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Abstract

Automatic short answer grading (ASAG) can re-
duce tedium for instructors, but is complicated by
free-form student inputs. An important ASAG task
is to assign ordinal scores to student answers, given
some “model” or ideal answers. Here we intro-
duce a novel framework for ASAG by cascading
three neural building blocks: Siamese bidirectional
LSTMs applied to a model and a student answer,
a novel pooling layer based on earth-mover dis-
tance (EMD) across all hidden states from both
LSTMs, and a flexible final regression layer to out-
put scores. On standard ASAG data sets, our sys-
tem shows substantial reduction in grade estima-
tion error compared to competitive baselines. We
demonstrate that EMD pooling results in substan-
tial accuracy gains, and that a support vector ordi-
nal regression (SVOR) output layer helps outper-
form softmax. Our system also outperforms recent
attention mechanisms on LSTM states.

1 Introduction
Grading student work is critical for assessing their under-
standing, and providing teachers instructive feedback. How-
ever, answer grading can become monotonous and tedious for
teachers. Computer assisted assessment has been in practice
in schools and colleges for many years now, but primarily for
recognition questions with constrained answers such as mul-
tiple choice questions. Prior research has shown that such
recognition questions are deficient in that they do not capture
multiple aspects of acquired knowledge, such as reasoning
and self-explanation [Conole and Warburton, 2005]. Conse-
quently, open-ended recall questions that seek responses con-
structed by students are more commonly used in academia.
The focus of this paper is automatic grading of such con-
structed answers with reference to instructor-provided model
answers. In particular, we are interested in short answers be-
tween a few words and a few sentences long, i.e., everything
in between fill-in-the-gap and essay-type answers [Burrows
et al., 2015; Roy et al., 2015]. Table 1 shows an example of
a short answer grading task.

Grading student-constructed short answers, given
instructor-provided model answers, is a complex natural
language understanding task owing to linguistic variations
(the same answer could be articulated in different ways),
the subjective nature of grading (multiple possible correct
answers or no correct answer) and lack of consistency in

human rating (non-binary scoring on an ordinal scale within
a range). Despite state of the art results in most natural lan-
guage processing tasks, neural models have not been applied
extensively for ASAG, barring the use of word embeddings
for supervised ASAG [Sakaguchi et al., 2015] and neural
networks for essay grading [Alikaniotis et al., 2016]. In this
paper, we present a new ASAG system comprising a novel
pooling method over Siamese LSTMs, followed by a flexible
regression layer for generating a score. Specifically, we make
the following contributions.

Question How are overloaded functions differentiated by the compiler?
Model
Answer

Based on the function signature. When an overloaded func-
tion is called, the compiler will find the function whose sig-
nature is closest to the given function call.

Student#1 It looks at the number, types, and order of arguments in the
function call

Student#2 By the number, and the types and order of the parameters.

Table 1: Sample question, model answer, and student answers from
an undergraduate computer science course [Mohler et al., 2011].

1.1 EMD Pooling over LSTM States
Although natural language inference (NLI) has some critical
differences from ASAG (see Section 2), we first tried two
network architectures established in NLI. In the Siamese ar-
chitecture, two networks are applied to two texts, and their
final states combined to make predictions [Severyn and Mos-
chitti, 2015]. This has been superseded by a more global
comparison across all pairs of states, using various atten-
tion mechanisms [Rocktäschel et al., 2015; Yin et al., 2015;
He and Lin, 2016]. Surprisingly, attention mechanisms did
not perform well for ASAG (see Section 6.4).

Instead, we solve an Earth Mover Distance (EMD) prob-
lem on a matrix of pairwise distances between each state vec-
tor of the model and student answers. EMD is a metric and
more generally known as Wasserstein distance [Levina and
Bickel, 2001]. EMD has been used between distributional
word vectors [Kusner et al., 2015], but not to recurrent states,
to our knowledge. Part of the technical challenge is to back-
prop from ASAG-appropriate losses through the EMD pool-
ing to the LSTMs, in the face of certain aggregate constraints
in EMD. This pooling layer may be of independent interest
beyond the ASAG task.

