
Problem-Solving Using the Extremality Principle

Jagadish M
Dept. of Computer Science and Engg.
Indian Institute of Technology Bombay

Mumbai 400076, India
jagadish@cse.iitb.ac.in

Sridhar Iyer
Dept. of Computer Science and Engg.
Indian Institute of Technology Bombay

Mumbai 400076, India
sri@iitb.ac.in

ABSTRACT
The extremality principle is one of the commonly used prob-
lem solving strategies. It involves looking at the extremal
cases of a problem in order to obtain insight about the gen-
eral structure. Though the principle is widely known, its use
in designing algorithms is rarely discussed in CS literature.
We present a methodology based on the extremality prin-
ciple that is useful in solving a wide variety of algorithmic
problems. We illustrate the effectiveness of the methodol-
ogy by deriving solutions to three difficult problems. We
believe that the key steps involved in our methodology can
be taught to students as individual drills. We have anecdotal
evidence for the teachability of the method.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

General Terms
Algorithms

Keywords
Problem-solving, Extremality

1. INTRODUCTION
The extremality principle is a problem-solving strategy

that involves studying objects with extreme properties in
order to reason about more general objects. Although the
principle is intuitive and well-known, its application to a
specific problem can be difficult. There are many books on
problem-solving that illustrate the use of extremality princi-
ple in solving mathematical problems ([2], [6]). These books
typically contain several topic-specific problems that train
students in identifying situations where extremality can be
useful. However, the current texts on extremality principle
focus mostly on math topics like geometry, number theory
and combinatorics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’14, June 21–25, 2014, Uppsala, Sweden.
Copyright 2014 ACM 978-1-4503-2833-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591708.2591718.

In computer science, extremality is discussed only in the
context of greedy algorithms. A greedy algorithm makes a
local choice at each step that is extremal in some sense. We
show that the principle can be used in more general ways.
We have devised a problem-solving methodology based on
the extremality principle, which we call WISE, that can be
used to solve a wide range of problems. WISE stands for
“Weaken-Identify-Solve-Extend”. For the purpose of illus-
tration, we derive solutions to three hard problems using this
methodology. The ideas in our technique are well-known
to experts who probably apply them implicitly. Our con-
tribution is to operationalize the extremal principle into a
methodology that can be directly taught to students.

2. SOURCE OF DIFFICULTY
In this section, we explain why the extremality principle is

too general to be useful directly and how WISE addressees
some of the key difficulties. The main difficulty arises due
to the multiple ways in which instances can be represented.

Choice of representation of instances. In many cases
a single instance can be represented in multiple ways. The
extreme values of the instance in one representation may
be unrelated to extreme values in another representation.
For example, let us take the case of numbers. A number is
often represented in decimal notation. However, we could
also represent it using a different base system or express
each number by their prime factorization. For example, the
number 15 can be represented as 1111 in base 2 system or
as 3x5 in factorized notation. So the numbers 15, 31, 63
do not seem to be extremal when considered in decimal or
factorized representation (3 · 5, 31, 3 · 3 · 7), but are extremal
when represented in binary (1111,11111,111111). We illus-
trate the use of representation by an example.

Problem. Consider the program given below. For a given
value of n, what is the value of p upon termination of the
program?

int main(){
int n; int p=0;
cin >> n;
while(n > 0){

if(n%2 == 1) p++;
n = n/2;

}
cout << p << endl;
return 0;

}

Sol. Let us inspect the behavior of the program for small
values of n.

87

2. Weaken the
given problem

1. Analyze
the problem P

2a. Weaken
the Instance

2b. Weaken
the Objective

3. Identify
a candidate
problem P ′

Can solve
P ′?

4. Solve P ′. Find
as many solutions
as possible for P ′

Add a previ-
ously removed
constraint to P ′

Remove a
constraint

Solution 1Solution n

5. Extend the
solutions of P ′

towards solving P

. . .

Can solve
P ?

Stop

yes

no

no

yes

Figure 1. The WISE methodology based on extremality prin-
ciple. (WISE is short for “Weaken-Identify-Solve-Extend”)

n 1 2 3 4 5 7 10 15
p 1 1 2 1 2 3 2 4

It is difficult to find the relationship between n and p from
the above table. However, if we switch the represention of n
from decimal to binary the relationship becomes obvious.

n 01 10 11 100 101 111 1001 1111
p 1 1 2 1 2 3 2 4

It is now easy to see what the program does: At each
iteration of the loop, p is incremented if the last bit of n is 1.
Variable n is also right shifted by one bit at each iteration.
Hence, when the program terminates, the value of p contains
the number of 1 bits in the binary representation of original
value of n.

