Accelerating Newton Optimization for Log-Linear Models through Feature Redundancy

Arpit Mathur Soumen Chakrabarti http://www.cse.iitb.ac.in/~soumen/ IIT Bombay

Log-linear models: Ubiquitous in machine learning

- Given training observations x and labels y
- ▶ Goal is to learn a weight vector $\beta \in \mathbb{R}^d$ to fit a conditional distribution

$$\Pr(Y = y|x) = \frac{\exp\left(\beta^{\top}f(x,y)\right)}{Z_{\beta}(x)} = \frac{\exp\left(\sum_{j}\beta_{j}f_{j}(x,y)\right)}{Z_{\beta}(x)},$$

- f(x, y) ∈ ℝ^d is a feature vector (often f_j(x, y) ≥ 0)
 Z_β(x) is a normalizing constant
- Given instances {(x_i, y_i)} find β to maximize ∑_i log Pr(Y = y_i|x_i), i.e., to minimize

$$\ell(\beta) = -\sum_{i} \left(\beta^{\top} f(x_i, y_i) - \log Z_{\beta}(x_i)\right) + \frac{1}{2\sigma^2} \sum_{j} \beta_j^2$$
Negative log likelihood of training data
Gaussian prior

Log-linear models: Ubiquitous in machine learning

- Given training observations x and labels y
- ▶ Goal is to learn a weight vector $\beta \in \mathbb{R}^d$ to fit a conditional distribution

$$\Pr(Y = y|x) = \frac{\exp\left(\beta^{\top}f(x,y)\right)}{Z_{\beta}(x)} = \frac{\exp\left(\sum_{j}\beta_{j}f_{j}(x,y)\right)}{Z_{\beta}(x)},$$

- f(x, y) ∈ ℝ^d is a feature vector (often f_j(x, y) ≥ 0)
 Z_β(x) is a normalizing constant
- Given instances {(x_i, y_i)} find β to maximize ∑_i log Pr(Y = y_i|x_i), i.e., to minimize

$$\ell(\beta) = -\sum_{i} \left(\beta^{\top} f(x_i, y_i) - \log Z_{\beta}(x_i)\right) + \frac{1}{2\sigma^2} \sum_{j} \beta_j^2$$

Negative log likelihood of training data
Gaussian prior
"Ridge penalty"

Training performance of optimizers

- Newton method costs too many FLOPS per iteration
- Sparse Newton methods (LBFGS) lead the pack

Redundancy in f and β

- Log-linear models allow us to use large number of potentially redundant features f_j
- E.g., hasDigit, isFourDigits, hasCap, isAllCaps, isAbbrev
 - isFourDigits \Rightarrow hasDigit
 - isAllCaps \Rightarrow hasCap
 - $Pr(isAllCaps|isAbbrev) \gg Pr(isAllCaps)$
- Combined with dictionaries, often leads to millions of features in NLP tasks
- Convenient, but training bottleneck
- Optimizer has to deal with objective that is more complicated than really necessary

Ridge penalty leads to redundant models

- ▶ For every occurrence of feature *j*, add new feature *j*′
- Features f_j and $f_{j'}$ are perfectly correlated
- j' adds no predictive power to any classifier
- LR without Ridge penalty can keep β_j unchanged and set β_{j'} = 0 to get same training accuracy

$$\ell(\beta) = -\underbrace{\sum_{i} \left(\sum_{j} \beta_{j} f_{j}(x_{i}, y_{i}) - \log Z_{\beta}(x_{i}) \right)}_{\text{data log likelihood}} + \underbrace{\frac{1}{2\sigma^{2}} \sum_{j} \beta_{j}^{2}}_{\text{Ridge penalty}}$$

With Ridge penalty, better to "split the evidence"

• Set
$$\beta_j^{\text{new}} = \beta_{j'}^{\text{new}} = \beta_j^{\text{old}}/2$$

► Data log likelihood remains unchanged whenever $\beta_j^{\text{new}} + \beta_{j'}^{\text{new}} = \beta_j^{\text{old}}$

►
$$2 (\beta_j^{\text{old}}/2)^2 = (\beta_j^{\text{old}})^2/2 < (\beta_j^{\text{old}})^2 + 0^2$$

Ridge penalty leads to redundant models

- ▶ For every occurrence of feature *j*, add new feature *j*′
- Features f_j and $f_{j'}$ are perfectly correlated
- j' adds no predictive power to any classifier
- LR without Ridge penalty can keep β_j unchanged and set β_{j'} = 0 to get same training accuracy

$$\ell(\beta) = -\underbrace{\sum_{i} \left(\sum_{j} \beta_{j} f_{j}(x_{i}, y_{i}) - \log Z_{\beta}(x_{i}) \right)}_{\text{data log likelihood}} \underbrace{+ \frac{1}{2\sigma^{2}} \sum_{j} \beta_{j}^{2}}_{\text{Ridge penalty}}$$

With Ridge penalty, better to "split the evidence"

• Set
$$\beta_j^{\text{new}} = \beta_{j'}^{\text{new}} = \beta_j^{\text{old}}/2$$

Data log likelihood remains unchanged whenever β_j^{new} + β_{j'}^{new} = β_j^{old}
 2 (β_i^{old}/2)² = (β_i^{old})²/2 < (β_i^{old})² + 0²

A new form of model parsimony?