1.2 Sinkhorn-Knopp Matrix Scaling
To alleviate the cubic time complexity of EMD calculation,
we replace the linear program EMD solver with the Sinkhorn-
Knopp matrix scaling [Sinkhorn and Knopp, 1967; Cuturi,
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2013] procedure, which replaces EMD with the Sinkhorn dis-
tance [Knight, 2008], an excellent approximation. Another
potential benefit is that matrix scaling is a differentiable op-
erator [Huang et al., 2016].

1.3 Ordinal Loss Optimization
Another important difference between ASAG and NLI is that
the desired output in ASAG is a real or ordinal score, not a
categorical label (entailment, contradiction, irrelevance) as in
NLI. The primary goal in ASAG is fair grading, i.e., to min-
imize numeric difference between gold and system scores.
Large correlation usually follows, but is of secondary im-
portance. Therefore we must append a final ordinal pre-
diction layer to the EMD layer. Whereas softmax is most
popular for categorical prediction, we found that a two-way
hinge loss used in support-vector ordinal regression (SVOR)
[Chu and Keerthi, 2007] is superior to a natural non-convex
choice [Cheng, 2007].

1.4 Data Augmentation
Training neural models often require large amounts of train-
ing data, which is rare among public ASAG datasets. Our pri-
mary dataset from [Mohler et al., 2011] contains only about
2,200 (model answer, student answer) pairs. In computer vi-
sion, images are readily augmented by scaling, rotation, and
changes in brightness and contrast. Here we use a simple but
effective method to increase the number of training pairs.

Organization: After reviewing related work in section 2,
we present the components of our system in section 3. De-
tails of the earth mover pooling layer are in section 4. Sec-
tion 5 describes how the EMD pooling output is turned into
a score. Section 6 report on experiments on public ASAG
benchmarks, and section 7 concludes the paper. We intend to
place our code in the public domain.

2 Related Work
In this section, we review prior work in two relevant research
streams viz. supervised ASAG and neural models for related
NLP tasks with emphasis on NLI.
Supervised ASAG: Early supervised ASAG systems incor-
porated task- and dataset-specific features into standard clas-
sification and regression algorithms [Pulman and Sukkarieh,
2005]. Ensembles of classifiers using different subsets of fea-
tures [Heilman and Madnani, 2013] are widely used. Fea-
tures are extensively tuned towards specific datasets, and new
techniques are rarely evaluated on datasets published earlier.
A comprehensive overview of prior supervised ASAG sys-
tems can be found in two recent survey papers and references
therein [Burrows et al., 2015; Roy et al., 2015]. These sur-
veys have also emphasized the importance of standardized
evaluation across datasets. [Ramachandran et al., 2015] pro-
posed a graph based approach to extract patterns from groups
of questions and their answers towards constructing regular
expression alike patterns and showed better performance than
the Tandalla’s winning entry in [Kaggle, 2012b].

Recent ASAG efforts have leveraged advancements in dis-
tributional word semantics and neural methods for embed-
ding words. Word level similarities between student and

model answers based on pre-trained word vectors [Mikolov
et al., 2013b] have been used as features to train regression
and classification models [Sakaguchi et al., 2015; Sultan et
al., 2016]. [Alikaniotis et al., 2016] introduced score-specific
word embeddings in LSTMs to embed student and model es-
says to single state vectors. These were turned into an output
score via linear regression with square loss.
Natural Language Inference (NLI): In the NLI task
[MacCartney, 2009], we are given a premise sentence (e.g.,
The cat is playing Frisbee on the beach) and have to judge
if a hypothesis (e.g., A pet is using a plastic toy on sand; or
An elephant is bathing in the river) is entailed by the premise,
or contradicts it, or is unrelated. Thus, a special case is rec-
ognizing textual entailment (RTE) [Sammons et al., 2011].
A public NLI corpus was recently released [Bowman et al.,
2015]. Their baseline approach represented the premise and
hypothesis as concatenated word embedding vectors, which
were input to a multi-layer LSTM-RNN architecture that out-
puts one of the above classes.

