
Structured Learning for Non-Smooth Ranking Losses
Soumen Chakrabarti Rajiv Khanna Uma Sawant Chiru Bhattacharyya

IIT Bombay and IISc Bangalore

Training setup

• A set of queries; each query q comes with a set
of documents

• A document may be relevant or irrelevant wrt q

• Multilevel relevance also possible, not consid-
ered here

• n+
q relevant (“good”) docs D+

q ; n−q irrelevant
(“bad”) docs D−

q

• Each doc represented as a feature vector xqi ∈
Rd; d ≈ 50 . . . 300

• Learner estimates model w ∈ Rd

Application to test data

• Given a query and an unlabeled doc set

• Score of doc i is w>xqi

• Sort docs by decreasing score, present top-k

Evaluation criteria

• Ideally, all docs in D+
q should be ranked above

any doc in D−
q

• Penalty for imperfect rankings can be defined in
many ways

• Let g, b range over good, bad docs

Area under curve (AUC): Related to number of
flipped good-bad pairs

1−∆AUC =
1

n+n−

∑
g,b

[[g is ranked above b]]

Mean average precision (MAP):

1−∆MAP =
number of good docs up to g

number of docs up to g

Mean reciprocal rank (MRR): Let r1 be rank of
first good doc; then

1−∆MRR =

{
1/r1, r1 ≤ k

0, otherwise

(no credit for 2nd and subsequent good docs)

Normalized discounted cumulative gain (NDCG):
Discounted cumulative gain for q is DCG(q) =∑

0≤i<kG(q, i)D(i)

• G(q, i) is the gain or relevance of document i
for query q, zqi ∈ {0, 1}

•D(i) is the discount factor:

D(i) =

1 0 ≤ i ≤ 1

1/ log2(1 + i) 2 ≤ i < k

0 k ≤ i

(decaying credit for good doc at lower ranks)
• The ideal ranking has DCG∗(q) =∑min{n+

q ,k}−1

i=0 G(q, i)D(i)

• Normalize DCG for imperfect ranking with
DCG of perfect ranking:

NDCG(q) =
DCG(q)

DCG∗(q)
=

∑
0≤i<k zqiD(i)

DCG∗(q)

(In all cases, average over all queries)

Loss cannot be decomposed

• In standard binary classification, the loss is∑
i[[yi 6= y∗i]], where y∗i is the true label of in-

stance i and yi is the learner-assigned label

• Adds up over instances

• In contrast, if y∗q is the perfect ranking and y an-
other ranking, ∆ is a function of y as a whole

• Can write as ∆(y∗q , y) = ∆q(y), say

• If y represents a total order, then there are
(n+ + n−)! possibilities

• If y represents a relative order between good
and bad docs, there are 2n

+n− possibilities

Structured SVM
• Let φ(xq, y) ∈ Rd be a feature map over all Dq

and a ranking y of docs in Dq

• Learn model vector w ∈ Rd

• Score of ranking y is w>φ(xq, y)

• Inference problem: arg maxy w
>φ(xq, y)

• Max-margin optimization:

arg min
w;ξ≥~0

1
2w

>w + C
|Q|

∑
q

ξq s.t. (1)

∀q, y 6= y∗q : w>φ(xq, y
∗
q) ≥ w>φ(xq, y) + ∆(y∗q , y)− ξq.

(want y∗ to beat all other ys)

• Avoid exponential number of primal constraints
by solving approximate dual [3]

• To do this, must solve loss-augmented infer-
ence (“argmax”) problem efficiently:

arg max
y
w>φ(x, y) + ∆(y)

• Yue et al. [4] solved for MAP, we solve MRR and
NDCG here

Feature map design
• Vector xqi from domain knowledge

• But map φ is key to learning to rank

• φpo(x, y) = 1
n+n−

∑
g,b ygb(xg − xb) has been used

For AUC and MAP

• Can show that

φpo(x, y
∗)− φpo(x, y) = ψ(x, y∗)− ψ(x, y),

where ψ(x, y) = 2 1
n+
q n

−
q

∑
g

∑
b:b�g(xb − xg)

• Recasting helps us propose alternative feature
map for MRR:

φmrr(x, y) =
∑

b:b�g0(y)(xb − xg0(y))

(only top good doc, no scaling)

• φ should be matched to ∆

Argmax algo for MRR
• arg maxy ∆q(y) + w>φ(xq, y)

• 1, 1/2, 1/3, 1/k, 0 only possible values of MRR

• For a given value of MRR, say 1/r, first good
doc must be at rank r

• Docs at rank 1, . . . , r − 1 must be bad

• Docs after rank r can be in any order

• For a given configuration b, . . . , b︸ ︷︷ ︸
r−1

, g︸︷︷︸
r

, ?, ?, . . .︸ ︷︷ ︸
rest

need to fill good and bad slots to maximize
w>φ(xq, y)

