing
the loop’. Thus, along with the edges between adjacent scans (solid
red ones in Fig. 1(b)) we also consider the additional dashed blue
edge between the last scan and the first one which closes the loop
along the sequence. Thus, instead of (N − 1) edges of the span-
ning tree, we have N edges in this case. This method is denoted
as MAICP (Closure). In the case of the two datasets from the
Ohio repository, since we do not have the ground truth motions, we
simply register the scans with identity matrices as our initial mo-
tion estimates and then carry out the other multi-view registration
methods. Thus, the error rates are for a single experiment and not
averaged over multiple trials as in the case of the Stanford datasets.

In Table. 1, we give the comparative performance of all of our
methods on these datasets. We also compare our results with that
obtained with the multi-view methods due to Benjemaa et al [1]
and Sharp et al [12]. We notice that MAICP (Causal) performs
poorly compared to the other multi-view methods since it does not
have all the multi-view constraints available for averaging. This im-
plies that it is crucial to utilise all the available motion constraints
to solve for the global motions required for registration. This view
is borne out by the superior performance of all other MAICP vari-
ants. As can be seen, even the addition of a single motion constraint
in MAICP (Closure) reduces the error by a large amount since this
constraint forces the errors to be distributed uniformly over the se-
quence thereby preventing drift in registration that is common with
the sequential registration using ICP. The basic method of MAICP
does better compared to the other multiview approaches considered
since it utilises all available information in the scan sequence. It is
also of interest to note that MAICP (Transitive) which uses only
the correspondence maps obtained by the spanning tree of the ICP
method is very close in performance to the solution of MAICP.
This implies that the assertion about the transitivity of correspon-



dences in Sec. 5.2 is correct and we can obtain the simultaneous
multi-view registration solution by motion averaging with only a
marginal increase in the computational load when compared with
the basic ICP approach. Interestingly, for some of the datasets, the
method of generating correspondences using transitivity does bet-
ter than that of MAICP which is probably due to the accuracy of
the transitive mappings over adjacent scans. While the MAICP
(Transitive) method is as good as MAICP, it will be recalled that
the transitive method does not perform as well in the experiments
of Sec. 6.1 (See Fig. 3). This is because in the experiments of
Sec. 6.1 we use 5000 points throughout and do not use the full or
subsampled scans to determine correspondences. As a result, the
individual correspondence maps are inaccurate resulting in poorer
compositions. If we use the full or subsampled scans to search for
correspondences, the MAICP (Transitive) method is seen to be
almost as accurate as MAICP as evidenced by the experiments in
this Section.

In Figs. 4, 5 and 6, we present a comparison of the results of
different methods applied to the Stanford Happy Buddha, Stanford
Dragon and the Ohio State Pooh scans respectively. The results of
a single trial are shown in the form of cross-sections and the cor-
responding regions on the 3D models are indicated. As is evident,
our method accurately registers the different scans for all the three
datasets. Due to its sequential nature, the ICP method does not
work well in any of the cases and results in significant misalign-
ments. In the Happy Buddha dataset in Fig. 4, it will be noted that
the method of [1] also does poorly as it is unable to distribute the
errors well enough. Similarly in the case of the Dragon dataset, the
method of [12] (Fig. 5(e)) shown a significant error in registering
some of the scans. However, in both the cases of the Happy Bud-
dha and Dragon datasets, our motion averaging scheme works well
since it uses all the relative motion constraints in a single motion
averaging step thereby forcing the errors to be evenly distributed
over the entire scan sequence. In the case of the Pooh dataset, all
the multi-view methods work well and their quality of registration
is virtually indistinguishable in Fig. 5. However, as can be clearly
seen in the row in Table. 1 corresponding to this dataset, our algo-
rithm performs substantially better than the other methods.

7. CONCLUSION
In this paper we have introduced a multi-view extension of the

ICP algorithm that uses the redundant information in a set of scans
via motion averaging. We have also introduced two significant vari-
ants of this approach and demonstrated the utility of our multi-view
formulation. Our approach performs significantly better than ex-
isting multi-view registration methods. Future work will involve
computational refinements that exploit the possibilities available in
an algorithmic design space using the transitivity property of corre-
spondences and the redundancy available in the motion averaging
framework.

8. REFERENCES
[1] R. Benjemaa and F. Schmitt. Fast global registration of 3d

sampled surfaces using a multi-z-buffer technique.
International Conference on 3D Digital Imaging and
Modeling, pages 113–120, 1997.

[2] R. Bergevin, M. Soucy, H. Gagnon, and D. Laurendeau.
Towards a general multi-view registration technique. PAMI,
18(5):540–547, 5 1996.

[3] P. Besl and N. McKay. A method for registration of 3-d
shapes. PAMI, 14(2):239–256, February 1992.

