Structured Learning for Non-Smooth Ranking Losses

Soumen Chakrabarti

Rajiv Khanna Uma Sawant

IIT Bombay and IISc Bangalore

Training setup

- A set of queries; each query *q* comes with a set of documents
- \bullet A document may be relevant or irrelevant wrt q
- Multilevel relevance also possible, not considered here
- n_q^+ relevant ("good") docs D_q^+ ; n_q^- irrelevant ("bad") docs D_q^-
- Each doc represented as a feature vector $x_{qi} \in \mathbb{R}^d$; $d \approx 50 \dots 300$
- Learner estimates model $w \in \mathbb{R}^d$

Application to test data

- Given a query and an unlabeled doc set
- *Score* of doc i is $w^{\top} x_{qi}$
- \bullet Sort docs by decreasing score, present top-k

Evaluation criteria

 \bullet Ideally, all docs in D_q^+ should be ranked above any doc in D_q^-

- \bullet If y represents a total order, then there are $(n^+ + n^-)!$ possibilities
- If y represents a relative order between good and bad docs, there are $2^{n^+n^-}$ possibilities

Structured SVM

- Let $\phi(x_q, y) \in \mathbb{R}^d$ be a *feature map* over all D_q and a ranking y of docs in D_q
- \bullet Learn model vector $w \in \mathbb{R}^d$
- \bullet Score of ranking y is $w^{\top}\phi(x_q,y)$
- Inference problem: $\arg \max_y w^{\top} \phi(x_q, y)$
- Max-margin optimization:

$$\arg\min_{w;\xi\geq\vec{0}}\frac{1}{2}w^{\top}w + \frac{C}{|Q|}\sum_{q}\xi_{q} \quad \text{s.t.} \tag{1}$$
$$\forall q, y \neq y_{q}^{*}: w^{\top}\phi(x_{q}, y_{q}^{*}) \geq w^{\top}\phi(x_{q}, y) + \Delta(y_{q}^{*}, y) -$$

(want y^* to beat all other ys)

- Avoid exponential number of primal constraints by solving approximate dual [3]
- To do this, must solve loss-augmented infer-

Uma Sawant Chiru Bhattacharyya

- Find optimal merge of good and bad lists each sorted by decreasing $w^{\top} x_{qi}$
- Dynamic programming and greedy solutions

SVМсомво

- \bullet Ultra-optimizing for one Δ not good for mixed workload
- \bullet Anyway targeted \bigtriangleup not great in experiments
- Do the different Δ_l s conflict, or is it possible for a single w to do well for a number of them?
- \bullet Optimal for all \bigtriangleup_l pushes all good to top, so we are hopeful

$$\begin{split} \arg\min_{w;\xi\geq\vec{0}}\frac{1}{2}w^{\top}w + \frac{1}{|Q|}\sum_{q}\sum_{l}C_{l}\xi_{q}^{l} \quad \text{s.t.} \\ \forall l,q, \forall y\neq y_{q}^{*}: w^{\top}\delta\phi(y_{q}^{*},y;x_{q})\geq\Delta_{l}(y_{q}^{*},y) - \xi_{q}^{l} \end{split}$$

Other approaches

- \bullet SVMMAP [4]: Directly optimize for \bigtriangleup_{MAP}
- DORM [1]: structured SVM for △_{NDCG} based on Hungarian assignment of docs to ranks
 MCRANK [2]: boosted regression trees

- Penalty for imperfect rankings can be defined in many ways
- Let g, b range over good, bad docs
- Area under curve (AUC): Related to number of flipped good-bad pairs

 $1 - \Delta_{\text{AUC}} = \frac{1}{n^+ n^-} \sum_{g, b} \llbracket g \text{ is ranked above } b \rrbracket$

Mean average precision (MAP):

 $1 - \Delta_{MAP} = \frac{\text{number of good docs up to } g}{\text{number of docs up to } g}$

Mean reciprocal rank (MRR): Let r_1 be rank of first good doc; then

 $1 - \Delta_{\mathsf{MRR}} = \begin{cases} 1/r_1, & r_1 \leq k \\ 0, & \text{otherwise} \end{cases}$

(no credit for 2nd and subsequent good docs)

Normalized discounted cumulative gain (NDCG):

Discounted cumulative gain for q is $\mathrm{DCG}(q) = \sum_{0 \leq i < k} G(q,i) D(i)$