Various Siamese networks with tied weights have been
used to compare or label pairs of short texts. [Severyn and
Moschitti, 2015] used Siamese convnets to match candidate
answer passages to queries. [Mueller and Thyagarajan, 2016]
used Siamese LSTMs for NLI. In recent proposals [Rock-
täschel et al., 2015; Wang and Jiang, 2015; Liu et al., 2016],
each hypothesis token attended to specific focus tokens in the
premise sentence. Some NLI approaches [Yin et al., 2015;
He and Lin, 2016] compute attention from a matrix of pair-
wise interactions like us, but these are then used to predict
categorical NLI labels.
Critical differences between NLI/RTE and ASAG:
ASAG has often been connected to NLI/RTE by regarding the
student answer as premise and the model answer as hypoth-
esis [Ostermann et al., 2015; Mohler et al., 2011]. However
the differences between the tasks are stronger than their ap-
parent commonality. [Ostermann et al., 2015] conducted an
entailment annotation exercise with fine grained labels and
compared with scores assigned by teachers. They found:
• Not all RTE tags could be mapped to ASAG scores.

ASAG scores are typically ordinal, e.g., on a 5-point
scale whereas RTE tasks have categorical labels such as
‘entailed’, ‘not entailed’, and ‘contradictory’
• Partial entailment instances had poor agreement or cor-

respondence with human-provided ASAG scores.
In ASAG, key concepts in the model answer must be covered
by the student answer, but the concepts may be diffused over
many tokens, and extra material in the answer is not necessar-
ily a disqualification. A student answer which is more specific
than the model answer may not entail the latter, but nonethe-
less is likely to be scored as correct. Finally, the organizers of
the “student response analysis” (SRA) task in SemEval-2013
workshop concluded that the correlation between answer as-
sessment judgments and entailment judgments is not perfect.1

Finally, there are two other NLP tasks which are related
to ASAG. In automatic essay scoring (AES), the objective is
to score essays on the basis of composition, fluency, gram-
matical correctness etc. Unlike ASAG, AES evaluates essays

1https://www.cs.york.ac.uk/semeval-2013/task7/

2



Earth mover distance
pooling layer

R
eg

re
ss

io
n 

la
ye

r

M
odel answ

er M
�

Student answer A�
0

0
0

Loss

G
ro

un
d 

tr
ut

h 
sc

or
e

Figure 2: High-level view of our ASAG system.

as per “absolute” criteria, not relative to instructor-provided
model answers [Kaggle, 2012a]. In paraphrase detection
(PD), the objective is to detect if two sentences or passages
have the same meaning [Socher et al., 2011] can also be seen
as similar to ASAG. However, unlike PD, ASAG is asym-
metric and there may not be a one-to-one correspondence be-
tween concepts in model and student answers.

3 System Overview
Figure 2 gives a high-level view of our system. The compo-
nents are described in detail in sections 4 and 5. During in-
ference, the system gets a question, associated with a model
answerM and a student answer A, and has to estimate a non-
negative real or ordinal score yA. During training, gold yA are
provided. M and A are modeled as sequences of tokens. To-
kens are mapped to pre-trained (300-dimensional) word em-
beddings [Mikolov et al., 2013b] and input to a conventional
Siamese bi-LSTM [Hochreiter and Schmidhuber, 1997] with
tied parameters, which we call LSTMM and LSTMA.

