
Dynamic Personalized Pagerank in Entity-Relation Graphs
Soumen Chakrabarti

IIT Bombay

soumen@cse.iitb.ac.in

ABSTRACT
Extractors and taggers turn unstructured text into entity-
relation (ER) graphs where nodes are entities (email, pa-
per, person, conference, company) and edges are relations
(wrote, cited, works-for). Typed proximity search of the
form type=person NEAR company∼"IBM", paper∼"XML" is
an increasingly useful search paradigm in ER graphs. Prox-
imity search implementations either perform a Pagerank-like
computation at query time, which is slow, or precompute,
store and combine per-word Pageranks, which can be very
expensive in terms of preprocessing time and space. We
present HubRank, a new system for fast, dynamic, space-
efficient proximity searches in ER graphs. During prepro-
cessing, HubRank computes and indexes certain “sketchy”
random walk fingerprints for a small fraction of nodes, care-
fully chosen using query log statistics. At query time, a
small “active” subgraph is identified, bordered by nodes
with indexed fingerprints. These fingerprints are adaptively
loaded to various resolutions to form approximate person-
alized Pagerank vectors (PPVs). PPVs at remaining active
nodes are now computed iteratively. We report on experi-
ments with CiteSeer’s ER graph and millions of real Cite-
Seer queries. Some representative numbers follow. On our
testbed, HubRank preprocesses and indexes 52 times faster
than whole-vocabulary PPV computation. A text index
occupies 56 MB. Whole-vocabulary PPVs would consume
102GB. If PPVs are truncated to 56MB, precision com-
pared to true Pagerank drops to 0.55; in contrast, HubRank
has precision 0.91 at 63MB. HubRank’s average query time
is 200–300 milliseconds; query-time Pagerank computation
takes 11 seconds on average.

Categories and Subject Descriptors. H.3.1 [Information
Systems]: Information Storage and Retrieval—Content Anal-
ysis and Indexing ; H.3.3 [Information Systems]: Informa-
tion Search and Retrieval—Retrieval models

General Terms. Algorithms, Experimentation, Measure-
ment

Keywords. Personalized Pagerank, Graph proximity search

1. INTRODUCTION
Search is maturing to take advantage of taggers, anno-

tators and extractors that associate entities and relations
(ER) with text. E.g., recent personal information manage-
ment systems [7] represent the extracted data explicitly as
an ER graph, and enable powerful searches over the textual
graph data model. A typical graph fragment is shown in
Figure 1.

A very useful search paradigm that has surfaced in many
forms recently [19, 20, 16, 3] is proximity search or spreading

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

activation. E.g., a person who works in IBM on XML can
be sought by issuing the “schema-light” query type=person

NEAR company∼"IBM", paper∼"XML". Note that the rela-
tion works-for has not been used, and we can further re-
duce schema information by, e.g., relaxing paper∼"XML"
to *∼"XML"), which will also use, e.g., emails containing
“XML”. In general, fully offline static ranking is not feasi-
ble in this application domain, because the match predicates
can be diverse, even if limited to words.

Person

works-for

Paper
cited in-reply-to

wrote sent

Email

received

Company

Figure 1: A typical ER graph

The NEAR operator broadly follows a personalized Pagerank-
like [11, 12] semantics. A random surfer model is con-
structed as in Pagerank [5], with two modifications:

• The surfer does not follow edges out of a node uni-
formly at random. Edges have associated types; types
are associated with different walk probabilities [3, 17,
6] This is critical for accuracy in ER graphs: the strengths
of all relations should not be the same, and a balance
must be struck between query-specific and global node
prestige.

• When the surfer jumps or teleports, he jumps to a
node that satisfies a match predicate, e.g., a paper
containing “XML” or a company with “IBM” in the
text description, and not a node uniformly at random
from the whole graph.

Using standard notation, the ER graph is denoted G =
(V, E), the “conductance” of edge (u, v) ∈ E is Pr(v|u), i.e.,
the probability that the random surfer walks from u to v,
and is written as element (v, u) in a |V | × |V | conductance
matrix C, whose columns sum to 1. 0 < α < 1 is the
probability of walking (as against jumping) in each step.
The teleport vector is r; r(u) is positive only for nodes that
match some query word. r, being a multinomial distribu-
tion, has unit L1 norm. The |V | × 1 personalized Pagerank
vector (PPV) for teleport vector r is written as pr, and is
the solution to

pr = αCpr + (1− α)r. (1)

We will omit r when unnecessary or clear from the context.

1.1 The problem
Spreading activation has been proposed for searching in

graphs for over a decade [19, 20, 16]. ObjectRank [3]
was among the first large-scale implementations of proxim-
ity search. In ObjectRank, a PPV is precomputed for each
word in the corpus vocabulary and stored in decreasing or-
der of node scores (which means node IDs must be stored
too, taking 8 |V | bytes if int and float are used). Object-
Rank supports a few monotone score-combining functions
for multi-word queries. A multi-word query is executed by
an efficient merge of per-word PPVs. Balmin et al. [3, Sec-
tion 6] demonstrated, through a relevance feedback survey,
that ObjectRank captured a sufficiently powerful class of
scoring/ranking functions.

Vocabulary grows quickly with corpus size and can easily
reach a million. Precomputing a million PPVs will take too
long, even though ObjectRank uses some clever tricks to
reduce PPV computation time for “almost-acyclic” graphs.
The public ObjectRank demo appears to maintain a disk
cache of word PPVs which are used as and when possible.
If a query “misses” in cache, it is rejected and the missing
PPVs are computed offline for possible later use (see Ap-
pendix A).

Cache space is the other issue. A cache of reasonable
size will generally be much smaller than the vocabulary size
times |V |. To save space, ObjectRank truncates the PPVs
if a PPV element is smaller than some threshold. The ef-
fects of truncation on multi-word queries have not been thor-
oughly studied before, to our knowledge. In Section 2.4 we
show that multi-word ranking accuracy suffers significantly
if we truncate PPVs enough to match the size of a basic text
index.

