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Web entities, relations, economy
� Information entities: page, ad, href, iframe
� Real-life artifacts: goods, services—these 

live in complex attribute spaces
� Actors: searcher, author, search engine, 

vendor, ad author, ad server
� Many interconnected relations

• wrote(author,href), received(person,email), 
paid(vendor,adserver,money), 
bookmarked(searcher,href,datetime), 
bought(searcher,product),…

� Emails, blogs, Friendster, Orkut, Tribe, 
LinkedIn, Yahoo360, del.icio.us, …
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Research efforts
How to model interactions and use models for 

well-motivated optimization problems?
� Network value of customers 

[Domingos+2001, Kempe+2003]
� Viral marketing, network epidemics and 

spectral analysis [Wang+2003]
� Effect of ranking monopolies on social 

networks [Baeza-Yates+2002, Cho+2004, 
Chakrabarti+2005, Pandey+2005]

� Recommender systems: content-based, 
collaborative, cold-start [Schein+2002]
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Targeting highly networked customers
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Probability of a given
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in a social network

Bitvector of marketing 
campaign over all nodes
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Search for M to maximize expected lift in profit
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(may not be constant)
One-shot, greedy, and hill-
climbing search for the best M
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Epidemics and eigenvalues

( )∏ ∈
−−=−

Evu
tuptvr

),(
)1,(1),(1 β

( )( ) ( )δ)1,(1)1,()1,(1)1,(1),(1 −−−+−−−−=− tvrtvptvrtvptvp

u vIf infected, infects each
neighbor with probability
β every time step

If infected, heals with
probability δ every
time step

Pr v infected at t Pr v gets infection at t−1

Pr no neighbor
gives infection

( ) say),1()1()1()( −=−+−= ttt SppEIp βδ Approximate linear
propagation model

p(t) dies down to zero as t →∞ if λ1(S) < 1, which happens if

)(/ 1 Eλβδ >



WWW 2005 Panel Soumen Chakrabarti  IIT Bombay 6

Hidden links in recommender systems
Is person p likely to enjoy movie m?
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Exploit additional linkage: find movies with
casting similar to that of movies user has liked before

First, fit a person-actor model from training data
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Positive feedback and “Googlearchy”
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Challenges
� Tractable yet reliable models

• Many types of entities, relations, quantities

• Simplify without losing the essence

� Large-scale clean-room experiments tough
• Parameter settings can leave permanent effect
• Long-term observation, control groups

� Highly non-linear dynamical systems
• Explosive/logistic growth, burstiness, competition

� Data privacy, capture, scaling
• Distributed ownership, willful distortions


