
Breakable Objects: Building Blocks for Flexible Application Architectures

Vikram Jamwal and Sridhar Iyer
IIT Bombay, INDIA

(vikram, sri)@it.iitb.ac.in

Abstract

This paper proposes the concept of Breakable Objects
(BoBs) as the building blocks for flexible application archi-
tectures. We claim that BoB Driven Architecture (BODA)
greatly facilitates automated refactoring of an application
for various deployment scenarios.

1. Introduction

Distributed systems are becoming increasingly varied in
terms of computing and communication capabilities. The
same application may often need to be deployed in diverse
scenarios. One would like to design/write an application for
one scenario in a deployment independent manner and then
simply refactor [2] the application for use in another sce-
nario. For this to happen, one requirement is that applica-
tion functionality should cleanly separate into deployment-
specific component subsets. This is hard to achieve in prac-
tice as some functionality may span across multiple compo-
nents, or a single component may include parts of multiple
functionality.

To enable automatic refactoring, we need the basic com-
ponents in a form that can be easily partitioned into sub-
entities. Traditional objects are not always suitable for such
partitioning and we need some modifications to make them
amenable to refactoring. We propose the use of Breakable
Objects - BoBs for constructing such applications.

2. BoB

A BoB is an entity (class/object/component) in a pro-
gram that can be readily split into sub-entities. Sub entities
should be so formed that they can replace the BoB while re-
taining the semantics (operational) of the original program.

2.1. Features of a BoB

1. BoB Interface: It defines the services provided by the
BoB. It has the following salient features:

Together Interface Methods

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

m6 ()

m5 ()

m4 ()

m3 ()Implementation

BoB m2 ()

BoB Name = A

BoB Interface

m1 ()

�������
�������
�������
�������

�������
�������
�������
�������

Figure 1. BoB

• The set of public methods exported by the BoB pro-
vide the interface.

• There are no public attributes (fields) in a BoB in-
terface. Access to attributes, if needed, is provided
through get() and set() methods.

• Together methods: Some of the methods can be
grouped together by the designer of a BoB. These in-
terface methods cannot be separated in the course of
a split. We introduce a language/ preprocessor con-
struct together to specify such methods.

2. BoB Implementation: A BoB in a class-based pro-
gramming language is implemented using a Class in that
language. There are two features that BoBs do not support:
viz., BoBs do not inherit and BoBs are not active objects.

Figure 1 depicts a BoB for a class-based programming
language like C++, Java, etc. It consists of name of the
BoB class - A and an interface consisting of public meth-
ods m1, m2, m3, m4, m5, and m6 exported by the
class. Methods m1 and m2 are together. The specification is:
together{m1, m2};

BoBs are split on the basis of interface methods. External
split-specifications determine the interface methods which
belong to each split.

High−Level

Requirement

Specification

DEPLOYMENT

ENGINE

Deployment
Configuration
specification

for
Depl. scn. 1

Application
for

Application

Depl. scn − n

...
. . .

Depl−cfg−n

Depl−cfg−1
Application

Specification

 Functionality

BOB based

Application

(Design)

+

 (Implementation)

ENGINE
SPLITTING

Split
Configuration

 File

Application
Deployment

Specification

Split−cfg−n

Split−cfg − 1 Application
Topology − 1

. . .

Topology −n
Application

1

2b

3

4

5a

5b

6

7

8a

8b

9

2a

Figure 2. BODA process stages

3. BoB Driven Architecture (BODA)

Stage 1: Design and implementation (steps 1-3, Fig-
ure 2) In this stage a deployment independent version of
the application implementation is prepared.

• The program designer divides the application function-
ality into a set of - Objects and BoBs. The choice as to
which class should be designated breakable is applica-
tion specific and is based on designer’s understanding
of the future deployment scenarios.

• For each BoB class an interface is defined. It consists
of the public methods of the class and specification of
together methods.

Subsequently, a BoB is treated as just another object in
the program. Thus a base-implementation is done with no
splitting on the BoBs.

Stage 2: Splitting and reorganization (steps 4-6 , Fig-
ure 2) In this stage application functionality is partitioned
into node-specific subsets of objects.

• The functionality required on each node of the new
scenario is determined. This functionality is mapped
onto - (i) the normal objects in the application, and (ii)
the interface methods of a BoB.

• For the given deployment scenario, the BoB split-
configurations are worked out and specified for all the
relevant BoBs.

• The BoBs are automatically split based on these spec-
ifications. The rest of program is reorganized to trans-
form the original BoB references to references to BoB-
splits.

Stage 3: Distribution and deployment (steps 7-9, Fig-
ure 2) In this stage deployable distributed components for
the new scenario are generated, distributed and deployed.

• Each application object is mapped to a node of the ap-
plication deployment setup (deployment-configuration
generation).

• Components are prepared for new distributed environ-
ments through source/binary level transformations.

• The resulting application components are distributed
and deployed across these nodes.

4. Conclusions and Future Work

The main advantage that BoB Driven Architec-
ture (BODA) offers is the separation of partitioning and
deployment concerns from the application design and im-
plementation concerns. It achieves this through: (i) use of
BoBs, (ii) external split and deployment specs, and (iii) au-
tomated refactoring of BoB based program. We have auto-
mated stage 2. Stage 3 is an ongoing work; it builds on the
existing application partitioning systems like J-orchestra
[4], and Pangaea [3], which try to automate partition-
ing of arbitrary Java programs, and Coign [1], which does
partitioning of COM based applications.

References

[1] G. C. Hunt. Automatic distributed partitioning of component-
based applications. PhD thesis, University of Rochester. Dept.
of Computer Science, 1998.

[2] T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Transactions on Software Engineering, 30(2):126–139,
Feb. 2004.

[3] A. Spiegel. Pangaea: An automatic distribution front-end for
Java. In J. D. P. R. et. al., editor, IPPS/SPDP Workshops, pages
93–99, 1999.

[4] E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic Java
application partitioning. In B. Magnusson, editor, ECOOP,
volume 2374 of Lecture Notes in Computer Science, pages
178–204. Springer, 2002.