Personalized Pagerank (2002) was invented two years be-
fore ObjectRank (2004), but, surprisingly, there has been
no open work1 to exploit PPVs to solve the performance
challenges in the ER graph search framework. Langville and
Meyer write in their well-known survey [13]: “If the holy
grail of real-time personalized search is ever to be realized,
then drastic speed improvements must be made, perhaps by
innovative new algorithms.”

1.2 Our contribution
Our goal is to preprocess the ER graph must faster than

computing all word PPVs, and yet answer queries much
faster than a query-time ObjectRank computation, while
consuming additional index space comparable to a basic text
index. To this end, our key ideas, elaborated into a sketch
of our system in Section 3, are as follows:

• Based on query logs, choose words and other entity
nodes for which PPVs are pre-indexed (Section 4).
These are called hub nodes.

• Do not compute exact PPVs, but exploit the random
walk trick of Fogaras et al. [10] to store approximate
PPVs in the form of fingerprints (FPs) —Section 5.

• Given a query, identify a small active subgraph whose
PPVs must be computed, bordered by blocker nodes
with cached fingerprints (Section 6).

1Google reports four hits for the query objectrank
"personalized pagerank" and two hits for the query
objectrank ppv. Teoma/ExpertRank personalizes at topic
level. www.google.com/psearch is not for ER graphs (yet).

• Adaptively load only a portion of the fingerprints of
the blocker nodes, to save memory and computation
significantly (Section 7).

• Iteratively estimate the required PPVs based on the
small active subgraph, faster than running Pagerank
on the whole graph, and report the top results (Sec-
tion 8).

In addition, we provide many practical guidelines to ex-
ploiting partially indexed PPVs in the context of ER graph
search. Both our indexing and search steps are, to some ex-
tent, “anytime algorithms” in the sense that we can abandon
them at any time and get increasing quality with the effort
invested.

Some indicators of HubRank performance: On our testbed,
HubRank preprocesses and indexes 52 times faster than
whole-vocabulary PPV computation. A text index occupies
56MB. Whole-vocabulary PPVs would consume 102GB. If
PPVs are truncated to 56MB, precision compared to true
Pagerank drops to 0.55; in contrast, HubRank has preci-
sion 0.91 at 63MB. HubRank’s average query time is 200–
300 milliseconds; query-time Pagerank computation takes
11 seconds on average.

1.3 Relation to earlier work
While Pagerank has been personalized in various ways

since the first papers by Jeh and Widom (J&W) [12] and
Haveliwala [11], hub selection is largely unexplored, espe-
cially in the context of ER graph search. Moreover, we know
of no public work that uses query log statistics to pick hubs.

Fogaras et al. [10] not only prove that complete, full-
precision personalization is doomed to use quadratic space,
but they also give a simple, practical alternative: a Monte
Carlo approximation of PPVs in the form of a fingerprint
(FP). FPs are critical to our success, but we go farther in a
few ways. First, we compute FPs only for a few, carefully-
chosen nodes. Second, we adaptively control the resolution
to which we compute and use various FPs. Third, because
they keep FPs for each node, Fogaras et al. can compute
a PPV estimate for node u based on the FPs at only the
out-neighbors of u. Because we may have a bigger active
subgraph, we must resort to an iterative PPV computation.

Our active subgraph expansion draws from a common in-
tuition of influence decaying with distance, because tele-
port deadens long-range influence [1, 9, 8]. Very recently,
Berkhin [4] has independently suggested an active subgraph
expansion method called the “bookmark coloring algorithm”
(BCA) which is similar to our proposal, but he used PPVs,
not FPs, and did not optimize the hub set using query logs.
We will compare our method with BCA in Section 8.

2. BACKGROUND

2.1 Personalized Pagerank vectors (PPVs)
The basic (personalized) Pagerank recurrence is expressed

in Equation (1). J&W [12] showed two far-reaching but
easily-verified results that we cite below.

Linearity. pr = αCpr + (1−α)r solves to pr = (1−α)(I−
αC)−1r, which is linear in r. Therefore, a linear combination
of teleports is satisfied by the same linear combination of
corresponding Pageranks:

pγr = γpr and pr1+r2 = pr1 + pr2 ; (2)

for any scalar γ. (The above holds for any real γ and any
vectors r1 and r2, not just valid teleport vectors.)

In Section 3 we will propose a graph representation where
each query word w will be a node, connected to entity nodes
where the word appears. Computing a PPV for the word
w will amount to setting a teleport vector r = δw in which
δw(w) = 1 and δw(u) = 0 for all nodes u 6= w. Given a
multi-word query, if we have available the PPV pδw for each
word w, we can compute the final scores of each node as a
linear combination of per-word PPVs. In general for word
or entity node u, pδu is also called PPVu.

PPV Decomposition. With PPVu defined as above,

PPVu =
X

(u,v)∈E

αC(v, u) PPVv +(1− α)δu, (3)

or, more compactly, Q = αQC + (1 − α)I, where the uth
column of Q is PPVu and I is the |V | × |V | identity matrix.
The decomposition property is useful when we wish to com-
pute an estimate of PPVu from cached approximations to
PPVv for out-neighbors v of u.

2.2 Monte Carlo fingerprints (FPs)
Fogaras et al. [10] proved the very important negative re-

sult that if a hub set H ⊂ V is used, exact storage of all
PPVs of H will take Ω(|H| |V |) bits, no matter how clever
a compression mechanism is devised. (If H has a node for
each word in the corpus vocabulary, |H| |V | is unacceptably
large.) They also showed related bounds where some error
could be tolerated. Then they proposed Monte Carlo PPV
estimates: instead of computing an exact PPVu, simulate
the random surfer as follows:

1. Sample a random walk length λ from a geometric dis-
tribution: Pr(Λ = λ) = αλ(1− α).

2. Take λ walk steps using C (see Equation (1)), ending
in node v, say.

The walk is repeated numWalks times, where numWalks is a
tuned parameter, and a frequency histogram FPu over ter-
minating nodes v is created. J&W as well as Fogaras et al.
showed that PPVu(v) = Pr(random surfer finishes at node v).
For a fixed error tolerance in PPVs, a fixed numWalks suf-
fices. An additional benefit is that FP computation involves
largely integer arithmetic, faster than heavy floating-point
computation required to solve Equation (1).

