
Web Search and Mining (CS 635) Midterm Exam
Computer Science and Engineering 2013-09-13 Friday
Indian Institute of Technology Bombay 17:30–19:30 LCH03

NAME
:::::::::::::::::::::::::::::::::::::::::::::::::::::

ROLL
::::::::::::::::::::::::::::::::

This exam has 6 printed page/s. Write your name and roll number on EVERY SIDE (and
not just sheet), because we may take apart your answer book and/or xerox it for correction.
Write your answer clearly within the spaces provided and on any last blank page. Do not write
inside the rectangles to be used for grading. If you need more space than is provided,
you probably made a mistake in interpreting the question. Start with rough work
elsewhere, but you need not attach rough work. Use the marks alongside each question for
time management. Illogical or incoherent answers are worse than wrong answers or
even no answer, and may fetch negative credit. You may not use any computing or
communication device during the exam. You may use textbooks, class notes written by you,
approved material downloaded prior to the exam from the course Web page, course news
group, or the Internet, or notes made available by me for xeroxing. If you use class notes from
other student/s, you must obtain them prior to the exam and write down his/her/their
name/s and roll number/s here.

1. We will investigate a connection between locality preserving hash functions and met-
ric spaces, and see that not all reasonable similarity scores have corresponding locality
preserving hash functions.

1(a) Suppose there is a similarity function sim(a, b) defined in some domain, and a locality

preserving hash function family F is available such that

Pr f∈F(f(a) = f(b)) = sim(a, b).

Let ∆f (a, b) be 1 if f(a) 6= f(b), and 0 otherwise. Complete the following by inserting
one of ≤, <,=, >,≥, and justify your choice.

∀a, b, c : ∆f (a, b) + ∆f (b, c) ::::::
∆f (a, c)

1

Given ∆ ∈ {0, 1}, the lhs can be 0, 1, or 2 and the rhs can be 0 or 1. For lhs < rhs to
be possible, lhs must be 0 and rhs must be 1. Can we have ∆f (a, b) = ∆f (b, c) = 0
but ∆f (a, c) = 1? This is equivalent to asking if f(a) = f(b) and f(b) = f(c) are
simultaneously possible with f(a) 6= f(c). Therefore,

∀a, b, c : ∆f (a, b) + ∆f (b, c) ≥
::

∆f (a, c)
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1(b) If J(a, b) = |a∩b|/|a∪b| is the Jaccard similarity defined on sets a, b, using the above

equality or inequality, either prove that the distance measure 1−J(a, b) satisfies the
triangle inequality 1−J(a, b)+1−J(b, c) ≥ 1−J(a, c) for all a, b, c, or give a simple
counter-example.

2

It is easy to verify that Pr(∆f (a, b) = 1) = Ef∈F(∆f (a, b)) = 1− J(a, b). Therefore,

∀a, b, c : 1− J(a, b) + 1− J(b, c) = Ef∈F(∆f (a, b)) + Ef∈F(∆f (b, c))

= Ef∈F(∆f (a, b) + ∆f (b, c))

≥ Ef∈F(∆f (a, c)) = 1− J(a, c).

1(c) The Dice coefficient is similar to Jaccard, defined as

Dice(a, b) =
2 |a ∩ b|
|a|+ |b|

The overlap coefficient is defined as

overlap(a, b) =
|a ∩ b|

min{|a|, |b|}

Using a = {1}, b = {2}, and a suitable (very simple) choice of c, argue that there can
be no locality sensitive hash family for Dice and overlap coefficients.

3

Choosing c = {1, 2} establishes that neither 1−Dice nor 1− overlap satisfy triangle
inequality. Therefore, they cannot have LSHF families.

2. We will extend minhash for Jaccard to the case of Jaccard similarity over weighted sets.
This is strongly motivated by text applications and TFIDF weights.