Suppose there are `M tokens in model answer M and
`A tokens in student answer A. Bi-LSTM LSTMM emits
hhhM = (hM,i : i ∈ [1, `M ]) where hM,i = [

−→
h M,i,

←−
h M,i] is

a concatenation of the forward and backward states at each
token position i ∈ [1, `M ]. Similarly, LSTMA emits hhhA =

(hA,j = [
−→
h A,j ,

←−
h A,j ]) at each token position j ∈ [1, `A]. In

our implementation each h vector is in R50+50. As Figure 2
shows, hhhM and hhhA are input into a pooling layer described in
section 4. The output of the pooling layer goes to a flexible
regression layer, discussed in section 5.

4 Earth Mover Distance (EMD) Pooling
Layer

At this stage, many Siamese LSTMs would compare/com-
bine state vectors

−→
h M,`M and

−→
h A,`A (and possibly

←−
h M,1

and
←−
h A,1) to predict a label. But, building on our intuition

about ASAG thus far, we inject all of hhhM and hhhA into a
“crossbar” type pooling layer, defined by the earth mover dis-
tance (EMD). We first define the distance between two hidden
states: dij = ‖hM,i − hA,j‖2.

Next, we define earth mover distance as a minimization

over an auxiliary transport matrix TTT ∈ R`M×`A :

EMD(hhhM ,hhhA) = min
TTT≥000

`M∑
i=1

`A∑
j=1

Tijdij (1)

where
∑
i Tij = 1/`A and

∑
j Tij = 1/`M . (2)

Intuitively, EMD is defined by a minimal fractional trans-
portation between the state vectors in hhhM and hhhA. [Kusner
et al., 2015] calculated EMD between word embedding se-
quences, but not to LSTM states that capture long distance
semantics in the answers. In fact, in section 6, we show that
EMD between words is inferior to that between LSTM states.

4.1 Alternating Optimization
We need to backprop errors through the EMD pooling net-
work to the LSTM weights Θ, because hhhM ,hhhA, and, by ex-
tension, dij change as training progresses. However, in (1)
and (2), TTT ’s dependence on Θ is not in a closed form. We
address this problem using alternating optimization. Every
half-step, we fix Θ, their hidden states hhhM ,hhhA, and therefore
dijs. Then we optimize TTT using LP. In the other half-step, we
fix TTT and backprop the loss into Θ. For reasonable choices
of the regression and loss layers in Figure 2 (see section 5.3),
the loss becomes differentiable wrt Θ.

4.2 Sinkhorn Approximation
Unfortunately, the time complexity of solving the EMD op-
timization via LP is O(d3 log d) where d = max{`M , `A}
[Kusner et al., 2015]. This becomes a bottleneck for training
the network, because this computation needs to be performed
for every single update.

To alleviate the cubic time complexity of EMD, we follow
the approach of [Cuturi, 2013] to add an entropy regulariza-
tion term to the transport objective (1). For any fixed λ > 0,
the regularized transportation problem is defined as

min
T≥000

`M∑
i=1

`A∑
j=1

Tij‖hM,i − hA,j‖2+ 1
λTij log Tij , (3)

subject to the constraints (2). The larger the λ, the closer
this relaxation is to the original EMD. This modified opti-
mization is strictly convex, and an efficient matrix scaling al-
gorithm [Sinkhorn and Knopp, 1967; Cuturi, 2013] can be
used to solve it in O(d2) time, giving the Sinkhorn distance,
a good approximation to EMD. It may be possible to back-
prop through the matrix scaling steps to the LSTMs as well
[Huang et al., 2016], but this is left for future work.

5 Output Regression Layer and Loss Design
The EMD pooling layer outputs a real scalar, but this does
not directly correspond to answer grades/score. In this sec-
tion we discuss alternatives to obtain a score from the LSTM
or EMD outputs. The best choice may depend on how the
ASAG system will be evaluated.