In experiments, Fogaras et al. computed FPs for every
node, keeping numWalks small to maintain speed. When
PPVu was needed, they used the decomposition property
(3) unrolled exactly once to get the benefit of FPs stored
at all out-neighbors v of u. In our case FPs are not stored
at all nodes, so we must work harder to reconstruct PPVu

(Section 8).

2.3 Experimental testbed and measurements

The ER data graph. The CiteSeer corpus we obtained
has 709173 words over 1127741 entity nodes. Our system
can scale to such sizes and beyond, but query-time person-
alized Pagerank computation (1) is typically 30–50 times
slower. For a thorough comparative evaluation of Obj-
ectRank and HubRank, we picked papers and authors
in CiteSeer prior to 1994. This subset has about 172000
words over 74000 nodes (which is more in line with the two

data sets used with ObjectRank, having 13700 nodes and
12341 words and 55000 nodes and 40577 words). (Cite-
Seer is just one example of the text-embedded-in-graph
model that is becoming ubiquitous, e.g., in personal infor-
mation management [7], but obtaining real query logs would
be challenging.)

y = 100317x-0.7151

100

1000

10000

100000

1 10 100 1000 10000Rank

F
re

q

Figure 2: Typical Zipfian distribution of word fre-
quencies over almost two million queries.

The query log. We obtained 1.9 million queries from Cite-
Seer, with an average of 2.68 words per query. Word fre-
quencies are distributed in a typical Zipfian manner shown
in Figure 2. We used samples of typical size 10000 from the
first 100000 queries as test data for long experiments, while
all but the first 100000 queries were used to train and tune
our indices. This sampling procedure (unlike uniform ran-
dom sampling) made sure that we are not benefiting from
splitting a query session with shared words into the training
and test set. To reduce longer-range dependencies our test
queries are chronologically before training queries.

Hardware and software. Experiments were run on a 4-
CPU 2.2GHz Opteron server with 8GB RAM and Ultra-320
SCSI disks. All code was written in Java (64-bit JDK1.5)
and exploited the trivial parallelism across queries on all
four CPUs. Unless otherwise specified, Pagerank iterations
used α = 0.8 and were stopped when L1 difference between
iterates dropped below 10−6.

Comparing scores and rankings. When evaluating accu-
racy, we will measure two score-related and two rank-related
indicators of quality [10], comparing the test algorithm with
“full-precision” ObjectRank.

L1 score difference: If p is the full-precision PPV, and we
estimate p̂, then ‖p̂− p‖1 is a reasonable first number
to check. However, it is not scale-free. I.e., for a larger
graph, we must demand a smaller difference. More-
over, it is not a faithful indicator of ranking fidelity
[14].

Precision at k: p induces a “true” ranking on all nodes v,
while p̂ induces a distorted ranking. Let the respec-
tive top-k sets be Tk and T̂k. Then the precision at k
is defined as |Tk ∩ T̂k|/k ∈ [0, 1]. Clipping at k is rea-
sonable, because, in applications, users are generally
not adversely affected by erroneous ranking low in the
ranked list.

Relative average goodness (RAG) at k: Precision can
be excessively severe. In many real-life social networks,

0.4

0.5

0.6

0.7

0.8

0.9

1

30 40 50 60 70TruncateAt

Q
ua

lit
y

RAG
Prec
Ktau

Figure 3: Truncation reduces the ranking accuracy
of ObjectRank significantly.

near-ties in Pagerank values are common. If the true
scores of T̂k are large, our approximation is doing ok.
One proposal is (note that p̂ is not used):

RAG(k) =

P
v∈T̂k

p(v)P
v∈Tk

p(v)
∈ [0, 1]

Kendall’s τ : Node scores in a PPV are often closely tied.
Let exact and approximate node scores be denoted
Sk(v) and Ŝk(v), where the scores are forced to zero if

v 6∈ Tk and v 6∈ T̂k. A node pair v, w ∈ Tk ∪ T̂k is con-
cordant if (Sk(v) − Sk(w))(Ŝk(v) − Ŝk(w)) is strictly
positive, and discordant if it is strictly negative. It is
an exact-tie if Sk(v) = Sk(w), and is an approximate

tie if Ŝk(v) = Ŝk(w). If there are c, d, e and a such

pairs respectively, and m pairs overall in Tk ∪ T̂k, then
Kendall’s τ is defined as

τ(k, u) =
c− dp

(m− e)(m− a)
∈ [−1, 1].

(Unlike Fogaras et al., we do not limit to pairs whose
scores differ by at least 0.01 or 0.001, so our τ is gen-
erally smaller.)

Throughout, we use a fairly stringent k = 100 for evaluation.

2.4 ObjectRank accuracy and performance
Since ObjectRank stores PPVs sorted by decreasing Page-

rank value, node IDs need to be stored explicitly. If Page-
rank values are stored as floats, each entry requires 8 bytes,
so, if all word-PPVs were stored, about 102GB would be re-
quired. To put this in perspective, a Lucene [2] text index
takes only 56MB, which is only a 0.00056 fraction of 102GB.
For our CiteSeer subset, this means that, on average, for
each word, we can store the top 41 nodes of 74000. This cor-
responds closely with numbers in the range of 7–84 reported
in the ObjectRank paper [3].