(a) Model (b) Initial Alignment

(c) ICP (d) Benjemaa et al

(e) Sharp et al (f) Our Method (MAICP)

Figure 4: Cross-section of the registered Happy Buddha scans
for the different methods. See text for details.

[4] V. M. Govindu. Lie-algebraic averaging for globally
consistent motion estimation. In CVPR04, pages I: 684–691,
2004.

[5] S. Krishnan, P. Lee, J. Moore, and S. Venkatasubramanian.
Global registration of multiple 3d point sets via
optimization-on-a-manifold. In Eurographics Symposium on
Geometry Processing, 2005.

[6] T. Masuda. Generation of geometric model by registration
and integration of multiple range images. In 3DIM, pages
254–261, 2001.

[7] G. Medioni and Y. Chen. Object modeling by registration of
multiple range images. In CRA91, pages 2724–2729, 1991.

[8] K. Nishino and K. Ikeuchi. Robust simultaneous registration
of multiple range images. In ACCV02, 2002.

[9] K. Pulli. Multiview registration for large data sets. In
3DIM99, pages 160–168, 1999.

[10] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. In 3DIM01, pages 145–152, 2001.

[11] J. Salvi, C. Matabosch, D. Fofi, and J. Forest. A review of
recent range image registration methods with accuracy
evaluation. IVC, 25:578–596, 2007.

[12] G. Sharp, S. Lee, and D. Wehe. Multiview registration of 3d
scenes minimizing error between coordinate frames. PAMI,
26(8):1037–1050, 8 2004.

[13] S. Umeyama. Least-squares estimation of transformation



(a) Model (b) Initial Alignment

(c) ICP (d) Benjemaa et al

(e) Sharp et al (f) MAICP

Figure 5: Cross-section of the registered Dragon scans for the
different methods. See text for details.

parameters between two point patterns. PAMI,
13(4):376–380, 1991.

APPENDIX
A. LIE-ALGEBRAIC AVERAGING

In this Appendix we briefly summarise the motion averaging ap-
proach of [4] that is used by our method. The analysis presented
applies to all matrix Lie-groups. Given a set of rotation matrices
{R1, · · · ,RN}, their arithmetic mean is not necessarily a valid
rotation. However, if we consider these rotations as Lie-group
elements, a suitable definition of the mean is given by R̄ which
minimises the variance

PN
i=1 d2(Ri, R̄), where d(., .) is the Rie-

mannian distance on the SO(3) group. For such a minimisation,
an efficient solution is obtained by successively approximating the
Riemannian distance on the tangent space of the Lie-group, i.e. its
corresponding Lie-algebra. Thus, the average of matrix Lie-group
elements can be obtained using :

A1 : Algorithm for Intrinsic Average
Input : {M1, · · · ,MN} ∈ G (Matrix Group)
Output : µ ∈ G (Intrinsic Average)
Initialise : µ = I (Identity)
Do
∆Mi = µ−1Mi

∆mi = log(∆Mi)

∆µ = exp( 1
N

PN
i=1 ∆mi)

µ = µ∆µ
Repeat till ||∆µ|| < ε

where log(.) and exp(.) are matrix operations and m is the Lie-
algebra of M. Using similar arguments, we can successively ap-
proximate the relative motion relationship, using the relationships

(a) Model (b) Initial Alignment

(c) ICP (d) Benjemaa et al

(e) Sharp et al (f) MAICP

Figure 6: Cross-section of the registered Pooh scans for the dif-
ferent methods. See text for details.

Mij = MjMi
−1 ⇒ mij = mj −mi

⇒ vij = vj − vi ⇒ vij =
ˆ
· · · − I · · · I · · ·

˜| {z }
Dij

V

where v is a vector extracted from m representing the indepen-
dent variables that define the Lie-algebra m. V contains all the
variables vi stacked together into a single vector. By collecting
all the relative motion constraints columnwise, we have Vij =
[vij1; vij2; · · · ] and D = [Dij1;Dij2; · · · ] which leads to the so-
lution to the motion averaging in the tangent space as V = D†Vij ,
where D† is the pseudo-inverse of D. This leads to the following
Lie-algebraic averaging algorithm :

A2 : Algorithm for Motion Averaging
Input : {Mij1,Mij2 · · · ,Mijn} (n relative motions)
Output : Mglobal : {I,M2, · · · ,MN} (N image global motion)
Set Mglobal to an initial guess
Do
∆Mij = Mj

−1MijMi

∆mij = log(∆Mij)
∆vij = vec(mij)
∆V = D†∆Vij

∀k ∈ [2, N ],Mk = Mkexp(∆mk)
Repeat till ||∆V|| < ε

where vec(.) extracts the parameters v from m. The reader should
consult [4] for further details.