The key to solving the above problem was to find the
right representation for numbers. The importance of rep-
resentation is mentioned in [5] in the context of ‘transform
and conquer’ technique. It plays an important role in our
methodology in finding extremal instances.

3. METHODOLOGY
We describe the steps involved in the WISE methodology.

We elaborate the steps that are shown in Fig. 1.

Step 1 Analyze the given problem P

The first step of the method is to identify the instances,
constraints and the objective of the problem.

Instances and constraints in the problem are easy to iden-
tify by looking at the nouns phrases and verb phrases in the
problem description, respectively.

For each instance, we select a representation and list their
properties. For example, a graph can be represented either as
an adjacency matrix or adjacency list. Graphs have proper-
ties like maximum degree of a vertex, diameter, connectivity,
etc. The properties may depend on the choice of represen-
tation. A property can be intrinsic to an instance or depend
on the choice of representation. For example, diameter is
a property that is intrinsic to a tree, but height is a prop-
erty that is applicable only if the tree is represented as a
rooted tree. Table 1 shows representations and properties of
common instances we encounter in algorithmic problems.

Instance Properties (Representation)
Number Value, Parity, Sign, Number of prime factors,

Number of digits (Decimal),
Numbers of bits (Binary).

Lines Length and Slope.
Array Length, Values, Number of inversions, etc.
Tree Maximum degree of vertex, Number of leaves,

Diameter, Height (Rooted tree).
Graph Number of edges, Diameter, Connectivity,

Regularity, Planarity, Bipartiteness,
Number of cycles, Chromatic number, Girth,
Number of overlapping back-edges (DFS Tree)
Height (BFS Tree).

Table 1. Common instances and their properties.

Step 2 Weaken the given problem

If the problem is hard to solve, we look for a problem that
is simpler to solve first. This is one of the most common
problem-solving techniques [6]. We describe two common
ways of weakening.

Weaken the instances. The most common way to sim-
plify the problem is to retain the objective but restrict the
instances to a particular type. In this section, we discuss
ways to weaken the instances.

Extremal instances are those which optimize a function on
properties subject to some constraints. Due to the number
of ways in which we can combine properties, there are sev-
eral extremal instances one can derive. We list some simple
extremal examples in Table 2 that are useful in many prob-
lems. Solving the problem on a simple extremal instance
usually gives a clue to what other extremal instances might
be interesting to consider.

Emergent Properties. Interaction between instances can
give rise to new properties which we call as emergent prop-
erties. For example, a pair of lines can have an intersection
point which is not a property of either of the lines. Inter-
action could occur between multiple instances of the same
kind or different ones. Since instances could interact in many
ways, there could be a large number of emergent properties.

Weaken the objective. In this step, we identify the ob-
jective and relax the constraints of the problem. The com-
mon way to do this is to relax the individual properties of

88

Instance Extremal function Constraints Extremal Instance
Number Min. the number of prime factors - Numbers of the form pn where p is prime

Min. the number of 1s in bits - 10000,01000,00001, etc.

Lines Maximize or Minimize slope - Horizontal and Vertical lines
Array Number of values - Array consisting of only 1s and 0s
Tree Minimize the number of leaves - Path

Minimize height - Star graph
Minimize height Max. degree is three Complete binary tree

Graph Maximize number of edges - Complete graph
Minimize number of edges Preserving connectivity Tree

Table 2. Examples of extremal objects.

the constraints or operations. It is well known that simpli-
fying constraints by itself can lead to insight [3]. Combining
this with extremality makes it more powerful.

Step 3 Identify a candidate problem P ′

Once we have a list of weaker problems, we identify all the
trivial problems that can be easily solved. Usually, many of
these problems do not give much insight. So we need to pick
a candidate problem that gives some insight into original
problem. The candidate problem is the simplest non-trivial
problem to which we do not have a solution. If the candidate
problem itself is too hard then we go back to Step 2 by and
weaken it further. By repeated application of weakening
the problem or objective, we obtain a candidate problem P ′

that retains some aspects of the original problem but is easy
enough to be solved. Since the problem can be weakened
in several ways, we usually end up with multiple candidate
problems. We choose to pursue one candidate problem at a
time.