How does truncation affect scoring and ranking accuracy,
compared to the “full-precision” ObjectRank? For each
query, we separately computed PPVs for each word in the
query, truncated these word PPVs, then combined them (us-
ing the linearity property of PPVs, see Section 2.1).

In Figure 3 we plot RAG, precision and Kendall’s τ of
ObjectRank with PPVs truncated at various ranks (x-
axis). 10000 queries were sampled for testing; ObjectRank

took about 40 CPU-hours to complete the set, or about 14
seconds per query. The accuracy is low in this range, even
for the relatively forgiving RAG measure. From Figure 3, it
would appear that while truncating at 41 nodes results in
poor accuracy, a few hundred nodes per word may be ad-
equate. But this will not scale; if we tried to process the
whole CiteSeer corpus with 709173 words, retaining even
100 nodes per word PPV would already consume 567MB.
More problematic is that we need to calculate all word PPVs
in the first place, before we can truncate them. Otherwise,
we will need to reject queries and calculate the requisite
PPVs offline (Appendix A). HubRank offers a practical
solution to this dilemma.

3. ARCHITECTURE OVERVIEW
In this section, we first describe (our adaptation of) the

ObjectRank scoring model. Then we give an overview of
how a query is executed; this naturally leads to hub selec-
tion and query optimization issues. These specific technical
problems are solved in the rest of the paper.

3.1 Scoring in a TypedWordGraph

As mentioned before, the ER graph has many (node and)
edge types: paper-cited-paper, author-wrote-paper, etc. Edge
types are denoted t, taken from a small set T . Each edge
e = (u, v) has an associated type t(e). Associated with each
edge type t is a number β(t) ≥ 1. Thus the weight of edge
e is β(t(e)). In the preprocessing step, we index the text of
every node of the ER graph. We use Lucene [2] to create an
inverted index from words to entity node IDs.

A query is a set of distinct words. To process the query,
the ER graph is augmented with one node for each query
word, connected to entity nodes where the word appears,
with special edges of type “word-to-entity”. A word node
appears in W only if it matches at least one entity; thus, no
word node is a dead end. For the moment assume that no
entity node is a dead end.

W N

Active

subgraph

Blocker

Loser

Word

layer

Entities

Active node

NW

R
e

a
c
h
a

b
le

Figure 4: TypedWordGraph with active subgraph,
blockers and losers illustrated (see Section 3.2 for
definition of blockers and losers).

The conductance of edge (u, v) ∈ E is now defined as

C(v, u) =
β(t(u, v))P

(u,w)∈E β(t(u, w))
(4)

Element r(w) in the teleport probability vector r is set to
1/|W | for each query word node w ∈ W . Other teleport el-
ements are zero. One may also choose non-uniform teleport
to the words, if they are not considered equally important.
Equation (1) is now applied with C and r defined as above.

Word rareness. Note that an “inverse document frequency”
(IDF) [18] effect is built into the design. Suppose the query
has one rare and one frequent word. Each gets half the Page-
rank of d, but the rare word passes on the Pagerank to a few
entity neighbors, each getting a large share. The frequent
word is connected to many entity nodes, each getting a tiny
share of its Pagerank. For this reason we felt no need to
experiment with different teleports to query words.

Dead-ends and irreducibility. A subgraph NW ⊆ N is
reachable from W , the rest can be ignored for a specific
query and our graph is effectively W ∪NW . To make this ir-
reducible and aperiodic, we add fake edges from entity nodes
in NW to a sink entity node s. This eliminates dead ends in
NW . s has a self-loop. The score of s is ignored. Equations
(1) and (4) continue to apply after these modifications, and
give meaningful scores (except to s).

Learning β automatically. Assigning weights β(t) for each
edge type t might seem like an empirical art from the above
discussion. Indeed, ObjectRank and related systems use
manually-tuned weights. However, there has been recent
progress [17, 6] in learning β or C automatically from pair-
wise preferences (or partial orders) between nodes. Here we
will assume that β is provided to our system by a weight
learner [6] prior to indexing.

3.2 Query processing overview
At startup, our system preloads only the entity nodes N

(including the sink node s). This would be impractical for
Web-scale data, but is reasonable for ER search applica-
tions. Only the graph skeleton is loaded, costing us only
about eight bytes per node and edge. Entity graphs with
hundreds of millions of nodes and edges can be loaded into
regular workstations. In ongoing work, we are considering
disk-based skeletons; see Section 9. Word nodes are not
preloaded.

Given a keyword query to execute, we instantiate the
query words as nodes in W and attach each word node to
the entity nodes where the word appears. This gives us a
setup time not too large compared to IR engines. To answer
the query, we need the PPVs of the nodes corresponding to
the query words.

As shown in Figure 4, we need to work on the entity sub-
graph reachable from d through the word nodes. A total
teleport mass of 1 first reaches the word nodes, then dif-
fuses out to N . Every node on the way attenuates the total
outflow of Pagerank by a factor α < 1. Therefore, we ex-
pect the effect of distant nodes on a word PPV (that we wish
to compute) to be decay rapidly—indicated by the gradual
shading of the active region in Figure 4.

We stop expanding the active subgraph at two kinds of
boundary nodes: blocker2 nodes B ⊂ H whose PPVs have
been precomputed and stored, and loser nodes that are too
far from the word nodes to assert much influence on the

2We call hubs bordering the active subgraph “blockers” be-
cause they block the expansion.

word PPVs. Given we want |B| � |V |, unless we exploit
loser nodes our active subgraphs will be too large.

Thus we set up some kind of a “boundary value problem”:
the active subgraph is bounded everywhere with blocker and
loser nodes, whose PPVs remain fixed. We estimate the
PPVs for the remaining active nodes, including query words
nodes that are not blockers. Then we linearly combine word
PPVs into the final score vector, which is then sorted to
return the top answer nodes.

4. WORKLOAD-DRIVEN HUB SELECTION
In this section we present approaches to choosing a subset

of word and entity nodes that we call the hub set.