- Ridge penalty encourages small $|\beta_j|$
- Lasso penalty reduces ||β||₁, makes solution sparse, i.e., encourages β_j = 0
- In view of (approximately) redundant but informative features, a new form of model parsimony is that β ∈ ℝ^d has far fewer degrees of freedom than d
- \blacktriangleright Let $\gamma \in \mathbb{R}^{d'}$ be the "hidden model" with $d' \ll d$
- \blacktriangleright In general β and γ can be related in very complex ways
- A very simple starting point is that elements of γ are copied into elements of β

There is no assumption about clusters in the data

Behavior of β with iterations

- "Big Bang" moment followed by gradual evolution
- Trajectory cross-overs become rare quite quickly
- Can approximate adjacent trajectories with a band for a short time
- ▶ However, cannot ignore cross-overs all the time

Let initial approximation to the solution be $\beta \in \mathbb{R}^d$ for numRounds rounds do for *finelters* iterations do $[f,g] \leftarrow \mathsf{ObjAndGrad}(\beta)$ {wait until Big Bang over} $\beta \leftarrow \text{fineBFGS}(\beta, f, g)$ $d' \leftarrow d/clusterFactor$ Feature cluster map $cmap \leftarrow Cluster(\beta, d')$ $\gamma \leftarrow \text{ProjectDown}(\beta, \text{cmap})$ for coarselters iterations do $[\phi, \delta] \leftarrow \text{ObjAndGrad}(\gamma, cmap)$ $\gamma \leftarrow \text{coarseBFGS}(\gamma, \phi, \delta)$ {faster than fineBFGS} $\beta \leftarrow \text{ProjectUp}(\gamma, cmap)$

Let initial approximation to the solution be $\beta \in \mathbb{R}^d$ for numRounds rounds do for *finelters* iterations do $[f,g] \leftarrow \mathsf{ObjAndGrad}(\beta) \quad \{\mathsf{wait until Big Bang over}\}$ $\beta \leftarrow \text{fineBFGS}(\beta, f, g)$ $d' \leftarrow d/clusterFactor$ Feature cluster map $cmap \leftarrow Cluster(\beta, d')$ $\gamma \leftarrow \text{ProjectDown}(\beta, cmap)$ for coarselters iterations do $[\phi, \delta] \leftarrow \text{ObjAndGrad}(\gamma, cmap)$ $\gamma \leftarrow \text{coarseBFGS}(\gamma, \phi, \delta)$ {faster than fineBFGS} $\beta \leftarrow \text{ProjectUp}(\gamma, cmap)$

Let initial approximation to the solution be $\beta \in \mathbb{R}^d$ for numRounds rounds do for *finelters* iterations do $[f,g] \leftarrow \mathsf{ObjAndGrad}(\beta) \quad \{\mathsf{wait until Big Bang over}\}$ $\beta \leftarrow \text{fineBFGS}(\beta, f, g)$ $d' \leftarrow d/clusterFactor$ Feature cluster map $cmap \leftarrow Cluster(\beta, d')$ $\{\gamma \in \mathbb{R}^{d'}, d' \ll d\}$ $\gamma \leftarrow \text{ProjectDown}(\beta, cmap)$ for coarselters iterations do $[\phi, \delta] \leftarrow \text{ObjAndGrad}(\gamma, cmap)$ $\gamma \leftarrow \text{coarseBFGS}(\gamma, \phi, \delta)$ $\beta \leftarrow \text{ProjectUp}(\gamma, cmap)$

Let initial approximation to the solution be $\beta \in \mathbb{R}^d$ for numRounds rounds do for *finelters* iterations do $[f,g] \leftarrow \mathsf{ObjAndGrad}(\beta) \quad \{\mathsf{wait until Big Bang over}\}$ $\beta \leftarrow \text{fineBFGS}(\beta, f, g)$ $d' \leftarrow d/clusterFactor$ Feature cluster map $cmap \leftarrow Cluster(\beta, d')$ $\{\gamma \in \mathbb{R}^{d'}, d' \ll d\}$ $\gamma \leftarrow \text{ProjectDown}(\beta, cmap)$ for coarselters iterations do $[\phi, \delta] \leftarrow \text{ObjAndGrad}(\gamma, cmap)$ $\gamma \leftarrow \text{coarseBFGS}(\gamma, \phi, \delta)$ {faster than fineBFGS} $\beta \leftarrow \text{ProjectUp}(\gamma, cmap)$