Step 4 Solving the candidate problem P ′

In this step, we can apply any of the commonly available
techniques like greedy, divide-and-conquer, dynamic pro-
gramming, etc. to solve P ′. It usually helps to solve the
candidate problem in multiple ways. Solutions differ in their
strengths and weaknesses and may give different insights
into the problem.

Step 5 Extend the solutions

We use each solution of the candidate problem to get in-
sight into the original problem. One of the common ways
of doing this is to first see if the solution applies to near-
extremal instances i.e. extremal instances which are slightly
perturbed. For example, we can try to extend a solution on
prime numbers to numbers with two prime factors. Most
often this extension gives an idea that works for arbitrary
numbers. Similarly, we may try to extend a solution that
works for a path to trees with only two paths. The solution
to two paths may generalize to trees with fixed number of
leaves and then to general trees.

However, if the solution does not extend to a general case
then we add the difficult case to the candidate problem, go
back to Step 1 and tackle it as a new problem.

4. ILLUSTRATIVE EXAMPLE I: COINS IN
A ROW

We apply the WISE methodology to a problem that ap-
pears in the book “Mathematical Puzzles: A Connoisseurs
Collection” by Peter Winkler [7]. The book is a collection

of hard and interesting puzzles. This is the first of the three
problems with which we illustrate the effectiveness of WISE.

Problem. Coins in a row. On a table is a row of fifty
coins of various denominations. Alice picks a coin from one
of the ends and puts it in her pocket; then Bob chooses a
coin from one of the (remaining) ends, and the alternation
continues until Bob pockets the last coin. Prove that Alice
can play so as to guarantee collecting as much money as
Bob.

Step 1 Analyze the problem

We identify the instances, constraints and the objective of
the problem. Noun phrases in the problem description usu-
ally correspond to instances and verb phrases to constraints
and objectives. The cue phrases in the problem are shown
in italics below.

Objective Find a strategy for Alice to collect more money
than Bob.

Constraint Coins must be picked alternatively from both
ends.

Instances Coins and a sequence of fifty coins.

Emergent Property. Since the game is deterministic, for
any sequence of coins S, there is a unique value which de-
notes the maximum amount Alice can collect on S, assuming
that both Alice and Bob choose optimally. Let profit denote
the difference between Alice’s amount and Bob’s amount for
a given sequence of coins. Note that profit is an emergent
property of the sequence.

Step 2 Weakening

Weaken the instance. One way to weaken the input se-
quence is to restrict the values of coins to 1s and 0s. Zeroes
and ones are extremal because they are the smallest two
non-negative values. A sequence of all zeroes or all ones is
also extremal, but this makes the problem trivial.
Weaken the objective. There are many options to relax
the objective or constraints: Can Alice pick the largest coin
always? Can Alice force Bob to pick a particular coin? Can
Alice collect at least half the amount as Bob?

Step 3 Identify a candidate problem

Candidate problem. Given a sequence consisting only zeroes
and ones, find a strategy for Alice to maximize her profit.

Step 4 Solving a candidate problem

This is the step in which extremality is most useful. We
would like to identify problem-specific extremal instances of

89

the candidate problem which can be used to get some insight
into the problem.

Here is an extremal instance based on the emergent prop-
erty profit: Which configuration consisting of 1s and 0s gives
the maximum profit for Alice? The instance is not hard to
construct since at each turn Alice should be able to pick 1
but not Bob:

0 1 10 0 0 0 0 0 01 1 1 1 1 1

In the above example it is easy to see that Alice can pick
all the 1s and Bob gets zero. So the gain for this sequence
is maximum over all sequences of the same length.

If 1s and 0s appear in alternate positions, Alice can always
pick all the 1s.

0

o

1

e

1

e

0

o

0

o

0

o

0

o

0

o

0

o

0

o

1

e

1

e

1

e

1

e

1

e

1

e

In general, Alice can pick all the numbers that are in posi-
tions of the same parity, regardless of the values of the coins
(Key Idea). Notice how we made this observation simply by
solving the right extremal problem: that of alternate ones
and zeroes.