5.1 Regression to Continuous Score (Baseline)

A standard Siamese LSTM system would compare
−→
h M,`M

with
−→
h A,`A . These can be combined into a real-

valued answer score predictor. E.g., [Mueller and
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Thyagarajan, 2016] use the following transformation:
exp

(
−
∥∥∥−→h M,`M −

−→
h A,`A

∥∥∥
1

)
which is large if the LSTM

states are similar, and small if they are different. The final
loss can be L1 or L2 (mean square) error between the above
prediction and ground truth. (More about the choice of losses
in section 6.3.)

5.2 Ordinal Labels with Non-convex Loss (Logits)
In a standard multi-class classification problem with categor-
ical labels 1, . . . ,K (no order between them), neural net-
works output a multinomial distribution (pk : k ∈ [1,K])
from a last softmax stage, whose cross-entropy KL(p||· · ·)
from a one-hot gold distribution (. . . , 0, 1, 0, . . .) is used
as the loss. In case of ordinal regression [Cheng, 2007;
Gutiérrez et al., 2016], the gold label representation changes
from one-hot to “prefix-hot”: if the label is k, the first k el-
ements of the vector are ones, and the suffix all zeros, i.e.,
(1, . . . , 1, 0, . . . , 0). The goal of the regression stage is to
learn a function that maps the input (EMD, say) to a vector
o = (o1, o2, ..., ok, ...oK), where oi ≈ 1 if i ≤ k and oi ≈ 0
if i ≥ k. ‖o‖1 is an estimate of k itself, rather than 1.

Suppose the pooled output in Figure 2 is z ∈ R. For EMD
pooling, larger z implies smaller k and vice versa, so we will
negate z in the following. We include in the trainable pa-
rameters b1 ≤ b2 ≤ · · · ≤ bK , and predict output vector
pk = σ(−z − bk), where σ(•) = 1/(1 + e−•) is the sigmoid
function. As loss between p and ground truth, we can use L1
or L2 or KL divergence. During inference, to make a predic-
tion, our method scans p1, p2, . . . , pK in order. It stops when
pk drops below some predefined threshold, or k reaches K.

5.3 Ordinal Labels with Convex Loss (SVOR)
Instead of using b1, . . . , bK as the transition points for sig-
moids, we can adopt standard convex formulations for ordi-
nal regression [Herbrich et al., 1999; Chu and Keerthi, 2007]
and use them to define consecutive ranges within which the
EMD output must fall to emit successive ordinal scores.

To ease notation, let −∞ = b0 ≤ b1 ≤ · · · ≤ bK = +∞,
where only b1, . . . , bK−1 are learnable parameters, inducing
K intervals in R. If the gold label is k, then −z should lie in
[bk−1, bk]. Tacking on a margin, we define the “tub loss” as a
two-sided hinge loss around [bk−1 + 1, bk − 1]:

tub(z, k;bbb) =


bk+1 + z, −z ≤ bk−1 + 1,

−z − (bk − 1), −z ≥ bk − 1,

0 otherwise
(4)

The alternating training protocol of section 4.1 can now be
formally specified as the LSTM-EMD-SVOR algorithm.

1: Initialize tied LSTM parameters Θ and regression
parameters bbb

2: while validation error reduces do
3: for each labeled instance 〈M,A, k〉 do
4: Input M,A to LSTMs and calculate dijs
5: Fix {dij}, find optimal TTT via matrix scaling
6: Fix TTT , calculate z, then tub(z, k;bbb) loss
7: Backprop to update Θ and bbb

During inference, Θ, bbb are fixed. We input M,A as before,
compute z, and then report k such that −z ∈ [bk−1, bk]. De-
pending on the optimizer, we can enforce bk−1 ≤ bk directly,
or by a suitable change of variable, like bk−1 + eck = bk.

6 Experiments
We evaluate our system on two grading tasks that we call CS
Dataset and SemEval Dataset, described in section 6.1. In
section 6.2 we describe how we augmented them to better
train our networks. Subsequently we describe different eval-
uation metrics used, in section 6.3. The rest of this section
presents accuracy numbers comparing with relevant prior art.