Let initial approximation to the solution be $\beta \in \mathbb{R}^d$ for numRounds rounds do for *finelters* iterations do $[f,g] \leftarrow \mathsf{ObjAndGrad}(\beta) \quad \{\mathsf{wait until Big Bang over}\}$ $\beta \leftarrow \text{fineBFGS}(\beta, f, g)$ $d' \leftarrow d/clusterFactor$ Feature cluster map $cmap \leftarrow Cluster(\beta, d')$ $\{\gamma \in \mathbb{R}^{d'}, d' \ll d\}$ $\gamma \leftarrow \text{ProjectDown}(\beta, cmap)$ for coarselters iterations do $[\phi, \delta] \leftarrow \text{ObjAndGrad}(\gamma, cmap)$ $\gamma \leftarrow \text{coarseBFGS}(\gamma, \phi, \delta)$ {faster than fineBFGS} $\beta \leftarrow \text{ProjectUp}(\gamma, cmap)$ while not converged do $[f,g] \leftarrow \text{ObjAndGrad}(\beta)$ $\beta \leftarrow \text{fineBFGS}(\beta, f, g) \quad \{\text{patch up remaining problems}\}$

Cluster

- Sort β_j, identify d' contiguous blocks to minimize square error within clusters
- For j = 1,..., d, 1 ≤ cmap(j) ≤ d' gives the cluster index of j

ProjectDown

- \blacktriangleright β always appears in objective as $\beta^{\top} f$
- Naturally suggests that initial γ_k be the average of β_js where cmap(j) = k

ProjectUp

- We just copy γ_k to all β_j where cmap(j) = k
- Can perhaps do better

ObjAndGrad(eta) to $\texttt{ObjAndGrad}(\gamma, \textit{cmap})$

- Given code for $\ell(\beta)$ and $\nabla_{\beta}\ell$, want code for $\ell(\gamma)$ and $\nabla_{\gamma}\ell$
- Add parameter *cmap* to ObjAndGrad(β)
- In $\ell(\beta)$, β always appears as $\beta^{\top} f$, so replace $\sum_{j} \beta_{j} f_{j}$ by $\sum_{j} \gamma_{cmap(j)} f_{j}$
- To compute $abla_{\gamma}\ell$, observe that

$$\frac{\partial \ell}{\partial \gamma_k} = \sum_j \frac{\partial \ell}{\partial \beta_j} \frac{\partial \beta_j}{\partial \gamma_k} = \sum_j \frac{\partial \ell}{\partial \beta_j} \begin{cases} 1 & cmap(j) = k \\ 0 & otherwise \end{cases}$$

▶ \therefore $\nabla_{\gamma} \ell = A \nabla_{\beta} \ell$, where $A \in \mathbb{N}^{d' \times d}$ is defined as

$$A(k,j) = egin{cases} 1 & \textit{cmap}(j) = k \ 0 & \textit{otherwise} \end{cases}$$

► Can efficiently push down computation of ∇_γℓ by trivial transformations of ∇_βℓ code

Three tuned performance parameters

clusterFactor = d/d'

- d' too large \Rightarrow not enough redundancy removal
- ▶ d' too small \Rightarrow coarseBFGS drifts from true solution

numRounds

numRounds = 1 or 2 almost always optimal

coarselters

 coarseBFGS terminated if last 5 iterations improve objective by less than 0.01%

Training is rarely a one-time job in applications: training data, labels, features, etc. keep changing

Sample results: Objective vs. time

- Clustered optimizer reduces objective much faster
- Careful analysis shows improvement is mainly due to objective in R^{d'} which is simpler than objective in R^d

Sample results: Test accuracy vs. training time

- Test accuracy may stabilize before training objective
- Clustered optimizer shows earlier test accuracy saturation
- Sometimes significantly more accurate early on
- Overdoing coarseBFGS may damage test F1 momentarily
- Final patch-up fixes matters eventually, but wastes time

Sample results: Effect of *clusterFactor* choice

ClassName	clusterFactor	TrainTime (s)
Wheat	10	16.0
	20	15.7
	50	17.3
Money-fx	10	64.3
	20	44.5
	50	39.4
Interest	10	61.3
	20	44.3
	50	87.6

- ▶ 10–50 adequate range to explore
- Recommend starting with large *clusterFactor* and reducing it if final patch-up is slow

Summary

- Log-linear models ubiquitous in machine learning
- State-of-the-art optimizer: LBFGS
- Redundant features: Convenient, but training bottleneck
- ▶ Very simple idea: Cluster features by β , optimize in $\gamma \in \mathbb{R}^{d'}$ instead of $\beta \in \mathbb{R}^{d}$, $d' \ll d$, recluster periodically
- Experiments with logistic regression and CRFs
- \blacktriangleright Speeds up between 2× and 12×, typical 3–5×
- No noticeable degradation of accuracy of trained model

Future work

- More elaborate maps between eta and γ
- Extend to other model penalty functions
- Auto-tuning of performance parameters

Summary

- Log-linear models ubiquitous in machine learning
- State-of-the-art optimizer: LBFGS
- Redundant features: Convenient, but training bottleneck
- ▶ Very simple idea: Cluster features by β , optimize in $\gamma \in \mathbb{R}^{d'}$ instead of $\beta \in \mathbb{R}^{d}$, $d' \ll d$, recluster periodically
- Experiments with logistic regression and CRFs
- \blacktriangleright Speeds up between 2× and 12×, typical 3–5×
- ► No noticeable degradation of accuracy of trained model

Future work

- \blacktriangleright More elaborate maps between β and γ
- Extend to other model penalty functions
- Auto-tuning of performance parameters