4.1 Smoothing word frequencies/probabilities
Let W0 be the full corpus vocabulary and fw be the fre-

quency of word w ∈ W0 in the query log (after discard-
ing words not in W0). We can model the log as inducing
a multinomial distribution over words and find the prob-
abilities that maximize the likelihood of the observed log:
PrMLE(w) = fw/

P
w′ fw′ . (MLE is maximum likelihood es-

timate.) In general, even a large log will not touch all words
in W0, and many w ∈ W0 will get assigned PrMLE(w) = 0.
Given the long-tailed nature of query logs (Figure 2), this is
a problem, because the above model will assign strictly zero
probability of seeing a word in W0 that did not occur in the
log. This is a standard problem in NLP [15, Section 6.2.2],
and handled by smoothing the word distribution. Lidstone
smoothing is simple and effective: propose a smoothed prob-

ability fPr(w) = (fw + `)/
P

ω(fω + `), and tune parameter
0 < `∗ < 1 so as to maximize the likelihood of a “held-out”
portion of the query log. We omit the fairly standard de-
tails, except to summarize the benefits in Figure 17 at the
end of the paper.

1: initialize a score map score(u) for nodes u ∈W0 ∪N
2: for each query word w ∈W0 do
3: attach node w to the preloaded entity graph

4: let frontier = {w} and priority(w) = fPr(w)
5: create an empty set of visited nodes
6: while frontier 6= ∅ do
7: remove some u from frontier and mark visited
8: accumulate priority(u) to score(u)
9: for each visited neighbor v do

10: accumulate priority(u) α C(v, u) to score(v)
11: for each unvisited neighbor v do
12: let priority(v) = priority(u) α C(v, u)
13: add v to frontier
14: sort word and entity nodes by decreasing score(u)

Figure 5: Greedy estimation of a measure of merit
to including each node into the hub set.

4.2 Greedy hub scoring strategy
We wish to minimize the average time taken to compute

PPVs for all active nodes over a representative query mix.
PPV computation time is likely to be directly related to the
number of active nodes, but the connection is not mathe-
matically predictable. Even if we were to make simplify-
ing assumptions (such as a fixed number of iterations), the
problem of picking the best subset reduces to hard prob-
lems like dominating set or vertex cover. Even quadratic-
or cubic-time algorithms on CiteSeer-scale graphs may be

impractical. Therefore we turn to efficient and reasonable
near-linear-time heuristics.

An indirect approach is to try to arrest active graph ex-
pansions with blocker nodes as quickly and effectively as
possible. I.e., we want to pick a small number of hub nodes
that will block expansions from a large number of frequent
query word nodes. If a node is a good hub, it will be reach-
able along short paths from frequent query word nodes. This
leads to the greedy hub ordering approach shown in Figure 5;
it might be regarded as a fast if crude approximation to the
push step in BCA [4].

4.3 Preliminary evaluation
Because teleport is strongest at word nodes and then dif-

fuses out to entities with a loss incurred at every step, it
may appear that the originating word nodes have all the
advantage in ranking highest in the merit list. However, the
correct intuition is that queries about a link-cluster in the
graph will share a theme but not necessarily words. Over
many queries, these individual words may not float to the
top, but entity nodes at the confluence of many short paths
from thematic words will.

This is confirmed in Figure 6. The order returned by the
algorithm in Figure 5 is a nontrivial mix. Words do crowd
the top ranks but soon they are overtaken by entity nodes;
in fact, the fraction of words steadily dwindles until nearly
all entity nodes are exhausted.

A natural question arises here: Is the nontrivial word-
entity mix essential to fast query-processing, or is it an ar-
tifact of our heuristic ordering? If latter, a suitable word
PPV caching scheme associated with ObjectRank might
be adequate.

0%

20%

40%

60%

80%

100%

1

50
00

1

10
00

01

15
00

01

20
00

01

|H|-->

entities

words

Figure 6: For reasonable hub set sizes, entity nodes
are highly desirable compared with word nodes; the
best case is a nontrivial mix.

To avoid a large number of lengthy runs with different
sizes of H, we measure surrogates of actual running time:
the number of active, blocker and loser nodes as we pick
prefixes of different sizes from the ordering returned from
Figure 5. (The definitions of blocker and loser are made
precise in Figure 9 in Section 6.) In Section 8 we establish
that these are indeed correlated to running time.

We wish to compare two orders: the mixed order returned
by the code in Figure 5, and the order with all entity nodes
removed. In Figure 7, we see that allowing entity nodes into
the mix significantly reduces the number of active nodes
and losers, and increases the number of blockers. Smaller
active set is better because there are fewer PPVs to iterate
over. Larger blocker set is better, because there are more

0

10

20

30

40

50

10000 30000 50000|H|

nu
m

A
ct

iv
e

Entity+Word
WordOnly

0

1

2

3

4

5

0 20000 40000 |H|

nu
m

B
lo

ck
er

s

Entity+Word
WordOnly

0
10
20
30
40
50
60
70
80

5000 25000 45000 |H|

nu
m

Lo
se

rs

Entity+Word
WordOnly

Figure 7: Allowing entity hub nodes improves the
prospects of fast, accurate PPV estimation.

PPVs that are pinned to fixed values. Smaller loser set is
better, because fewer PPVs are crudely approximated (see
Section 8). Note that the number of blocker rises, then falls
as the hub set size |H| is increased. This is because, for large
|H|, blockers are found closer to the origin nodes.

5. FINGERPRINT COMPUTATION
We can now greedily pick nodes with the largest merit

scores, where we will compute FPs. The score associated
with a node u in Figure 5 reflects a combination of how often
u is reached from a query, and how strong the connection
is. The latter factor tells us how strongly the FP of u is
going to affect the accuracy of answering a typical query.
Intuitively, if u is in the backwaters, a very low-resolution
FP computed at u will suffice, whereas if u is a celebrity, a
high-resolution FP is desirable.