• Bad docs b at 1, . . . , r − 1 with largest w>xb

• Good doc g with smallest w>xg at position r

• MRR = 0 handled separately

• Add up ∆ and w>φ for each possible ∆ and take
maximum

Argmax algo for NDCG
• Assume two relevance levels (good and bad)

• ∆NDCG is unchanged if two good or two bad doc-
uments are interchanged

• Therefore the y that maximizes ∆q(y) +
w>φ(xq, y) has good (and bad) docs in decreas-
ing score order

• Find optimal merge of good and bad lists each
sorted by decreasing w>xqi

• Dynamic programming and greedy solutions

SVMCOMBO

• Ultra-optimizing for one ∆ not good for mixed
workload

• Anyway targeted ∆ not great in experiments

• Do the different ∆ls conflict, or is it possible for
a single w to do well for a number of them?

• Optimal for all ∆l pushes all good to top, so we
are hopeful

arg min
w;ξ≥~0

1
2w

>w + 1
|Q|

∑
q

∑
l

Clξ
l
q s.t.

∀l, q, ∀y 6= y∗q : w>δφ(y∗q , y;xq) ≥ ∆l(y
∗
q , y)− ξlq

Other approaches
• SVMMAP [4]: Directly optimize for ∆MAP

• DORM [1]: structured SVM for ∆NDCG based on
Hungarian assignment of docs to ranks

• MCRANK [2]: boosted regression trees

Experiments and summary
• φmrr much better than φpo for ∆MRR

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9k

M
R
R TD2004 phi_po TD2004 phi_mrr

TD2003 phi_po TD2003 phi_mrr

OHSUMED phi_po OHSUMED phi_mrr

• SVMNDCG is much faster than DORM

0

50000

100000

150000

200000

250000

300000

O
H

S
U

M
E

D

T
D

2
0
0
3

T
D

2
0
0
4

O
H

S
U

M
E

D

T
D

2
0
0
3

T
D

2
0
0
4

DORM SVMndcg

Algos,

DataSets

T
im

e
(m

s
)-
->

QP

ArgMax

• SVMNDCG, SVMMRR faster than MCRANK

Dataset M
C

R
A

N
K

tre
e

M
C

R
A

N
K

bo
os

t

M
C

R
A

N
K

to
ta

l

S
V

M
N

D
C

G

S
V

M
M

R
R

OHSUMED 1034 67 1102 4.8 30.6
TD2003 9730 383 10113 14.9 125
TD2004 8760 548 9308 19.1 148

M
R
R
1
0

N
D
C
G
1
0

M
A
P

M
R
R
1
0

N
D
C
G
1
0

M
A
P

M
R
R
1
0

N
D
C
G
1
0

M
A
P

M
R
R
1
0

N
D
C
G
1
0

M
A
P

M
R
R
1
0

N
D
C
G
1
0

M
A
P

AUC .799 .635 .582 .510 .349 .256 .639 .501 .420 .607 .448 .267 .632 .441 .264

MAP .808 .642 .586 .618 .411 .314 .614 .496 .412 .696 .469 .277 .636 .450 .272

NDCG .790 .636 .581 .587 .372 .302 .631 .457 .374 .517 .323 .175 .608 .356 .171

NDCG-NC .818 .640 .582 .595 .404 .306 .611 .486 .404 .685 .455 .265 .624 .443 .264

MRR .795 .623 .570 .628 .405 .330 .629 .441 .383 .670 .410 .244 .643 .426 .230

COMBO .813 .635 .578 .667 .434 .345 .647 .458 .384 .695 .465 .277 .647 .449 .272

DORM .807 .637 .583 .587 .362 .290 .474 .340 .297 .662 .413 .243 .621 .435 .250

McRank .701 .565 .527 .650 .403 .232 .588 .529 .453

TREC2001OHSUMED TD2003 TD2004 TREC2000

• “Using the correct training loss” may be worse
than using an incorrect training loss!

• Multicriteria learning (SVMCOMBO) most robust
and may be safest for search applications

• Structured listwise learning to rank is competi-
tive with other approaches

• Feature map design needs more insight and im-
provement

References
[1] O. Chapelle, Q. Le, and A. Smola. Large margin optimization of rank-

ing measures. In NIPS 2007 Workshop on Machine Learning for Web
Search, 2007.

[2] P. Li, C. J. C. Burges, and Q. Wu. McRank: Learning to rank using
multiple classification and gradient boosting. In NIPS, pages 845–
852, 2007.

[3] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large
margin methods for structured and interdependent output variables.
JMLR, 6(Sep):1453–1484, 2005.

[4] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector
method for optimizing average precision. In SIGIR Conference, 2007.

KDD 2008, August 24–27, 2008, Las Vegas, Nevada, USA Author contact: soumen@cse.iitb.ac.in Supported by Microsoft External Research Initiative