Step 5 Extend the Solutions

Near extremal instance: Alternate 1s and 0s except for one
position. Alice can win by collecting 1s if x is less than the
number of ones. Otherwise, she can win by collecting x.
By generalizing this idea, we see that Alice has a winning
strategy: Alice first sums up all the coins in even positions
and all the coins in odd positions. Then, she will pick up all
coins of the same parity that gives her a larger sum.

0

o

1

e

1

e

x
o

0

o

0

o

0

o

0

o

0

o

0

o

1

e

1

e

1

e

1

e

1

e

1

e

Sol. Alice either picks all the numbers in even positions or
odd positions (whichever is greater).

5. EXAMPLE II: GRID MINIMUM
This problem is taken from the textbook by Klienberg-

Tardos [4]. The authors mention that problems in each chap-
ter appear roughly in increasing order of difficulty. Grid
Minimum is the last problem in the chapter on divide-and-
conquer technique.

Problem. Let G be an n×n grid graph. Each node v in G is
labelled by a real number xv; you may assume that all these
labels are distinct. A node v of G is called a local minimum
if the label xv is less than the label xw for all nodes w that
are joined to v by an edge. You are given the grid graph G,
but the labelling is only specified in the following implicit
way; for each node v, you can determine the value xv by
probing the node v. Show how to find a local minimum of
G using only O(n) probes to the nodes of G. (Note that G
has n2 nodes.)

Step 1 Analyze the problem

We first identify the instances of the problem.

• Instances in the problem: Grid graph with values.

• Extremal instances

– An 1× n grid graph (extremality in structure.)

– A grid graph with only one node that is a local
minimum (extremality in values.)

Step 2a Weakening the instance

Let us consider the extremal instance when the grid graph
is of size 1× n. This means the graph is just a path.

Step 3 Identify a candidate problem

The candidate problem is as follows: What is the least num-
ber of queries in which we can find a local minimum on a
path?

Step 4 Solving the candidate problem

Suppose we probe the middle node m and find its value to be
5 (say). If this node is the local minimum, then its neighbors
must be larger than 5.

5

To check if the node m is a local minimum, we compare its
value with its adjacent nodes. If m is smaller than both the
neighbors, then we are done; otherwise we do the following:

Without loss of generality, assume that the right node
is smaller than the middle node. Observe that the node
with the smallest value in the right half (outlined) of the
path must be a local minimum, so the right half of the path
contains at least one local minimum. With one probe, we
can reduce the size of the path by half. We can find a local
minimum in at most O(log n) probes by recursing.

56 3

Step 5 Extend the solutions

Can we generalize the above idea to a 2× n size grid?
Suppose, we probe the middle nodes of the 2×n grid and

find that one of them is a local minimum, then we are done.

2

5

Otherwise, it means that each middle node is adjacent
to a node that has smaller value. Consider the case when
both the smaller adjacent nodes are on the same side of
the middle nodes (say right side as shown below). In this
case, we know that there exists a local minimum in the right
half of the gird (outlined portion), due to the same reason as
above: the smallest valued node in the right half is definitely
a local minimum. Hence, the same idea that we used for a
path extends to this case. We can recurse on the right half
of the grid since it is assured to contain a local minimum.

2

5

3

6

1

4

However, this idea does not extend to the case when the
smaller adjacent nodes are in opposite directions (as shown
in Fig. 2). This case is perplexing because we do not know if
we can discard the right half or the left half of the grid (if at
all we can discard). Let us add this difficulty and consider
it as our next candidate problem.

90

2

5

1

6

3

4

Figure 2. Should we recurse on the left half or the right?

Step 3 Identify a candidate problem

Candidate Problem 2: Given a grid graph of size 2 × n
and the values of middle nodes and their neighbors, deter-
mine which half of the grid contains a local minimum.

Step 4 Solving the candidate problem

We consider the difficult case when the smaller neighbors of
middle nodes are on the opposite sides as given in Fig. 2.

Instead of approaching this problem directly, we use ex-
tremality to get some insight. Our instance is a 2× n grid.
An extremal instance of a grid may be a grid with only one
local minimum. Is it possible to extend the grid shown in
Fig. 2 such that it has only one local minimum?