In the interest of a clean, precise analysis, Fogaras et al. [10]
used the same numWalks at all nodes, but, while building a
system, we are at liberty to use diverse numWalks at different
nodes. If we assume that one random walk takes roughly a
fixed time, and we have a budget of a total number of walks,
we should allocate more walks to celebrity nodes and fewer
walks to the backwaters. A straight-forward approach is to
allocate the budgeted number of walks in proportion to the
score of nodes computed in Figure 5. We can allocate walks
in small batches, and terminate the process whenever we
run out of space, time or patience.

We tried a number of other alternatives but nothing beat
this simple policy overall in terms of space, time and ac-
curacy. The space benefit might be explained by the fact
that the space required by a FP increases sublinearly with
numWalks (Figure 8), making skewed numWalks more attrac-
tive than uniform numWalks. Most FPs are quite sparse.

0

50

100

150

200

250

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Average of numHits

numWalks

Figure 8: The space taken by the average FP
grows slightly sublinearly with increasing numWalks.
“numHits” is the number of distinct end nodes
touched by numWalks walks, which determines the
storage required (int+short per-record).

Total FP computation time was 10CPU-hours. Con-
trast this with an estimated (via word samples) 526CPU-
hours to compute all word PPVs (even if we truncate them
thereafter). Unless otherwise specified, we picked |H| =
10000 and average numWalks = 15000, giving a 63MB in-
dex.

6. ACTIVE SUBGRAPH EXPANSION
When a keyword query is submitted, we perform an ex-

pansion process similar to that in Figure 5 to collect the
active nodes A, except that we also identify blocker nodes
B ⊂ H whose FPs have been indexed, and loser nodes
` which are so distant from the originating node w that
even the largest element of PPV(`) is unlikely to influence
PPV(w) much.

As in earlier work on local Pagerank computation [9, 8]
we judge if PPVv is “unlikely to influence” PPVu much via
a heuristic. Ideally, we should check if the conductance from
u to v is small, but that amounts to solving part of the PPV
estimation problem (which is what BCA [4] does). Chien
et al. [9, Section 3.1] propose a one-pass weight-dissipation
type algorithm similar to ours, except that, in the interest
of speed, we further omit conductance via multiple paths,
noting only the largest conductance path from u to v. (We
use all edges while iteratively computing active PPVs.) Fig-
ure 9 shows the first stage of query processing: collecting the
active subgraph.

7. DYNAMIC RESOLUTION FP-LOADING
There is one more critical hurdle to negotiate before our

basic idea works out. The big advantage of regular Page-
rank/ObjectRank is that only one Pagerank vector needs
to be computed, whereas we must iteratively estimate PPVs

1: Input: word nodes W , abandon threshold δ
2: Outputs: active nodes A ⊂ V ′, blockers B, losers L
3: let frontier be a max priority queue
4: insert 〈w, 1〉 into frontier for each w ∈W
5: while frontier is not empty do
6: remove 〈u, s〉 from frontier
7: if u 6∈ A then
8: add u to A
9: if fingerprint FPu is found in index then

10: add u to B
11: load(FPu, s, δ) for blocker u
12: else if s < δ (abandon threshold) then
13: add u to L
14: load a trivial FP for loser u
15: else
16: for each child v of u do
17: add 〈v, s Ĉ(v, u)〉 to frontier

Figure 9: Query-time active subgraph expansion.
For load routines see Section 7.

at all active nodes. If we convert the cached FPs into full-
length PPVs and compute full-length PPVs all over the ac-
tive subgraph, the sheer handicap we will face by way of
floating point operations will forestall any substantial gains
from HubRank.

The key trick is to extend the pruning action of step 12 in
Figure 9, from discarding whole FPs to discarding parts of
FPs as well. FPs are stored using Berkeley DB; the key is
a node ID and the data is a sequence of (numHits,nodeID)
records, sorted in decreasing order of numHits. As we scan
down the list, we keep a cumulative hit count sumHits. At
any point during the loading scan load(FPu, s, δ), if we find
a node v for which

s
numHits(v)

sumHits
< δ,

we abandon the rest of FPu, and rescale the loaded prefix
to be a PPV estimate with unit L1 norm.

Note that FPs are stored to diverse resolutions in the first
place, but that is wrt an aggregated query mix; for a specific
new query, we may need to load them to a very different set
of resolutions.

0

200000

400000

600000

800000

1.E-07 1.E-06 1.E-05
abandonDelta

Fill

FLOPS

Figure 10: Modest values of δ suffice to dramatically
reduce the average “fill” (nonzero element count) of
FPs loaded over all active nodes, and the number of
floating-point operations per iteration.

This dynamic pruning has dramatic effect on keeping the
loaded PPVs sparse, as can be seen from Figure 10. With-

out this trick, we would not be able to beat ObjectRank
by a large margin consistently. Luckily, as we shall see in
Figure 13, δ has minimal effects on accuracy over a broad
range. Loading FPs for a loser node v is easy: we just ini-
tialize the PPV to xv. We do the same for active nodes, but
they are then free to float, while loser PPVs are pinned.

8. ITERATIVE PPV APPROXIMATION
Once the active subgraph is set up, we run the “dynamic

programming” version of J&W’s PPV estimation algorithm,
keeping blocker and loser PPVs fixed. This just boils down
to iteratively invoking Equation (3) as an iterative assign-
ment:

P̂PV
(i)

u ←
X

(u,v)∈E

αC(v, u) P̂PV
(i−1)

v + (1− α)δu. (5)

A randomized ordering of us worked best.