6.1 Datasets
We use two datasets for reporting experimental results which
we describe next.

CS dataset: This is one of the earliest ASAG datasets con-
sisting of 80 questions from 12 assignments of an undergrad-
uate “Data Structure” course leading to total 2, 273 student
responses [Mohler et al., 2011].2 Each student answer was
evaluated on a scale of [0, 5] with 0.5 interval leading to
11 permissible scores. Student answers were independently
evaluated by two annotators, with their average designated
as the gold label. We train the proposed network with the
ordinal-loss based final layer on this dataset for each assign-
ment by training on the remaining 11 assignments. Before
data augmentation (section 6.2), the average size of training
set (in 12-fold cross validation) is about 2, 100 student re-
sponses.

SemEval dataset: This dataset is a part of the “Student
Response Analysis” (SRA) in the Semantic Evaluation (Se-
mEval) workshop in 2013 [Dzikovska et al., 2013].3 We use
the SCIENTSBANK subset of the data which contains approx-
imately 10, 000 answers to 197 assessment questions from 15
different science domains. The answers were graded by mul-
tiple annotators on a nominal scale viz. ‘Correct’, ‘Partially
correct/incomplete’, ‘Contradictory’ (student answer contra-
dicts the reference answer), ‘Irrelevant’ and ‘non domain’.

Owing to its ordinally incomparable labels, we cannot re-
port numbers that are directly comparable to published num-
bers on this task. Nevertheless, we adapt it to compare
between the alternative network architectures we have pro-
posed. We use the ordinal labels ‘Correct’, ‘Partially correc-
t/incomplete’, and ‘Irrelevant’ and assign them ordinal labels
2, 1 and 0, to be able to report MAE, RMSE and correlation
as in the Mohler data set.

SemEval test protocols: The test set is divided into three
subsets with varying degrees of similarity with the training
examples. The Unseen Answers (UA) dataset consists of re-
sponses to questions that are present in the training set. Un-
seen Questions (UQ) contains responses to in-domain but pre-
viously unseen questions. Three of the fifteen domains were

2http://web.eecs.umich.edu/~mihalcea/downloads/
ShortAnswerGrading_v2.0.zip

3https://www.cs.york.ac.uk/semeval-2013/task7/index.php\
%3Fid=data.html
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held out for a final Unseen Domains (UD) test set, containing
completely out-of-domain question-response pairs.

6.2 Training Data Augmentation
Public ASAG datasets are rarely large enough to effectively
train a large number of model parameters in complex neu-
ral networks. Vision and speech [Cui et al., 2015] labeling
tasks augment training data using label-preserving transfor-
mations. [Zhang and LeCun, 2015] used a thesaurus derived
from Wordnet to replace some words from text with their syn-
onyms and thereby increasing training data size. Here we
describe our data augmentation method. A substantial num-
ber of the answers in our data-set are given perfect scores as
per the instructors. We hypothesize that the student answers
which received perfect scores by the instructor are equivalent
to instructor-provided model answers. For example, if out of
n students m received perfect scores (m < n) then by above
strategy we can generate m × (n − 1) new (model answer,
student answer) training pairs. Augmenting the Mohler data
set results in an increase from about 2500 to 35000 training
pairs. Augmenting the SemEval data set increases training
pairs from about 5000 to 78000. During testing, we use only
the model answer provided by the instructor.

6.3 Evaluation Metrics
ASAG systems that predict ordinal labels have been evalu-
ated using a variety of metrics, in two broad categories: value
deviation and correlation.
Mean absolute error (MAE): If y∗ is the gold score and y
is the system-generated score, this is simply |y−y∗|, averaged
over instances.
Root mean square error (RMSE): If i ∈ [1, I] indexes
instances, this is

√
(1/I)

∑
i(yi − y∗i )2.

Correlations: Here the goal is to compare the orders im-
posed by gold and system scores over all answers. Pearson’s r
is the most popular correlation coefficient in ASAG.