Note that if a node is not a local minimum, then one of its
neighbors has a smaller value than itself. We can use this
fact and complete the grid in Fig.2 with values such that
it has only one local minimum. One such extremal case is
shown in Fig. 3, where node 1 is the only local minimum.

2

5

17 16 14 1 3 8 11 12

18 15 13 6 4 7 9 10

Figure 3. Node 1 is the only local minimum.

Note that the local minimum has appeared on the left side
of the grid graph. We observe that no matter how we try
to fill up the values for the remaining nodes in Fig.2, we
always end up with a local minimum on the left side of grid
graph. So in some sense, the middle node 2 seems to have
more influence than middle node 5.

Key Fact. Node 2 is the minimum node among the middle
nodes 2 and 5.

Here is the reason why the local minimum always appears
on the left side of the grid graph shown in Fig.2: Suppose
node 1 is a local minimum, then we are done. Otherwise,
let node l be the minimum valued node in the left half of
the graph (outlined portion in Fig. 3). Note that node l
is less than all the nodes in the left half of the grid graph
including the middle nodes 2 and 5. Therefore, node l is a
local minimum. So in either case, we get a local minimum
on the left side of the grid graph.

Using the above observation, we can now answer candi-
date problem 2. Suppose we are given a 2 × n grid with
middle nodes a and b. Without loss of generality, assume
va < vb. Let x be the neighbor of node a with vx < va.
Then there always exists a local minimum in that half of
the grid graph that contains node x.

Step 5 Extend the solutions

The solution to the 2× n grid gives enough insight to solve
the original problem. We give a divide-and-conquer algo-
rithm below:

Sol. Given an n × n grid, we probe all middle nodes and
check if one of the middle nodes is a local minimum. If this
is true, then we are done. Otherwise, we find the minimum
valued node among the middle nodes (call this minimum
valued node m). Since m is not a local minimum, there
exits a node x, either to m’s right or left such that vx < vm.
Let G′ be the half of the grid than contains vx. G′ is a
n× n/2 grid. Apply the probing procedure again to G′ and
partition it into two halves. Let G′′ be the half that contains
the local minimum. Recurse on G′′. This is the divide-step
of the algorithm that uses only 3n/2 probes and reduces the
problem into an instance of size n/2 × n/2. The associated
recurrence relation is

T (n) = T (n/2) + 3n/2

which implies that the algorithm runs in linear time.

6. EXAMPLE III: BEADS
This problem was posed in a regional ACM-ICPC compe-

tition that was held in the authors’ institute. None of teams
were able to solve it during the competition. We consider
the problem to be hard since most teams that take part in
ACM-ICPC are competent in common algorithm techniques.

Problem. You are given a circular necklace containing n
beads. Each bead maybe black or white. You have to rear-
range the beads so that beads of the same color occur con-
secutively. The only operation allowed is to cut the necklace
at any point, remove some number of beads from both ends
and put them back in any order, and join the cut ends. The
cost of this operation is the number of beads removed. Any
number of such operations can be used. You have to find a
sequence of such operations with minimum total cost for a
given initial distribution of beads. For example, if the ini-
tial string is wbwbwb, this can be done by a single operation
of cost 4. Design a linear-time algorithm for this problem.
(Problem due to Ajit Diwan.)

Initial

4

Step 1 Analyze the Problem

• Instances in the problem: Necklace.

• Property of the necklace: Number of misplaced beads.

Step 2a Weakening the instance

To simplify we use an array of beads instead of a circular
necklace.

Extremal instance. Consider the problem on an array of
beads with only one misplaced bead.

Step 2b Weakening the objective

Can we solve the problem if we allow the cut-and-join oper-
ation to be performed only once?

91

Step 3 Identify a candidate problem

Candidate Problem: Given an array of beads with one
misplaced bead find the minimum cost by which we can sort
the beads using one cut-and-join operation.

Step 4 Solving the candidate problem

Def. Let a maximal contiguous sequence of same colored
beads be called a streak.

Observe that it is possible to solve this instance with cost
of 8. But how can we prove that this is the minimum cost?

A1

What if there exists a cut-and-join operation in the mid-
dle that achieves smaller cost? This not possible since the
untouched portion of the array must be streak. If there are
misplaced beads in the untouched portion, they will continue
to remain so after the operations.