Convergence. J&W prove that iterative PPV updates will
converge. It follows that if we pin blockers to true PPVs,
active PPVs will converge to true values. However, in our
case, we fetch from disk FPu, which is a fairly crude estimate
of PPVu, which we further truncate. Because FPs at differ-
ent blockers were obtained via different random walks, they
may be potentially inconsistent. We argue in Appendix B
that given a set of blocker FPs, there exists a PPV assign-
ment to active nodes consistent with the FPs, and iterative
PPV updates will take us there. Unfortunately, unlike the
elegant single-FP case analysis of Fogaras et al., we can-
not prove that at convergence we get unbiased or otherwise
mathematically meaningful PPV estimates; this is left to
experimental evaluation. Figure 11 validates over four (of
millions of) queries that convergence is never a problem in
practice.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30PPV iterations

M
ax

 L
1

no
rm

 d
iff

Figure 11: Fast convergence of active PPVs.

Running time. Figure 12 plots a scatter of time-to-converge
against the number of active nodes. Over a wide range, run-
ning time is strongly related to the number of active nodes.
This validates our hub selection approach in Section 4.3 and
corroborates Figure 7.

Effect of δ on overall speed and accuracy. Clearly δ
reduces the memory footprint and computational load of
HubRank, but the critical question is, how accurate is the
resulting ranking? And can that accuracy be obtained while

y = 5.6861x0.8596

10

100

1000

10000

10 100 1000numActive |A|

ite
rP

P
V

T
im

e(
m

s)

Figure 12: Over 2–3 orders of magnitude, the time
for iterative PPV estimation is almost linear in the
number of active nodes.

beating ObjectRank time by a substantial margin? Fig-
ure 13 shows that, as δ is increased, the overall time taken by
HubRank drops dramatically, basically tracking Figure 10.
In contrast, all accuracy indicators remain essentially flat.
The ranking stability persists across 100× increase in δ and
a 29-fold decrease in FP footprint (note the x-axis is a log-
scale). (We found δ = 3 × 10−6 the best value for our
testbed.) In contrast, observe in Figure 3 how ranking qual-
ity drops sharply on a linear x-axis representing index size.

0.8

0.85

0.9

0.95

1
1.

E
-0

7

3.
E

-0
7

1.
E

-0
6

3.
E

-0
6

1.
E

-0
5abandon

Delta

ac
cu

ra
cy

0

1000

2000

3000

tim
e

(m
s)

avgPrec
avgRAG
avgKTau
avgHRTime

Figure 13: HubRank accuracy and running time as
a function of δ, the threshold for abandoning FPs.

Figure 14 presents average HubRank and ObjectRank
query processing times in one chart, against the number of
words in a query. HubRank time is more jittery, but, for
short queries, some 20–40 times faster than ObjectRank
computed at query time. The gap is most pronounced at
the very frequent short (1–3 word) queries.

Effect of increasing cache size. Average query time for
HubRank drops steeply as the FP cache size increases. For
our testbed, the steep decrease happens right around the
same size as the Lucene text index (Figure 15). But long
before the “knee” is reached, HubRank times are less than
1
12

th that of ObjectRank.
As the FP cache is enlarged, it accommodates more FPs

with smaller numWalks, as per our fingerprint computation

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12
queryWordstim

e
(m

s)

0

1000

2000

3000

4000

5000

nu
m

Q
ue

ry

HubRank

ObjectRank

numQuery

Figure 14: HubRank and ObjectRank query times
(average and standard deviation) and relative query
frequency against the number of words in a query.

0

500

1000

1500

2000

50 55 60 65 70 75

FPCacheSize (MB)

Q
u
e
ry

T
im

e
 (

m
s
)

Figure 15: Effect of cache size on HubRank query
execution time (average and standard deviation).

policy in Section 5. As shown in Figure 16, this does very
modest damage (less than 0.5%) to precision and τ , even as
query processing time drops by over a factor of 4.

Smoothing. Figure 17 shows the beneficial effects of workload-
smoothing on accuracy and speed. Smoothing ensures that
hubs are picked reasonably close to word nodes that do not
even appear in the training query log. This improves both
speed and accuracy.

Comparison with BCA. BCA [4] can be regarded as a re-
fined version of Figures 5 and 9. To maintain precise guaran-
tees, BCA starts with a residual of r(w) at word node w, and
progresses using push steps. A push from node u transfers
1−α times its current residual to its score, and the remain-
ing α fraction of its current residual to its out-neighbors’
residuals. BCA has to maintain a heap for the node residu-
als. Using a Fibonacci heap, BCA is somewhat slower than
HubRank in our preliminary experiments (Figure 18), but
both are substantially faster than ObjectRank.

9. CONCLUSION
Summary. We presented HubRank, a workload-driven in-
dexing and dynamic personalized search system for ER graphs.

0.82

0.84

0.86

0.88

0.9

0.92

50 55 60 65 70 75

FPCacheSize (MB)

R
a
n
k
D

e
fe

c
ts

defectPrec

defectKTau

Figure 16: As cache size increases, we include lower
quality FPs, but the drop in ranking accuracy is very
modest.

#words→ 1 2 3 4
NoSmoothTime 622 566 756 994
SmoothTime 280 310 549 836
NoSmoothPrec .81 .85 .85 .85
SmoothPrec .85 .91 .92 .91

Figure 17: HubRank time and precision with and
without smoothing, at δ = 10−6.

Our index preprocessing is 52 times faster than Object-
Rank; our index is comparable to a text index and 0.056%
the size of a full ObjectRank index. Our query time is
20–40 times smaller than query-time ObjectRank. Our
indexing and search are “anytime algorithms” in the sense
that we can abandon them at any time but get increasing
quality with the effort invested. At present HubRank scales
to the size of DBLP and CiteSeer, with several millions
nodes and almost a million words.

Failure analysis. We separated sample queries where all
words were blocked (empty active set, complete word FPs
loaded) vs. queries with nontrivial active sets. Ranking
quality in these two query categories were essentially iden-
tical wrt precision and RAG, but surprisingly, wrt τ , empty
active sets are worse (Figure 19)! This hints that limited
precision of word FPs may be a significant impediment to
higher accuracy; iterative PPV calculation is not too crude

0

500

1000

1500

2000

9000 10000 11000 12000 13000 14000

HubSetSize

Q
u
e
ry

T
im

e
 (

m
s
)

HubRank

BCA

Figure 18: BCA has somewhat higher overhead than
HubRank.