While both absolute and correlation measures have been
used in ASAG, we argue that absolute deviation makes more
sense, because we are interested in fair assessment, rather
than merely ordering students. Further, MAE is believed to
be superior to RMSE [Willmott and Matsuura, 2005], in part
because of nonuniform scaling: errors < 1 shrink, while er-
rors > 1 expand when squared. Nevertheless, we report all
the measures for easy comparison with relevant prior art.

The upper block of Table 3 gives baseline numbers. Tf-
idf is the simple TFIDF similarity between M and A. Lesk
is a standard WordNet-based similarity (see [Mohler et al.,
2011]). The numbers for [Mohler et al., 2011] are from that
paper. We ran code provided by [Yin et al., 2015] and [He
and Lin, 2016] on our ASAG data. We also tried the atten-
tion model of [Rocktäschel et al., 2015], but failed to get
any better baseline results than the ones shown. The sec-
ond block shows ablation studies on our network architecture.
The lower block shows the best design choices.

6.4 Ablation Studies
Although exhaustively covering all possible combinations in
{Word2vec, ConvNet, LSTM} × {last state, all states} ×

Figure 4: EMD heatmaps for good (score 5/5, above) and poor
(score 2/5, below) answers. The good answer shows large values
of Tij (bright color) in many cells. The bad answer shows small val-
ues (dark colors). Words of M and A are shown along the margins.

{Avg, Max, EMD} × {SoftMax, L2, Logits, SVOR} would
be too tedious, we compare some important points in this de-
sign space.

Choice of Output Stage: In table 3, using L2 loss at the
output generally results in poorer performance. Results are
mixed among the best two choices in rows 13 and 14. SVOR
is much better than Logits for MAE and RMSE, but not as
good for correlation, which may be because our loss function
is not ranking-oriented. Either may be used, depending on
whether the assessment goal is accurate scoring or ranking.

Last-state vs. All states: LSTM-Last-L2 is the only row
where the last state vector was used, and is generally infe-
rior to most methods where all states were used (except with
L2 output loss). To better understand the value of informa-
tion from all states, we plotted Tij from sample M,A pairs
as heatmaps in Figure 4, for one good and one poor answer.
The good heatmap has large bright patches representing high
transportation values (i.e., LSTM state matches), where as the
poor heatmap has large dark patches. Last-state regression
score roughly corresponds to the brightness of the bottom
right corner cell T`M ,`A . The heatmaps show that even a good
(respectively, poor) answer may have a relatively low (re-
spectively, high) value of this cell. Therefore, incorporating
signals from all intermediate states is important. Attention-
based networks also try to capture this, but they have many
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Pooling input Which state Pooling Output stage System name MAE RMSE Pearson’s rrr
1 Tf-idf 1.022 0.327
2 Lesk 1.050 0.450
3 [Mohler et al., 2011] 0.978 0.518
4 Convnet All Avg SoftMax ABCNN, [Yin et al., 2015] 0.74 0.92 0.52
5 Convnet All Max SoftMax [He and Lin, 2016] 0.75 0.87 0.61
6 LSTM Last L2 LSTM-Last-L2 0.91 1.101 0.600
7 LSTM All EMD L2 LSTM-EMD-L2 0.96 1.28 0.46
8 LSTM All Max L2 LSTM-MaxPool-L2 1.12 1.60 0.411
9 LSTM All Avg L2 LSTM-AvgPool-L2 1.16 1.58 0.393

10 Word2vec EMD SVOR W2V-EMD-SVOR 0.77 1.073 0.355
11 LSTM All Max SVOR LSTM-MaxPool-SVOR 0.83 0.973 0.522
12 LSTM All Avg SVOR LSTM-AvgPool-SVOR 0.63 0.95 0.571
13 LSTM All EMD SVOR LSTM-EMD-SVOR 0.490 0.830 0.550
14 LSTM All EMD Logits LSTM-EMD-Logits 0.657 1.135 0.649

Table 3: Performance on Mohler CS dataset with 12-fold training (lower is better for RMSE and MAE; higher is better for Pearson’s r). We
assess various combinations of input stage, choice of state/s to compare, pooling logic, and regression stage.