- G(q, i) is the gain or relevance of document i for query q, $z_{qi} \in \{0, 1\}$
- D(i) is the discount factor:

 $D(i) = \begin{cases} 1 & 0 \le i \le 1\\ 1/\log_2(1+i) & 2 \le i < k\\ 0 & k \le i \end{cases}$

(decaying credit for good doc at lower ranks)

ence ("argmax") problem efficiently:

 $\arg\max_y w^\top \phi(x,y) + \Delta(y)$

• Yue *et al.* [4] solved for MAP, we solve MRR and NDCG here

Feature map design

- Vector x_{qi} from domain knowledge
- \bullet But map ϕ is key to learning to rank
- $\phi_{po}(x,y) = \frac{1}{n^+n^-} \sum_{g,b} y_{gb}(x_g x_b)$ has been used For AUC and MAP
- Can show that

 $\phi_{po}(x, y^*) - \phi_{po}(x, y) = \psi(x, y^*) - \psi(x, y),$ where $\psi(x, y) = 2\frac{1}{n_q^+ n_q^-} \sum_g \sum_{b: b \succ g} (x_b - x_g)$

 Recasting helps us propose alternative feature map for MRR:

$$\phi_{mrr}(x,y) = \sum_{b:b \succ g_0(y)} (x_b - x_{g_0(y)})$$

(only top good doc, no scaling)

 $\bullet \ \phi$ should be matched to Δ

Argmax algo for MRR

- $\arg \max_y \Delta_q(y) + w^\top \phi(x_q, y)$
- 1, 1/2, 1/3, 1/k, 0 only possible values of MRR
- \bullet For a given value of MRR, say 1/r, first good doc must be at rank r
- Docs at rank $1, \ldots, r-1$ must be bad
- \bullet Docs after rank r can be in any order

Experiments and summary

• ϕ_{mrr} much better than ϕ_{po} for Δ_{MRR}

• SVMNDCG is much faster than DORM

• SVMNDCG, SVMMRR faster than MCRANK

• "Using the correct training loss" may be worse

- The ideal ranking has $DCG^*(q) = \sum_{i=0}^{\min\{n_q^+,k\}-1} G(q,i)D(i)$
- Normalize DCG for imperfect ranking with DCG of perfect ranking:

 $NDCG(q) = \frac{DCG(q)}{DCG^*(q)} = \frac{\sum_{0 \le i < k} z_{qi} D(i)}{DCG^*(q)}$

(In all cases, average over all queries)

Loss cannot be decomposed

- In standard binary classification, the loss is $\sum_{i} [y_i \neq y_i^*]$, where y_i^* is the true label of instance *i* and y_i is the learner-assigned label
- Adds up over instances
- In contrast, if y_q^* is the perfect ranking and y another ranking, Δ is a function of y as a whole
- ullet Can write as $\Delta(y_q^*,y)=\Delta_q(y)$, say

- For a given configuration $\underbrace{b,\ldots,b}_{r-1},\underbrace{g}_{r},\underbrace{?,?,\ldots}_{\text{rest}}$ need to fill good and bad slots to maximize $w^{\top}\phi(x_q,y)$
- Bad docs b at $1, \ldots, r-1$ with largest $w^{\top} x_b$
- Good doc g with smallest $w^{\top} x_g$ at position r
- MRR = 0 handled separately
- \bullet Add up Δ and $w^{\top}\phi$ for each possible Δ and take maximum

Argmax algo for NDCG

- Assume two relevance levels (good and bad)
- Δ_{NDCG} is unchanged if two good or two bad documents are interchanged
- Therefore the y that maximizes $\Delta_q(y) + w^{\top}\phi(x_q,y)$ has good (and bad) docs in decreasing score order

- than using an incorrect training loss!
- Multicriteria learning (SVMCOMBO) most robust and may be safest for search applications
- Structured listwise learning to rank is competitive with other approaches
- Feature map design needs more insight and improvement

References

- [1] O. Chapelle, Q. Le, and A. Smola. Large margin optimization of ranking measures. In *NIPS 2007 Workshop on Machine Learning for Web Search*, 2007.
- [2] P. Li, C. J. C. Burges, and Q. Wu. McRank: Learning to rank using multiple classification and gradient boosting. In *NIPS*, pages 845– 852, 2007.
- [3] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. *JMLR*, 6(Sep):1453–1484, 2005.
- [4] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In *SIGIR Conference*, 2007.