Active #queries Avg Prec Avg
subgraph RAG Prec τ
Non-empty 3413 .996 .864 .801
Empty 5079 .986 .878 .742

Figure 19: Ranking quality in empty and non-empty
active subgraphs.

in comparison. We should revisit the proportional budget
allocation policy of Section 5. The active set overflows RAM
once in∼ 2000 queries owing to a dearth of blockers; we need
sentinel blockers or a reliable ObjectRank fall-back.

Unresolved issues and ongoing work. We would like to
give a theoretical guarantee of the score quality similar to
Fogaras et al.. In view of Lempel and Moran’s results [14],
it is unclear if we can give any guarantee of ranking quality
in the Pagerank framework. We are working on graph clus-
tering and indexing techniques to reduce disk seeks while
expanding the active subgraph and loading blocker PPVs,
while the graph is largely on disk. We would also like to sup-
port broader classes of predicates on nodes, perhaps involv-
ing structured attributes and cached views over and above
word matches. We would like to report top-k without eval-
uating the whole active set to convergence.

Acknowledgments. Thanks to C. Lee Giles for CiteSeer
data, to Manish Gupta and Amit Phatak for cleaning the
data, to Yannis Papakonstantinou for access to Object-
Rank source code, and Pavel Berkhin for discussions.

10. REFERENCES
[1] S. Abiteboul, M. Preda, and G. Cobena. Adaptive

on-line page importance computation. In WWW
Conference, pages 280–290, 2003.

[2] Apache Software Group. Jakarta Lucene text search
engine. GPL Library, 2002.

[3] A. Balmin, V. Hristidis, and Y. Papakonstantinou.
Authority-based keyword queries in databases using
ObjectRank. In VLDB, Toronto, 2004.

[4] P. Berkhin. Bookmark-coloring approach to
personalized pagerank computing. Internet
Mathematics, 3(1), Jan. 2007. Preprint.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW
Conference, 1998.

[6] S. Chakrabarti and A. Agarwal. Learning parameters
in entity relationship graphs from ranking preferences.
In PKDD Conference, volume 4213 of LNCS, pages
91–102, Berlin, 2006.

[7] S. Chakrabarti, J. Mirchandani, and A. Nandi. SPIN:
Searching personal information networks. In SIGIR
Conference, pages 674–674, 2005.

[8] Y.-Y. Chen, Q. Gan, and T. Suel. Local methods for
estimating pagerank values. In CIKM, Washington,
DC, Nov. 2004.

[9] S. Chien, C. Dwork, R. Kumar, D. R. Simon, and
D. Sivakumar. Link evolution: Analysis and
algorithms. Internet Mathematics, 1(3):277–304, 2003.

[10] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós.
Towards scaling fully personalized PageRank:
Algorithms, lower bounds, and experiments. Internet
Mathematics, 2(3):333–358, 2005.

[11] T. H. Haveliwala. Topic-sensitive PageRank. In
WWW Conference, pages 517–526, 2002.

[12] G. Jeh and J. Widom. Scaling personalized web
search. In WWW Conference, pages 271–279, 2003.

[13] A. N. Langville and C. D. Meyer. Deeper inside
PageRank. Internet Mathematics, 1(3):335–380, 2004.

[14] R. Lempel and S. Moran. Rank-stability and
rank-similarity of link-based web ranking algorithms
in authority-connected graphs. Information Retrieval,
8(2):245–264, 2005.

[15] C. D. Manning and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT Press,
Cambridge, MA, 1999.

[16] M. Marchiori. The quest for correct information on
the Web: Hyper search engines. In WWW Conference,
Santa Clara, CA, Apr. 1997.

[17] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma.
Object-level ranking: Bringing order to Web objects.
In WWW Conference, pages 567–574, 2005.

[18] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[19] J. Savoy. Bayesian inference networks and spreading
activation in hypertext systems. Information
Processing and Management, 28(3):389–406, 1992.

[20] J. Savoy. An extended vector processing scheme for
searching information in hypertext systems.
Information Processing and Management,
32(2):155–170, Mar. 1996.

APPENDIX
A. ObjectRank CACHE MISS EXAMPLE

Output captured from http://teriyaki.ucsd.edu:9099/

examples/jsp/objrank/objectRank05.jsp on 2006/11/12:

Top 20 results for keywords: euler lagrange

[Message: INDEX NOT FOUND]

Sorry. The answer to your query has not been

precomputed and stored in our system yet.

It would become available in the near future.

Thank you for your patience.

B. PPVS IN TypedWordGraph

Let PPVu be the uth column in Q ∈ R|V |×|V |, and let a
specific row of Q (corresponding to a fixed node w ∈ V , say)
be q. Then PPV iterations amount to solving for q the recur-
rence q = α q C +(1−α)δ>w , except that q is partitioned into
qU , the unknowns and qK , the known PPVs (from blocker
and loser FPs). Let C be correspondingly partitioned intoh

CUU CUK
CKU CKK

i
. As far as our PPV iterations go, because we

never look beyond blockers and losers, only U → K and
U → U edges matter; thus, we are looking for a solution to

qU = α qU CUU + α qK CKU + const1×|U|

but α qK CKU is a fixed row vector as well, so the recurrence
simplifies into qU = α qU CUU + c, where c is some fixed
1× |U | row vector. Because α CUU is strictly substochastic,
(I−α CUU)−1 exists and so there is a unique solution for qU .
J&W’s proof of convergence of power iterations at a rate of
α or better can be extended; we omit the details. Unfortu-
nately, qU is not guaranteed to be statistically meaningful
(e.g., unbiased).