2(a) First we review the unweighted Jaccard case. With a, b being sets, recall that we

defined sketchπ(a) = min π(a). Instead of thinking about permutations, it may be
easier in later parts of this exercise (and closer to actual code) to use a hash function
f that is seeded with a random seed s (which can be an arbitrary bit sequence), and
then maps any set element x to [0, 1] as a deterministic function fs(x). Over random
choices of seed s, we want fs(x) to map to the uniform distribution U [0, 1]. We will
ignore the possibility of ties in the real range [0, 1]. Then we should define

sketchs(a) = arg min
x∈a ::::::::::::::::::

to ensure that Prs(sketchs(a) = sketchs(b)) is the unweighted Jaccard similarity
between a and b. (Complete with justification.)

1
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If there is no fear of collisions, hashing some number of items using U [0, 1] is equiva-
lent to a random permutation of those items on the number line. Therefore we have
to define

sketchs(a) = arg min
x∈a

fs(x)
:::::

2(b) Now let a, b ∈ ZD+ be vectors with nonnegative integer elements. The weighted

Jaccard similarity between a and b is defined as

J(a, b) =

∑D
d=1 min{ad, bd}∑D
d=1 max{ad, bd}

.

Note that this generalizes the standard unweighted Jaccard similarity between sets,
interpreted as the characteristic vector over sets, d ∈ a⇔ ad = 1 and d 6∈ a⇔ ad =
0. For the general case, we say the element d has support ad in set a.

A crude way to generalize Jaccard is simply to make ad copies of d, which we may
call (d, 1), (d, 2), . . . , (d, ad). We call this transformation of a (to effectively a mul-
tiset) as M(a). Give a modified definition of sketchs(a) for this setting, so that
Prs(sketchs(a) = sketchs(b)) is now the weighted J(a, b).

2
Re-implement fs to accept input d, t, where d ∈ [1, D] and t ∈ [0, ad], and define

sketchs(a) = arg min
(d,t)∈M(a)

fs(d, t)

2(c) Compare the number of invocations of f in the unweighted and weighted cases. Do

you see a problem?

1
To compute sketchs(a), f has to be invoked

∑
d ad times. This can be quite expensive

if supports are large integers, because f must access pseudo-random functions.

2(d) Note that f can be any hash function that ensures these two key properties:

Uniformity: Over all random seeds s, the output of sketchs(a) is distributed uni-
formly over the epigraph 0 ≤ t ≤ ad. I.e., if a were drawn as a histogram over
d as x-axis and ad as y-axis, we sample a point uniformly from the area under
the “curve” of a.

Consistency: Suppose b dominates a, i.e., ad ≤ bd ∀d. Given a seed s, suppose we
draw sketchs(b) as (d, t), which satisfies not only t ≤ bd but also t ≤ ad. Then
samples(a) would always return (d, t) as well.

Now think of all the replicates of d, i.e., (d, 1), (d, 2), . . . as being successively hashed
by f . Suppose we get f·(d, t) = r. Each of (d, t + 1), (d, t + 2), . . . hashes to a
value larger than r with probability 1− r. Write down the distribution g(·) over the
number of replicates that will hash to a value larger than r before a replicate hashes
to a value smaller than r.

2
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g represents the geometric distribution corresponding to a Bernoulli trial with success
probability r. If the (random) number of replicates giving hashes greater than r (i.e.,
failure) is K, then we have Pr(K = k) = (1− r)kr for k = 0, 1, . . .

2(e) Using the above observation, complete the following pseudocode, with adequate

justification, to find, for each d, that t for which fs(d, t) is smallest.

1: i← 0, r ← 1
2: while i ≤ ad do
3: seed distribution g using

:::::::::::::::::::

4: invoke g to get next skip
5: answer← i
6: i←

::::::::::::::::::

7: seed distribution U [0, 1] with
:::::::::::::::::::

8: invoke U [0, 1] to get shrink
9: r ← r

::::::::::::::::::

10: return (d, answer)

(Keep in mind that fs(d, t) is deterministic in s, d, t. Therefore, each invocation
may need a different s to retain apparent randomness of output, while also ensuring
consistency.)