System MAE RMSE Pearson’s rrr

UA UQ UD UA UQ UD UA UQ UD

W2V-EMD-SVOR 0.749 0.806 0.732 0.845 1.096 1.131 0.211 0.125 0.189
LSTM-Last-L2 0.777 0.803 0.790 1.010 1.026 1.038 0.076 0.087 0.137
LSTM-EMD-Logits 0.561 0.761 0.796 0.780 1.065 1.136 0.434 0.134 0.187
LSTM-EMD-SVOR 0.469 0.738 0.705 0.758 0.996 0.958 0.554 0.157 0.237

Table 5: Performance on SemEval dataset (lower is better for RMSE and MAE; higher is better for Pearson’s r). For test protocols UA, UQ,
and UD, see section 6.1.

more parameters which are more delicate to optimize com-
pared to our frugal model (rows 4 and 5 in Table 3).

EMD over words vs. LSTM states: At this point one may
be convinced that a whole sequence-to-sequence match is im-
portant, but it would be tempting to try a simpler alternative
to LSTM, namely, the word mover distance of [Kusner et
al., 2015] which computes EMD across stateless sequences
of word embeddings [Mikolov et al., 2013a]. But, comparing
row 10 against the most closely comparable rows 13 and 14 of
Table 3, we see clear evidence that EMD pooling over state-
less word embeddings is not nearly as good as EMD pooling
over LSTM states.

6.5 Comparison with Current Systems
Comparing rows 3 and 13 in Table 3 shows that we perform
better than [Mohler et al., 2011]. They employ a support
vector regression machine that predicts scores using a set of
dependency graph alignment and lexical similarity measures
while our method uses no handcrafted features.

[Ramachandran et al., 2015] adopt a different evaluation
setup. For each assignment/test, they use 80% of the data for
training and the rest as test. This setup thus enables in-domain
model training. Their system trains a random forest regres-
sor based on features derived from automatically generated
regexp patterns to capture semantic variations and syntactic
structures of good answers. Results in this setup are shown in
Table 6. Our model performs better on RMSE and matches
on correlation (they did not report MAE).

6.6 SemEval Performance
Table 5 compares some of the system variations in Table 4.1
for the SemEval data. This data set has many tied gold and

System MAE RMSE rrr

[Ramachandran et al., 2015] - 0.86 0.61
LSTM-EMD-SVOR 0.42 0.77 0.61

Table 6: Performance on Mohler 2011 dataset with in-domain train-
ing (lower is better for RMSE and MAE; higher is better for Pear-
son’s r).

systems scores, which explains the low correlation across the
board. However, for MAE and RMSE, the trends seen in the
Mohler CS data are more-or-less preserved here, with LSTM-
EMD-SVOR emerging superior to other combinations.

6.7 Effect of λ
Table 7 shows how MAE and time (for one EMD or Sinkhorn
calculation) varies with λ. We chose λ = 10 for all experi-
ments as a robust compromise.

λλλ MAE EMD time Sinkhorn time
20 0.026 0.024 0.012
10 0.0306 0.024 0.0093
1 0.1414 0.024 0.0019

0.1 2.0098 0.024 0.0004
Table 7: Trade-off between accuracy and speed via λ.

7 Conclusion
In this paper, we proposed a novel neural architecture for
automatic short answer grading (ASAG). Our system com-
bines Siamese bi-LSTMs, a novel pooling layer based on the
Sinkhorn distance between LSTM state sequences, and a sup-
port vector ordinal output layer. Training is enhanced via a
task-specific data augmentation strategy. Experiments on two
publicly available ASAG datasets established that our system
has scoring accuracy superior to recent baselines.
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