A1

Untouched portion must be a streak

Step 5 Extend the solutions

In general, the untouched portions of the array must be
streaks. Further, there cannot be a streak of a different
color in between two streaks of the same color as this would
also result in misplaced beads after the operation.

Adding a difficulty
Candidate Problem 2: Given an array of beads with one
misplaced bead find the minimum cost by which we can sort
the beads using two cut-and-join operations.

Would the minimum cost of operation remain 8, if we
allowed two cut-and operations? Would it be possible to
achieve lower cost by using two smaller operations?

A1 A2

Suppose A1 and A2 are two operations. The cost of these
operations would be |A1 + A2| which is more than 8 if the
operations overlap. Hence, it is not useful to have to con-
secutive overlapping operations.

This idea coupled with the idea above gives enough infor-
mation to resolve the problem.

Sol. Suppose the initial configuration of beads is repre-
sented by an array A[1..n]. The cut-and-join operation can
be seen as rearranging a sub-array A[i..j] while paying a cost
of j − i+ 1, allowing the sub-array to wrap around.

Suppose A1, A2, . . . , An is an optimal sequence of cut-and-
joins. If Ai and Ai+1 overlap or are next to each other they
can be combined into one cut-and-join operation without
increasing the cost. So there exits an optimal sequence in
which Ais are separated from one another by streaks. Each
Ai has at least one black bead and one white bead. There
cannot be more than two Ais since this would result in two
streaks of the same color after rearrangement. Since our goal
is to get one streak of each color, the optimal strategy is to
leave the maximum streak of white beads and maximum
streak of black beads untouched and use (at most) two cut-
and-join operations to rearrange the rest of the beads. This
can be done in O(n) time.

7. DISCUSSION ON TEACHABILITY
There are many more problems that can be solved using

the WISE methodology. We have chosen to discuss three dif-
ficult problems as illustrations. The authors will be happy
to share more examples upon request. Such illustrations
can also be used for teaching WISE, through a cognitive ap-
prenticeship model. The cognitive apprenticeship model is
known to be a pedagogically sound way of teaching problem-
solving [1].

We believe that the key steps involved in WISE can be
taught to students as individual drills. The key steps in-
volved in WISE are pervasive in all problem-solving tech-
niques and not just limited to CS topics. Mastering these
steps is likely to help the students in other areas too. These
skills are not sufficiently emphasized in the current practice
of teaching. For example, being able to formulate weaker
problems is an important skill in any kind of problem-solving.
However, there are hardly any questions in textbooks whose
objective is to come up with a list of weaker problems for
a given problem. Most instructors assume that this step
will be implicitly done as part of solving a problem. In our
preliminary experiments, we find that students tend to ap-
proach problems too directly and often get stuck in blind
alleys.

WISE focuses on the method of inquiry rather than di-
rectly looking for a solution. This helps in the case of hard
problems, when one cannot come up with the required in-
sight directly. Often getting unstuck involves picking up a
new line of approach. WISE does this by encouraging stu-
dents to look at several simpler candidate problems and also
gives explicit instructions for coming up with such prob-
lems. We have anecdotal evidence to show that the steps
involved in WISE can be taught to students as individual
drills. Based on our preliminary experiments, we find that
students able to apply the first three steps of the WISE
method but have difficulty in the ‘Extend’ step. In our fu-
ture work, we plan to give guidelines to overcome this diffi-
culty.

8. REFERENCES
[1] Vanessa P Dennen and Kerry J Burner. The cognitive

apprenticeship model in educational practice. Handbook
of research on educational communications and
technology, pages 425–439, 2007.

[2] A. Engel. Problem-solving strategies. Springer, 1998.

[3] D. Ginat. Gaining algorithmic insight through
simplifying constraints. JCSE Online, 2002.

[4] Jon Kleinberg and Éva Tardos. Algorithm Design.
Addison Wesley, second edition, 2006.

[5] Anany Levitin and Mary-Angela Papalaskari. Using
puzzles in teaching algorithms. In Proceedings of the
33rd SIGCSE technical symposium on Computer
science education, SIGCSE ’02, pages 292–296, New
York, NY, USA, 2002. ACM.

[6] G. Polya. How to Solve It - a New Aspect of
Mathematical Method. Princeton University Press,
Princeton, 2 edition, 1957.

[7] Peter Winker. Mathematical puzzles: a connoisseur’s
collection. CRC Press, 2003.

92