4

The key is proper seeding to ensure the two required properties. Here is one solution,
others are possible.

1: i← 0, r ← 1
2: while i ≤ ad do
3: seed distribution g using

::::::
s, d, i

4: invoke g to get next skip
5: answer← i
6: i← i+ skip + 1

::::::::::::

7: seed distribution U [0, 1] with
::::::
s, d, i

8: invoke U [0, 1] to get shrink
9: r ← r×shrink

::::::::

10: return (d, answer)

For the last item, observe that, given a uniform distribution has generated a value
at most r, we can generate such as value by multiplying r with the result of invoking
U [0, 1].

2(f) Roughly how many times will the loop execute for each d? Give a heuristic argument.

1

In expectation, r is halved every iteration. So the expected skip doubles. Therefore,
the loop executes about log ad times, which is exponentially better than the first
attempt.
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3. Text documents generally contain mentions of entities. E.g., in the sentence “Albert
played the violin”, Albert may be a mention of Einstein, the Physicist, or John Albert, the
violin maker from Philadelphia. Some tokens like Albert and perhaps violin are mention
tokens, and the rest are content tokens. (The classification depends on the universe of
entities known to us.)

3(a) Initially, we will assume that the segmentation of documents d = 1, . . . , D into

mention and content tokens is known. Suppose document d has L(d,m) mention
tokens and L(d, c) content tokens.

Each entity k = 1, . . . , K in our entity catalog (say, Wikipedia) will be regarded as
a “topic”. Associated with each topic will be two multinomial models for words,
one generating mention words (parameters φk,w), and the other generating content
words (parameters ψk,w). These will be generated from global Dirichlet priors with
parameters β and γ respectively. Given the topic, we assume that mention and
content words are independent of each other.

Naturally, given a document may mention many entities, it must be modeled as a
multi-topic document. Each document will have an associated multinomial distribu-
tion over topics, with parameters θd generated from a Dirichlet prior having global
parameters α. Each word position in the document will have an associated hidden
topic yd,` or zd,` according as the position has a mention or context word. The word
itself is denoted wd,`.

Draw a plate diagram for the generative process of the whole corpus, and label plates,
nodes and edges completely with all necessary information.

2

Dir

Dir

Dir

Multi

Multi

Multi

Multi

3(b) Next we will remove the unrealistic assumption that the segmentation is known.

Let document d have length L(d). Each token makes a binary decision yd,` to be a
mention or content token by tossing a coin with mention probability µd, generated for
each document using a global beta prior with parameters λ. zd,` is the hidden topic
used to generate the word at position ` of document d. Other symbols retain their
earlier meanings. Draw a modified plate diagram for the new setting.

3
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Dir Dir

Dir

Multi

Beta Bern.

Multi

Multi

3(c) Based on the second plate diagram, write down the probability of generating a

document w1, . . . , wL using the second model. Only α, β, γ, λ should be free in
your final expression, and all other variables should be suitably marginalized or
aggregated. Specifically, write out the full form of Pr(wd,`|zd,`, yd,`, ::::::

). But you

need not expand known forms for beta, Dirichlet or other distributions.

3

Pr(w1, . . . , wL|α, β, γ, λ)

=

∫
θ

∫
µ

∫
~φ

∫
~ψ

Pr(θ|α) Pr(µ|λ)

[
K∏
k=1

Pr(φk|β) Pr(ψk|γ)

]
[∏

`

∑
y`

K∑
z`=1

Pr(z`|θ) Pr(y`|µ) Pr(w`|z`, y`, φ, ψ)

]
dθ dµ d~φ d~ψ

Pr(w|z, y, φ, ψ) =

{
φz,w y = mention

ψz,w y = content

Total: 25
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